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Dynamic Context Logic and its Application to Norm Change

Building on a simple modal logic of context, the paper presents a dynamic logic characterizing operations of contraction and expansion on theories. We investigate the mathematical properties of the logic, and use it to develop an axiomatic and semantic analysis of norm change in normative systems. The proposed analysis advances the state of the art by providing a formal semantics of norm-change which, at the same time, takes into account several different aspects of the phenomenon, such as permission and obligation dynamics, as well as the dynamics of classificatory rules.

Introduction

Normative systems [START_REF] Alchourrón | Normative Systems[END_REF] have become a valuable abstraction for the design of multiagent systems, and logic-based studies of norms have obtained increasing attention, in particular for their usefulness in providing computational models of norm-based interaction grounded on logical semantics (e.g. [START_REF] Ågotnes | On the logic of normative systems[END_REF]). Taking up on pioneering work such as [START_REF] Alchourrón | Hierarchies of regulations and their logic[END_REF], the topic of how norms change over time has also become a topic of interest (e.g. [START_REF] Governatori | Changing legal systems: abrogation and annulment (part I: revision of defeasible theories)[END_REF]) given its relevance for understanding the ways social interaction evolves within multi-agent systems.

The aim of this work is to study norm change as a special instance of context change. Following [START_REF] Grossi | The many faces of counts-as: A formal analysis of constitutive-rules[END_REF] normative systems are, in a nutshell, logical theories concerning complex ways of classifying states of affairs as legal or illegal. As a consequence, each normative system specifies a context with respect to which rules of classification hold. Once such perspective is assumed, existing formal accounts of belief and knowledge dynamics can be transferred to study context change and, thus, norm change. We focus on dynamic epistemic logic (DEL) [START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF], and study two specific context change operations which can successfully account for norm change:

• Context expansion acounting for norm promulgation,

• Context contraction accounting for norm derogation.
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In both cases, it is assumed that the authority of a normative system makes a proclamation in such a way that the norms of the normative system are modified. In the former case, the authority proclaims that from now on "a certain fact ϕ implies a violation", expanding the current set of obligations of the normative system. For example, the authority of a normative system might proclaim that from now on "driving faster than 110 km/h on a highway implies a violation". After this norm promulgation, it is obligatory to drive at most 110 km/h. In the latter case, the authority proclaims that "a certain fact ϕ does not imply a violation", contracting the current set of obligations of the normative system (and consequently making the normative system more 'permissive'). For example, the authority of a country might proclaim that from now on 'encrypting email does not imply a violation' by derogating the previous norm which forbade encryption in written communication. After this proclamation, it is permitted to encrypt email.

We start from the modal logic presented in [START_REF] Grossi | The many faces of counts-as: A formal analysis of constitutive-rules[END_REF]. This logic is based on a set of modal operators [X] where X is a label denoting the context of a theory, i.e., in our case, the context of a normative system. A formula [X]ϕ reads 'in the context of normative system X it is the case that ϕ'. Our aim in this paper is to extend this logic with two special kinds of events of the form X+ψ and X-ψ, and corresponding modal operators [X+ψ] and [X-ψ]. The former are similar to the operators for announcement studied in DEL [START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF]. Their function is to restrict the space of possible worlds accepted by the normative system X to the worlds where ψ is true. We use these operators to model norm promulgation. The function of modal operators of type [X-ψ] is to add to the space of possible worlds accepted by the normative system X some worlds in which ψ is false. We use them to model norm derogation.

The paper is organized as follows. In Section 2 we will briefly present the modal logic of context of [START_REF] Grossi | The many faces of counts-as: A formal analysis of constitutive-rules[END_REF]. Section 3 is devoted to extend this logic with the two events X+ψ and X-ψ which allow to model context dynamics. Finally, in Section 4, we will apply our logical framework to norm change, i.e.norm promulgation and norm derogation.

A modal logic of context

The logic presented in this section is a simple modal logic designed to represent and reason about a localized notion of validity, that is, of validity with respect to all models in a given set. Such a given set is what is here called a context, in accord with much literature in artificial intelligence and linguistics on context theory (see, for instance, [START_REF] Stalnaker | On the representation of context[END_REF][START_REF] Ghidini | Local models semantics, or contextual reasoning = locality + compatibility[END_REF]).

