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Abstract

Building on a simple modal logic of context, the paper presents a dynamic logic
characterizing operations of contraction and expansion on theories. We investigate
the mathematical properties of the logic, and use it to develop an axiomatic and
semantic analysis of norm change in normative systems. The proposed analy-
sis advances the state of the art by providing a formal semantics of norm-change
which, at the same time, takes into account several different aspects of the phe-
nomenon, such as permission and obligation dynamics, as well as the dynamics of
classificatory rules.

1 Introduction
Normative systems [4] have become a valuable abstraction for the design of multi-
agent systems, and logic-based studies of norms have obtained increasing attention, in
particular for their usefulness in providing computational models of norm-based inter-
action grounded on logical semantics (e.g. [1]). Taking up on pioneering work such as
[3], the topic of how norms change over time has also become a topic of interest (e.g.
[8]) given its relevance for understanding the ways social interaction evolves within
multi-agent systems.

The aim of this work is to study norm change as a special instance of context
change. Following [9] normative systems are, in a nutshell, logical theories concerning
complex ways of classifying states of affairs as legal or illegal. As a consequence, each
normative system specifies a context with respect to which rules of classification hold.
Once such perspective is assumed, existing formal accounts of belief and knowledge
dynamics can be transferred to study context change and, thus, norm change. We
focus on dynamic epistemic logic (DEL) [17], and study two specific context change
operations which can successfully account for norm change:

• Context expansion acounting for norm promulgation,

• Context contraction accounting for norm derogation.
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In both cases, it is assumed that the authority of a normative system makes a procla-
mation in such a way that the norms of the normative system are modified. In the
former case, the authority proclaims that from now on “a certain fact ϕ implies a vio-
lation”, expanding the current set of obligations of the normative system. For example,
the authority of a normative system might proclaim that from now on “driving faster
than 110 km/h on a highway implies a violation”. After this norm promulgation, it is
obligatory to drive at most 110 km/h. In the latter case, the authority proclaims that
“a certain fact ϕ does not imply a violation”, contracting the current set of obligations
of the normative system (and consequently making the normative system more ‘per-
missive’). For example, the authority of a country might proclaim that from now on
‘encrypting email does not imply a violation’ by derogating the previous norm which
forbade encryption in written communication. After this proclamation, it is permitted
to encrypt email.

We start from the modal logic presented in [9]. This logic is based on a set of modal
operators [X] where X is a label denoting the context of a theory, i.e., in our case, the
context of a normative system. A formula [X]ϕ reads ‘in the context of normative
system X it is the case that ϕ’. Our aim in this paper is to extend this logic with two
special kinds of events of the form X+ψ and X−ψ, and corresponding modal operators
[X+ψ] and [X−ψ]. The former are similar to the operators for announcement studied
in DEL [17]. Their function is to restrict the space of possible worlds accepted by the
normative system X to the worlds where ψ is true. We use these operators to model
norm promulgation. The function of modal operators of type [X−ψ] is to add to the
space of possible worlds accepted by the normative system X some worlds in which ψ
is false. We use them to model norm derogation.

The paper is organized as follows. In Section 2 we will briefly present the modal
logic of context of [9]. Section 3 is devoted to extend this logic with the two events
X+ψ and X−ψ which allow to model context dynamics. Finally, in Section 4, we
will apply our logical framework to norm change, i.e.norm promulgation and norm
derogation.

2 A modal logic of context
The logic presented in this section is a simple modal logic designed to represent and
reason about a localized notion of validity, that is, of validity with respect to all models
in a given set. Such a given set is what is here called a context, in accord with much
literature in artificial intelligence and linguistics on context theory (see, for instance,
[14, 7]).

Let Φ = {p, q, . . .} be a countable non-empty set of propositional letters, and let
C = {X,Y, . . .} be a countable set of contexts. LProp denotes the propositional lan-
guage.

2.1 Models
Definition 1. A context model (Cxt-model)M = (W,R, I) is a tuple such that:

• W is a nonempty set of possible worlds;
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• R : C −→ 2W maps each context X to a subset of W ;

• I : Φ −→ 2W is a valuation.

We write RX for R(X) and w ∈ M for w ∈ W . For w ∈ M, the couple (M, w) is a
pointed context model.

A Cxt-model represents a logical space together with some of its possible restric-
tions, i.e., the contexts. In our case, contexts are used to represent the restrictions
to those sets of propositional models satisfying the rules stated by a given normative
system [9]. Let us illustrate how they can be used to model normative systems.