Let Φ = {p, q, . . .} be a countable non-empty set of propositional letters, and let C = {X, Y, . . .} be a countable set of contexts. L P rop denotes the propositional language.

Models Definition

1. A context model (Cxt-model) M = (W, R, I) is a tuple such that:
• W is a nonempty set of possible worlds;

• R : C -→ 2 W maps each context X to a subset of W ;

• I : Φ -→ 2 W is a valuation.
We write R X for R(X) and w ∈ M for w ∈ W . For w ∈ M, the couple (M, w) is a pointed context model.

A Cxt-model represents a logical space together with some of its possible restrictions, i.e., the contexts. In our case, contexts are used to represent the restrictions to those sets of propositional models satisfying the rules stated by a given normative system [START_REF] Grossi | The many faces of counts-as: A formal analysis of constitutive-rules[END_REF]. Let us illustrate how they can be used to model normative systems.

Example 1. Consider a normative system according to which: motorized vehicles must have a numberplate ; motorized vehicles must have an insurance; bikes should not have an insurance; bikes are classified as not being a motorized vehicle. Once a designated atom V is introduced in the language, which represents a notion of "violation" [START_REF] Anderson | A reduction of deontic logic to alethic modal logic[END_REF], the statements above obtain a simple representation:

Rule 1: (mt ∧ ¬pl ) → V Rule 2: (mt ∧ ¬in) → V Rule 3: (bk ∧ in) → V Rule 4: bk → ¬mt A Cxt-model M = (W,
R, I) where I maps atoms mt, pl , in, bk and V to subsets of W models the normative system above as a context X if R X coincides with the subset of W where Rules 1-4 are true according to propositional logic.

Logic

The logic Cxt is now presented which captures the notion of validity with respect to a context, thereby allowing to represent situations such as Example 1 in our language. To talk about Cxt-models we use a modal language L Cxt containing modal operators [X] for every X ∈ C, plus the universal modal operator [U]. The set of well-formed formulae of L Cxt is defined by the following BNF:

L Cxt : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [U]ϕ | [X]ϕ
where p ranges over Φ and X over C. The Boolean connectives , ∨, →, ↔ and the dual operators X are defined as usual within L Cxt as:

X ϕ = ¬[X]¬ϕ, for X ∈ C ∪ {U}.
We interpret formulas of L Cxt in a Cxt-models as follows: the [U] operator is interpreted as the universal modality [START_REF] Blackburn | Modal Logic[END_REF], and the [X] operators model a restricted notion of validity. Cxt-validity is axiomatized by the following schemas:

(P) all propositional axiom schemas and rules

(4 XY ) [X]ϕ → [Y ][X]ϕ (5 XY ) X ϕ → [Y ] X ϕ (T U ) [U]ϕ → ϕ (K X ) [X](ϕ → ϕ ) → ([X]ϕ → [X]ϕ ) (N X ) IF ϕ THEN [X]ϕ
where X, Y ∈ C ∪ {U}. The [X] and [Y ] operators are K45 modalities strengthened with the two inter-contextual interaction axioms 4 XY and 5 XY .

[U] is an S5 modality. Provability of a formula ϕ, noted Cxt ϕ, is defined as usual.

Logic Cxt is well-behaved from the point of view of both axiomatizability and complexity.

Theorem 1 ([9]

). |= Cxt ϕ iff Cxt ϕ.

Theorem 2. Deciding Cxt-validity is coNP-complete. Sketch of proof. Satisfiability of S5 formulas is decidable in nondeterministic polynomial time [START_REF] Blackburn | Modal Logic[END_REF]. Let L [U] be the language built from the set of atoms Φ ∪ C (supposing Φ and C are disjoint) and containing only one modal operator [U]. That is:

L [U] : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [U]ϕ
where p ranges over Φ∪C. It gets a natural interpretation on context models where [U] is the global modality. Then one can show that the following is a satisfiability-preserving polytime reduction

f of L Cxt to L [U] : f (p) = p; f (¬ϕ) = ¬f (ϕ); f (ϕ ∧ ϕ ) = f (ϕ) ∧ f (ϕ ); f ([U]ϕ) = [U]f (ϕ); f ([X]ϕ) = [U](X → f (ϕ)).
The same argument can be used to prove linear time complexity if the alphabet Φ is finite.

Another interesting property of Cxt is that every formula of L Cxt is provably equivalent to a formula without nested modalities, as the following proposition shows. We first formally define the language without nested modalities:

L 1 Cxt : ϕ ::= α | [X]α | [U]α | ¬ϕ | ϕ ∧ ϕ where α ranges over L P rop and X over C. Proposition 1. For all ϕ ∈ L Cxt there is ϕ 1 ∈ L 1 Cxt such that Cxt ϕ ↔ ϕ 1 .
Proof. By induction on ϕ. The Boolean cases clearly work. If ϕ is of the form [X]ψ with X ∈ C ∪ {U} then by IH there are α k , α i j ,

β i ∈ L P rop such that ϕ ↔ [X] k∈N l (α k ∨ i∈Nn k ([X i ]α i 1 ∨ . . . ∨ [X i ]α i ni ∨ X i β i ))).
However, using (4 XY ) and (5 XY ), one can easily show that

Cxt [X](α k ∨ i∈Nn k ([X i ]α i 1 ∨ . . . ∨ [X i ]α i ni ∨ X i β i ))) ↔ ([X]α k ∨ i∈Nn k ([X i ]α i 1 ∨ . . . ∨ [X i ]α i ni ∨ X i β i ))).
We will use this result in the completeness proof of the dynamic extension of Cxt (Proposition 3).

Normative systems in Cxt

We are ready to provide an object-level representation of Example 1. The contextual operators [X] and the universal operator [U] can be used to define the concepts of classificatory rule, obligation and permission which are needed to model normative systems. Classificatory rules are of the form "ϕ counts as ψ in the normative system X" and their function in a normative systems is to specify classifications between different concepts [START_REF] Searle | Speech acts: An essay in the philosophy of language[END_REF]. For example, according to the classificatory rule "in the context of Europe, a piece of paper with a certain shape, color, etc.counts as a 5 Euro bill", in Europe a piece of paper with a certain shape, color, etc. should be classified as a 5 Euro bill. The concept of classificatory rule is expressed by the following abbreviation:

ϕ ⇒ X ψ def = [X](ϕ → ψ)
where ϕ ⇒ X ψ reads 'ϕ counts as ψ in normative system X'. As done already in Example 1, by introducing the violation atom V we can obtain a reduction of deontic logic to logic Cxt along the lines first explored by Anderson [START_REF] Anderson | A reduction of deontic logic to alethic modal logic[END_REF]. As far as obligations are concerned, we introduce operators of the form O X which are used to specify what is obligatory in the context of a certain normative system X: O X ϕ def = ¬ϕ ⇒ X V According to this definition, 'ϕ is obligatory within context X' is identified with '¬ϕ counts as a violation in normative system X'. Note that we have the following Cxttheorem:

Cxt ((ϕ ⇒ X ψ) ∧ (ϕ ⇒ X ¬ψ)) → O X ¬ϕ (1)
This will be of use in Section 4. Every O X obeys axiom K and necessitation, and is therefore a normal modal operator.

Cxt O X (ϕ → ψ) → (O X ϕ → O X ψ) (2) IF Cxt ϕ THEN Cxt O X ϕ (3)
Note that the formula O X ⊥ is consistent, hence our deontic operator does not satisfy the D axiom.