Example 1. Consider a normative system according to which: motorized vehicles must
have a numberplate ; motorized vehicles must have an insurance; bikes should not have
an insurance; bikes are classified as not being a motorized vehicle. Once a designated
atom V is introduced in the language, which represents a notion of “violation” [5], the
statements above obtain a simple representation:

Rule 1: (mt ∧ ¬pl)→ V

Rule 2: (mt ∧ ¬in)→ V

Rule 3: (bk ∧ in)→ V

Rule 4: bk → ¬mt

A Cxt-modelM = (W,R, I) where I maps atoms mt , pl , in , bk and V to subsets of
W models the normative system above as a context X if RX coincides with the subset
of W where Rules 1-4 are true according to propositional logic.

2.2 Logic
The logic Cxt is now presented which captures the notion of validity with respect to
a context, thereby allowing to represent situations such as Example 1 in our language.
To talk about Cxt-models we use a modal language LCxt containing modal operators
[X] for every X ∈ C, plus the universal modal operator [U]. The set of well-formed
formulae of LCxt is defined by the following BNF:

LCxt : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [U]ϕ | [X]ϕ

where p ranges over Φ and X over C. The Boolean connectives >,∨,→,↔ and the
dual operators 〈X〉 are defined as usual within LCxt as: 〈X〉ϕ = ¬[X]¬ϕ, for X ∈
C ∪ {U}.

We interpret formulas of LCxt in a Cxt-models as follows: the [U] operator is in-
terpreted as the universal modality [6], and the [X] operators model a restricted notion
of validity.

Definition 2. LetM be a Cxt-model, and let w ∈M.
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M, w |= [X]ϕ iff for all w′ ∈ RX ,M, w′ |= ϕ;
M, w |= [U]ϕ iff for all w′ ∈W ,M, w′ |= ϕ;
M, w |= p iff w ∈ I(p).

and as usual for the Boolean operators. Formula ϕ is valid in M, noted M |= ϕ,
iff M, w |= ϕ for all w ∈ M. ϕ is Cxt-valid, noted |=Cxt ϕ, iff M |= ϕ for all
Cxt-modelsM.

Cxt-validity is axiomatized by the following schemas:

(P) all propositional axiom schemas and rules
(4XY ) [X]ϕ→ [Y ][X]ϕ
(5XY ) 〈X〉ϕ→ [Y ]〈X〉ϕ

(TU) [U]ϕ→ ϕ

(KX) [X](ϕ→ ϕ′)→ ([X]ϕ→ [X]ϕ′)
(NX) IF ` ϕ THEN ` [X]ϕ

where X,Y ∈ C ∪ {U}. The [X] and [Y ] operators are K45 modalities strengthened
with the two inter-contextual interaction axioms 4XY and 5XY . [U] is an S5 modality.
Provability of a formula ϕ, noted `Cxt ϕ, is defined as usual.

Logic Cxt is well-behaved from the point of view of both axiomatizability and
complexity.

Theorem 1 ([9]). |=Cxt ϕ iff `Cxt ϕ.

Theorem 2. Deciding Cxt-validity is coNP-complete.

Sketch of proof. Satisfiability of S5 formulas is decidable in nondeterministic polyno-
mial time [6]. Let L[U] be the language built from the set of atoms Φ∪ C (supposing Φ
and C are disjoint) and containing only one modal operator [U]. That is:

L[U] : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [U]ϕ

where p ranges over Φ∪C. It gets a natural interpretation on context models where [U] is
the global modality. Then one can show that the following is a satisfiability-preserving
polytime reduction f of LCxt to L[U]: f(p) = p; f(¬ϕ) = ¬f(ϕ); f(ϕ ∧ ϕ′) =
f(ϕ) ∧ f(ϕ′); f([U]ϕ) = [U]f(ϕ); f([X]ϕ) = [U](X → f(ϕ)).

The same argument can be used to prove linear time complexity if the alphabet Φ
is finite.

Another interesting property of Cxt is that every formula of LCxt is provably
equivalent to a formula without nested modalities, as the following proposition shows.
We first formally define the language without nested modalities:

L1
Cxt : ϕ ::= α | [X]α | [U]α | ¬ϕ | ϕ ∧ ϕ

where α ranges over LProp and X over C.

Proposition 1. For all ϕ ∈ LCxt there is ϕ1 ∈ L1
Cxt such that `Cxt ϕ↔ ϕ1.
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Proof. By induction on ϕ. The Boolean cases clearly work. If ϕ is of the form [X]ψ
with X ∈ C ∪ {U} then by IH there are αk, αij , β

i ∈ LProp such that
ϕ↔ [X]

∧
k∈Nl

(αk ∨
∨

i∈Nnk

([Xi]αi1 ∨ . . . ∨ [Xi]αini
∨ 〈Xi〉βi))).