We define the permission operator in the standard way as the dual of the obligation operator: "ϕ is permitted within context X", noted P X ϕ. Formally:

P X ϕ def = ¬O X ¬ϕ P U ϕ should be read "ϕ is is deontically possible".
Example 2. Consider again the normative system of Example 1. We can now express in Cxt that Rules 1-4 explicitly belong to context X: 

Rule 1 : O X (mt → pl ) Rule 2 : O X (mt → in) Rule 3 : O X (bk → ¬in) Rule 4 : bk ⇒ X ¬mt
• R Y = R Y if Y = X; • R X = R X ∩ ||ψ|| M .
We set (M, w)

X-ψ -→ (M , w ) iff W = W , w = w , I = I , and • R Y = R Y if Y = X; • R X = R X if M, w |= ¬[X]ψ ∨ [U]ψ R X ∪ S otherwise, for some ∅ = S ⊆ ||ψ|| M In case (M, w) X+ψ -→ (M , w ) (resp. (M, w) X-ψ -→ (M , w )), we say that M is a (context) expansion (resp. contraction) of M.
In the above definition, ||ψ|| M = {w ∈ M : M, w |= ψ}. So in both cases, it is only the context X which changes from M to M . In the first case, it is restricted to the worlds that satisfy ψ, and in the second case, it is enlarged with some worlds which satisfy ¬ψ, except if such worlds do not exist in the model ([U]ψ) or if ¬ϕ is already consistent with the context (¬[X]ψ). Note that there might be several contractions of a given Cxt-model but there is always a unique expansion. The relation Then (M, w)

X+ψ -→ (M , w ) iff (M , w ) X-ψ -→ (M, w) and M , w |= [X]ψ.

Logic

The language of the logic DCxt is obtained by adding the dynamic operators [X+ψ] and [X-ψ] to the language L Cxt :

L DCxt : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [X]ϕ | [U]ϕ | [X+ψ]ϕ | [X-ψ]ϕ
where p ranges over Φ, X over C and ψ over L Cxt . [X+ψ]ϕ reads 'after the expansion of the context X by ψ, ϕ is true', and [X-ψ]ϕ reads 'after any contraction of the context X by ψ, ϕ is true'. The operator [X-ψ] is thus useful if we want to have general properties about our family of contractions or about a situation; for example, given some formulas ψ 1 , . . . , ψ n , what would be true after any sequence of contractions and expansions by these formulas? Can we get an inconsistency with a specific choice of contractions?

In order to axiomatize the DCxt-validities we define for every X ∈ C two auxiliary languages L =X and L =X :

L =X : ϕ ::= [X]α | ¬ϕ | ϕ ∧ ϕ L =X : ϕ ::= α | [Y ]α | ¬ϕ | ϕ ∧ ϕ where α ranges over L P rop and Y over (C ∪ {U}) -{X}.
Logic DCxt is axiomatized by the following schemata:

(Cxt)

All axiom schemas and inference rules of Cxt

(R+1) [X+ψ]ϕ =X ↔ ϕ =X (R+2) [X+ψ][X]α ↔ [X](ψ → α) (R+3) [X+ψ]¬ϕ ↔ ¬[X+ψ]ϕ (R-1) [X-ψ](ϕ =X ∨ ϕ =X ) ↔ (ϕ =X ∨ [X-ψ]ϕ X ) (R-2) ¬[X-ψ]⊥ (R-3) [X-ψ]([X]α 1 ∨ . . . ∨ [X]α n ∨ X α) ↔ ((¬[X]ψ ∨ [U]ψ) ∧ ([X]α 1 ∨ . . . ∨ [X]α n ∨ X α)) ∨ (([X]ψ ∧ ¬[U]ψ) ∧ (( i ([X]α i ∧ [U](ψ ∨ α i ))) ∨ X α ∨ [U](ψ ∨ α))) (K + ) [X+ψ](ϕ → ϕ ) → ([X+ψ]ϕ → [X+ψ]ϕ ) (K -) [X-ψ](ϕ → ϕ ) → ([X-ψ]ϕ → [X-ψ]ϕ ) (RRE)
Rule of replacement of proved equivalence where 

X ∈ C, ϕ, ϕ ∈ L DCxt , ψ ∈ L Cxt , ϕ =X ∈ L =X , ϕ =X ∈ L =X ,
1 Cxt ∈ L 1 Cxt such that Cxt ϕ Cxt ↔ ϕ 1 Cxt . So DCxt [X+ψ]ϕ Cxt ↔ [X+ψ]ϕ 1
Cxt by (REE) and (K + ). Now, thanks to axioms (R+1), (R+2) and (R+3) and because ϕ 1

Cxt ∈ L 1 Cxt , one can easily show that there is ψ Cxt ∈ L Cxt such that DCxt [X+ψ]ϕ 1 Cxt ↔ ψ Cxt . For the case [X-ψ]ϕ Cxt we apply the same method using (R-1), (R-2) and (R-3). So DCxt ϕ DCxt ↔ ψ Cxt . Now we replace ϕ DCxt by ψ Cxt in ϕ DCxt . This yields an equivalent formula (thanks to (RRE)) with one dynamic operator less. We then apply to this formula the same process we applied to ϕ Cxt until we get rid of all the dynamic operators. Finally, we could perfectly enrich this formalism with specific contraction operators. For example we could add to L DCxt the contraction operator [X ψ]ϕ whose semantics would be defined as follows: for

M = (W, R, I), M, w |= [X ψ]ϕ iff M , w |= ϕ, where M = (W, R , I) with R Y = R Y for Y = X and R X = R X ∪ {w ∈ W | M, w |= ¬ψ}.
To get a complete axiomatization, we just have to add to DCxt the following axiom schemas: (1)

[X ψ]ϕ =X ↔ ϕ =X ; (2) [X ψ]¬ϕ ↔ ¬[X ψ]ϕ; (3) [X ψ][X]α ↔ [X]α ∧ [U](¬ψ → α)
; and the distribution axiom (K ). In fact this contraction belongs to the family of contractions defined in Definition 3, and so we have DCxt [X-ψ]ϕ → [X ψ]ϕ.

A logical account of norm change

Just as we defined the static notions of obligation and classificatory rules on the basis of Cxt, we can in the same spirit define the dynamic notions of promulgation and derogation of obligation and classificatory rules on the basis of DCxt:

+(ϕ ⇒ X ψ) def = X+(ϕ → ψ) +O X ψ def = X+(¬ψ → V) -(ϕ ⇒ X ψ) def = X-(ϕ → ψ) -O X ψ def = X-(¬ψ → V) [+(ϕ ⇒ X ψ)]χ (resp. [-(ϕ ⇒ X ψ)]χ
) should be read 'after the promulgation (resp. after any derogation) of the classificatory rule ϕ ⇒ X ψ, χ is true'. Likewise, [+O X ψ]ϕ (resp. [-O X ψ]ϕ) should be read 'after the promulgation (resp. after any derogation) within context X of the obligation ψ, χ is true'. Then we have the following intuitive DCxt-theorems:

DCxt [+(ϕ ⇒ X ψ)]ϕ ⇒ X ψ (4) DCxt [+O X ψ]O X ψ (5) DCxt P U ¬ψ → [-O X ψ]P X ¬ψ (6)
In particular, DCxt-theorem (6) says that "If ¬ψ is deontically possible then after any derogation within context X of the obligation ψ, ¬ψ is permitted". Example 3. In Example 2, after the legislator's proclamation that motorized vehicles having more than 50cc (mf ) are obliged to have a numberplate (event +O X ((mt ∧ mf ) → pl ) and that motorized vehicles having less than 50cc (¬mf ) are not obliged to have a numberplate (event-O X ((mt ∧ ¬mf ) → pl ) we should expect that motorbikes having more than 50cc have the obligation to have a numberplate and motorbikes having less than 50cc have the permission not to have a numberplate. This is indeed the case:

DCxt P U (mt ∧ ¬mf ∧ ¬pl ) → ([+O X ((mt ∧ mf ) → pl )] [-O X ((mt ∧ ¬mf ) → pl )]O X ((mt ∧ mf ) → pl )∧ P X (mt ∧ ¬mf ∧ ¬pl )).
We now consider two types of normative inconsistency, classificatory dilemma and normative dilemma, and show how they might arise from promulgation and derogation.