However, using (4XY ) and (5XY ), one can easily show that
`Cxt [X](αk ∨

∨
i∈Nnk

([Xi]αi1 ∨ . . . ∨ [Xi]αini
∨ 〈Xi〉βi)))↔

([X]αk ∨
∨

i∈Nnk

([Xi]αi1 ∨ . . . ∨ [Xi]αini
∨ 〈Xi〉βi))).

We will use this result in the completeness proof of the dynamic extension of Cxt
(Proposition 3).

2.3 Normative systems in Cxt

We are ready to provide an object-level representation of Example 1. The contextual
operators [X] and the universal operator [U] can be used to define the concepts of
classificatory rule, obligation and permission which are needed to model normative
systems. Classificatory rules are of the form “ϕ counts as ψ in the normative systemX”
and their function in a normative systems is to specify classifications between different
concepts [12]. For example, according to the classificatory rule “in the context of
Europe, a piece of paper with a certain shape, color, etc.counts as a 5 Euro bill”, in
Europe a piece of paper with a certain shape, color, etc. should be classified as a 5 Euro
bill. The concept of classificatory rule is expressed by the following abbreviation:

ϕ⇒X ψ
def
= [X](ϕ→ ψ)

where ϕ ⇒X ψ reads ‘ϕ counts as ψ in normative system X’. As done already in
Example 1, by introducing the violation atom V we can obtain a reduction of deontic
logic to logic Cxt along the lines first explored by Anderson [5]. As far as obligations
are concerned, we introduce operators of the form OX which are used to specify what
is obligatory in the context of a certain normative system X:

OXϕ
def
= ¬ϕ⇒X V

According to this definition, ‘ϕ is obligatory within context X’ is identified with ‘¬ϕ
counts as a violation in normative system X’. Note that we have the following Cxt-
theorem:

`Cxt ((ϕ⇒X ψ) ∧ (ϕ⇒X ¬ψ))→ OX¬ϕ(1)

This will be of use in Section 4. Every OX obeys axiom K and necessitation, and is
therefore a normal modal operator.

`Cxt OX(ϕ→ ψ)→ (OXϕ→ OXψ)(2)
IF `Cxt ϕ THEN `Cxt OXϕ(3)

Note that the formula OX⊥ is consistent, hence our deontic operator does not satisfy
the D axiom.
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We define the permission operator in the standard way as the dual of the obligation
operator: “ϕ is permitted within context X”, noted PXϕ. Formally:

PXϕ
def
= ¬OX¬ϕ

PUϕ should be read “ϕ is is deontically possible”.

Example 2. Consider again the normative system of Example 1. We can now express
in Cxt that Rules 1-4 explicitly belong to context X:

Rule 1′: OX(mt → pl)

Rule 2′: OX(mt → in)

Rule 3′: OX(bk → ¬in)

Rule 4′: bk ⇒X ¬mt

Rules 1′-4′ explicitly localize the validity of Rules 1-4 of Example 1 to context X .
Logic Cxt is therefore enough expressive to represent several (possibly inconsistent)
normative systems at the same time.

The context representations enabled by Cxt are inherently static. The next section
investigates context dynamics.

3 Dynamic context logic

3.1 Two relations on models

We first define the relations
X+ψ−→ and

X−ψ−→ on the set of pointed Cxt-models.

Definition 3. Let (M, w) = (W,R, I, w) and (M′, w′) = (W ′, R′, I ′, w′) be two
pointed Cxt-models, and let ϕ ∈ LCxt and X ∈ C.

We set (M, w)
X+ψ−→ (M′, w′) iff W = W ′, w = w′, I = I ′, and

• R′Y = RY if Y 6= X;

• R′X = RX ∩ ||ψ||M.

We set (M, w)
X−ψ−→ (M′, w′) iff W = W ′, w = w′, I = I ′, and

• R′Y = RY if Y 6= X;

• R′X =
{
RX ifM, w |= ¬[X]ψ ∨ [U]ψ
RX ∪ S otherwise, for some ∅ 6= S ⊆ ||ψ||M

In case (M, w)
X+ψ−→ (M′, w′) (resp. (M, w)

X−ψ−→ (M′, w′)), we say that M′ is a
(context) expansion (resp. contraction) ofM.
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In the above definition, ||ψ||M = {w ∈ M : M, w |= ψ}. So in both cases, it is
only the context X which changes fromM toM′. In the first case, it is restricted to
the worlds that satisfy ψ, and in the second case, it is enlarged with some worlds which
satisfy ¬ψ, except if such worlds do not exist in the model ([U]ψ) or if ¬ϕ is already
consistent with the context (¬[X]ψ). Note that there might be several contractions of

a given Cxt-model but there is always a unique expansion. The relation
X−ψ−→ thus

defines implicitly a family of contraction operations. The following proposition shows

that
X−ψ−→ is essentially the converse relation of

X+ψ−→.