Classificatory dilemna By classificatory dilemma we mean that a certain fact ϕ is classified by a normative system both under ψ and under ¬ψ, i.e. (ϕ ⇒ X ψ) ∧ (ϕ ⇒ X ¬ψ). An example of classificatory dilemma is the case of someone who finds an object in the sea and is classified by the normative system as the owner of the object. At the same time, someone who claims having lost the object and can prove this, is also classified as the owner of the object. Finally, according to the normative system, there is no more than one owner of an object. If a person finds an object in the sea and another person claims that she has lost this object and can prove that, we incur a classificatory dilemma: the former person is classified as the owner of the object and, at the same time, she is classified as not being the owner of it.

Example 4. In Example 2, after the legislator's proclamation that bikes with an engine must be classified as a motorized vehicles (event +((bk ∧ en) ⇒ X mt), bikes with an engine are classified as motorized vehicles and, at the same time, they are classified as not being motorized vehicles. This is a classificatory dilemma:

[+((bk ∧ en) ⇒ X mt)](((bk ∧ en) ⇒ X mt)∧ ((bk ∧ en) ⇒ X ¬mt)).
Example 4 illustrates the following DCxt-theorem:

DCxt (ϕ ⇒ X ψ) → [+(ϕ ⇒ X ¬ψ)] ((ϕ ⇒ X ψ) ∧ (ϕ ⇒ X ¬ψ)) (7) 
The Cxt-theorem (1) tells us that a classificatory dilemma implies O X ¬ϕ. It follows that if the normative system X is expanded with ϕ then ⊥ becomes true in X, that is, the normative system becomes inconsistent:

DCxt ((ϕ ⇒ X ψ) ∧ (ϕ ⇒ X ¬ψ)) → [X+ϕ][X]⊥ (8) 
Thus, changes generating classificatory dilemmas can be considered as badly designed normative modifications.

Normative dilemna By normative dilemma we mean a situation in which a normative system prescribes that a certain fact ψ must be true under a certain condition ϕ and at the same time ¬ψ must be true under the same condition, i.e. O X (ϕ → ψ) ∧ O X (ϕ → ¬ψ). An example of normative dilemma is the case of a soldier having at the same time the obligation to kill his enemies during a war and the obligation for every person not to shoot other people. If a soldier is classified as a person and enemies are classified as people, we incur a normative dilemma: a soldier has the obligation to shoot his enemies and the obligation not to shoot his enemies. Note that O X ¬ϕ implies O X (ϕ → ψ) ∧ O X (ϕ → ¬ψ) for every ψ. So, to be more precise, we should exclude from the previous definition of normative dilemna the situation in which O X ¬ϕ holds.

Example 5. In Example 2, after the legislator's proclamation that every bike must have an insurance (event +O X (bk → in) ), bikes have the obligation to have an insurance and the obligation not have it, which is a normative dilemma:

[+O X (bk → in)](O X (bk → in) ∧ O X (bk → ¬in)).
Example 5 illustrates the following DCxt-theorem:

DCxt O X (ϕ → ψ) → [+O X (ϕ → ¬ψ)] (O X (ϕ → ψ) ∧ O X (ϕ → ¬ψ)) (9) 
It is to be noted that, if a normative dilemma O X (ϕ → ψ) ∧ O X (ϕ → ¬ψ) holds and the normative system is expanded with ϕ then every fact χ becomes obligatory in X:

DCxt (O X (ϕ → ψ) ∧ O X (ϕ → ¬ψ)) → [X+ϕ]O X ⊥ (10)
It is worth stressing the similarity between DCxt-theorem (8) and DCxt-theorem [START_REF] Harel | Dynamic Logic[END_REF]. While a classificatory dilemma results in an empty context (DCxt-theorem ( 8)) under the assumption of the antecedent, a normative dilemma results in a context where legality is impossible (DCxt-theorem [START_REF] Harel | Dynamic Logic[END_REF]).

Finally, we have shown by DCxt-theorems (7) and ( 9) that if we want to change a norm (a classificatory rule or an obligation) to a contrary norm by a sole act of norm promulgation we end up with a dilemma (either classificatory or normative). Thus, to avoid dilemmas, we must first derogate the old norm and then promulgate the contrary norm. This observation is formally expressed by the following DCxt-theorems:

DCxt ((ϕ ⇒ X ψ) ∧ U ¬(ϕ → ψ)) → [-(ϕ ⇒ X ψ)][+(ϕ ⇒ X ¬ψ)] ¬((ϕ ⇒ X ¬ψ) ∧ (ϕ ⇒ X ψ)) (11) DCxt (O X (ϕ → ψ) ∧ P U ¬(ϕ → ψ)) → [-O X (ϕ → ψ)][+O X (ϕ → ¬ψ)] ¬(O X (ϕ → ¬ψ) ∧ O X (ϕ → ψ)) (12) 
Note that by definition of -, these general results hold for any derogation (stemming from a contraction of Definition 3).

Related works

Formal models of norm change have been drawing attention since the seminal work of Alchourrón and Makinson on the logical structure of derogation in legal codes [START_REF] Alchourrón | Hierarchies of regulations and their logic[END_REF] which expanded into a more general investigation of the logic of theory change (alias belief change) [START_REF] Alchourrón | On the logic of theory change: Partial meet contraction and revision functions[END_REF]. AGM models are about the contraction of L P rop -theories, and focus on minimal change. In contrast, we here consider a modal language L Cxt . 1 And our modal operator-allows to express properties about a family of contractions, which actually do not necessarily satisfy the AGM criteria of minimal change. However, the validity ¬ Although formal analysis of norm change are available in the literature, the issue of a formal semantics for the dynamics of norms is relatively new. Indeed, most work in deontic logic is about defining formal semantics describing static deontic concepts. From this perspective, our research strategy is close in spirit to Segerberg's [START_REF] Segerberg | Two traditions in the logic of belief: bringing them together[END_REF], who argued for an integration of AGM belief revision with Hintikka-like static logics of belief: we here do the same for deontic logic.

[X]ψ → (ϕ ↔ [X-ψ]ϕ)
Among the few attempts to provide a formal semantics to norm change we here consider the approach proposed in [START_REF] Pucella | Reasoning about dynamic policies[END_REF]. There, an extension of the dynamic logic of permission (DLP) of [START_REF] Van Der Meyden | The dynamic logic of permission[END_REF] with operations of granting or revoking a permission was proposed. They call DLP dyn this DLP extension. Their operations are similar to our operations of norm promulgation and norm derogation. DLP is itself an extension of PDL (propositional dynamic logic) [START_REF] Harel | Dynamic Logic[END_REF] where actions are used to label transitions from one state to another state in a model. The DLP dyn operation of granting a permission just augments the number of permitted transitions in a model, whereas the operation of revoking a permission reduces the number of permitted transitions. However there are important differences between our approach and Pucella & Weissman's. For us, normative systems are more basic than obligations and permissions, and the latter are defined from (and grounded on) the former. Moreover, dynamics of obligations and permissions are particular cases of normative system change (normative system expansion and contraction). Thus, we can safely argue that our approach is more general than Pucella & Weissman's in which only dynamics of permissions are considered. It is also to be noted that, while in our approach classificatory rules and their dynamics are crucial concepts in normative change, in DLP dyn they are not considered and even not expressible. In future work we will analyze the relationships between DLP dyn and our logic, and possibly a reduction of DLP dyn to our logic DCxt.

While Pucella & Weissman's revocation of permissions corresponds to public announcements in DEL, no DEL approaches have proposed the counterpart of their operation of granting permissions, alias contractions (with the exception of [START_REF] Van Benthem | Dynamic logic of preference upgrade[END_REF], but in the framework of a logic of preference). Probably the reason for that is that it is difficult to define contraction operations both preserving standard properties of epistemic models such as transitivity and Euclidianity and allowing for reduction axioms. As we have shown, this is possible in our logic DCxt thanks to the intercontextual interaction axioms.