Proposition 2. Let (M, w) and (M′, w′) be two pointed Cxt-models and ψ ∈ LCxt.

Then (M, w)
X+ψ−→ (M′, w′) iff

(M′, w′) X−ψ−→ (M, w) andM′, w′ |= [X]ψ.

3.2 Logic
The language of the logic DCxt is obtained by adding the dynamic operators [X+ψ]
and [X−ψ] to the language LCxt:

LDCxt : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [X]ϕ | [U]ϕ | [X+ψ]ϕ | [X−ψ]ϕ

where p ranges over Φ, X over C and ψ over LCxt. [X+ψ]ϕ reads ‘after the expansion
of the context X by ψ, ϕ is true’, and [X−ψ]ϕ reads ‘after any contraction of the
context X by ψ, ϕ is true’.

Definition 4. LetM be a Cxt-model. The truth conditions for LDCxt inM are those
of Definition 2, plus:

M, w |= [X+ψ]ϕ iff M′, w′ |= ϕ for all Cxt-models (M′, w′)
such that (M, w)

X+ψ−→ (M′, w′);
M, w |= [X−ψ]ϕ iff M′, w′ |= ϕ for all Cxt-models (M′, w′)

such that (M, w)
X−ψ−→ (M′, w′).

As before,M |= ϕ iffM, w |= ϕ for all w ∈ M, and ϕ is DCxt-valid (|=DCxt ϕ)
iffM |= ϕ for all Cxt-modelsM.

The operator [X−ψ] is thus useful if we want to have general properties about
our family of contractions or about a situation; for example, given some formulas
ψ1, . . . , ψn, what would be true after any sequence of contractions and expansions
by these formulas? Can we get an inconsistency with a specific choice of contractions?

In order to axiomatize the DCxt-validities we define for every X ∈ C two auxil-
iary languages L6=X and L=X :

L=X : ϕ ::= [X]α | ¬ϕ | ϕ ∧ ϕ
L6=X : ϕ ::= α | [Y ]α | ¬ϕ | ϕ ∧ ϕ

where α ranges over LProp and Y over (C ∪ {U})− {X}.
Logic DCxt is axiomatized by the following schemata:
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(Cxt) All axiom schemas and inference rules of Cxt

(R+1) [X+ψ]ϕ6=X ↔ ϕ6=X

(R+2) [X+ψ][X]α↔ [X](ψ → α)
(R+3) [X+ψ]¬ϕ↔ ¬[X+ψ]ϕ
(R−1) [X−ψ](ϕ6=X ∨ ϕ=X)↔ (ϕ6=X ∨ [X−ψ]ϕX)
(R−2) ¬[X−ψ]⊥
(R−3) [X−ψ]([X]α1 ∨ . . . ∨ [X]αn ∨ 〈X〉α)↔

((¬[X]ψ ∨ [U]ψ) ∧ ([X]α1 ∨ . . . ∨ [X]αn ∨ 〈X〉α))
∨ (([X]ψ ∧ ¬[U]ψ) ∧
((
∨
i

([X]αi ∧ [U](ψ ∨ αi))) ∨ 〈X〉α ∨ [U](ψ ∨ α)))

(K+) [X+ψ](ϕ→ ϕ′)→ ([X+ψ]ϕ→ [X+ψ]ϕ′)
(K−) [X−ψ](ϕ→ ϕ′)→ ([X−ψ]ϕ→ [X−ψ]ϕ′)

(RRE) Rule of replacement of proved equivalence

where X ∈ C, ϕ,ϕ′ ∈ LDCxt, ψ ∈ LCxt, ϕ=X ∈ L=X , ϕ6=X ∈ L6=X , and
α, αi . . . ∈ LProp.

Note that from (R−1) and (R−2) one can deduce [X−ψ]ϕ6=X ↔ ϕ6=X . The above
are reduction axioms:

Proposition 3. For all ϕDCxt ∈ LDCxt there is ϕCxt ∈ LCxt such that `DCxt

ϕDCxt ↔ ϕCxt.

Sketch of proof. (By induction on the number of occurrences of dynamic operators.)
Let