Conclusions

We have introduced a dynamic logic accounting for context change, and have analyzed several aspects of norm change, viz. the dynamics of permissions, obligations and classificatory rules. Although the logic has been applied here only to provide a formal analysis of norm-change, it is clear that its range of applications is much broader. Viewed in its generality, the logic is a logic of the dynamics of propositional theories, and as such, can be naturally applied to formal epistemology by studying theory-change, or to non-monotonic reasoning by studying how the context of an argumentation evolves during, for instance, a dialogue game. This kind of applications are future research. Another line of research would be to study the interaction between contexts, and so in a dynamic setting. Notice, in particular, that it would be straightforward to define a set algebra on contexts.

Definition 2 .

 2 Let M be a Cxt-model, and let w ∈ M. M, w |= [X]ϕ iff for all w ∈ R X , M, w |= ϕ; M, w |= [U]ϕ iff for all w ∈ W , M, w |= ϕ; M, w |= p iff w ∈ I(p). and as usual for the Boolean operators. Formula ϕ is valid in M, noted M |= ϕ, iff M, w |= ϕ for all w ∈ M. ϕ is Cxt-valid, noted |= Cxt ϕ, iff M |= ϕ for all Cxt-models M.

  Rules 1 -4 explicitly localize the validity of Rules 1-4 of Example 1 to context X. Logic Cxt is therefore enough expressive to represent several (possibly inconsistent) normative systems at the same time. The context representations enabled by Cxt are inherently static. The next section investigates context dynamics. 3 Dynamic context logic 3.1 Two relations on models We first define the relations X+ψ -→ and X-ψ -→ on the set of pointed Cxt-models. Definition 3. Let (M, w) = (W, R, I, w) and (M , w ) = (W , R , I , w ) be two pointed Cxt-models, and let ϕ ∈ L Cxt and X ∈ C. We set (M, w) X+ψ -→ (M , w ) iff W = W , w = w , I = I , and

  defines implicitly a family of contraction operations. The following proposition shows that X-ψ -→ is essentially the converse relation of X+ψ -→. Proposition 2. Let (M, w) and (M , w ) be two pointed Cxt-models and ψ ∈ L Cxt .

Definition 4 .

 4 Let M be a Cxt-model. The truth conditions for L DCxt in M are those of Definition 2, plus:M, w |= [X+ψ]ϕ iff M , w |= ϕ for all Cxt-models (M , w ) such that (M, w) X+ψ -→ (M , w ); M, w |= [X-ψ]ϕ iff M , w |= ϕ for all Cxt-models (M , w ) such that (M, w) X-ψ -→ (M , w ).As before, M |= ϕ iff M, w |= ϕ for all w ∈ M, and ϕ is DCxt-valid (|= DCxt ϕ) iff M |= ϕ for all Cxt-models M.

Proposition 3 .

 3 and α, α i . . . ∈ L P rop . Note that from (R-1) and (R-2) one can deduce [X-ψ]ϕ =X ↔ ϕ =X . The above are reduction axioms: For all ϕ DCxt ∈ L DCxt there is ϕ Cxt ∈ L Cxt such that DCxt ϕ DCxt ↔ ϕ Cxt . Sketch of proof. (By induction on the number of occurrences of dynamic operators.) Let ϕ DCxt ∈ L DCxt and ϕ DCxt be one of its sub-formulas of the form [X+ψ]ϕ Cxt or [X-ψ]ϕ Cxt , with ϕ Cxt ∈ L Cxt . By Proposition 1, there is ϕ

  For example, DCxt [X-α]¬[X]α ↔ U ¬α. As in DEL, soundness and completeness follow from Proposition 3: Theorem 3. |= DCxt ϕ iff DCxt ϕ.

Theorem 4 .

 4 Deciding DCxt-validity is decidable.

  captures one of these minimality criteria. Another one is expressed by the valid formulas α →[X-ψ][X+ψ]α and [Y ]α → [X-ψ][X+ψ][Y ]α, with α ∈ L P rop , which correspond to the AGM principle of recovery. The invalid ¬[X]p → [X-p][X+p]¬[X]p demonstrates that the above formula does not generalize to all α in L Cxt .

In fact, our formalism satisfies the same dynamic properties about Moore sentences as DEL[START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF].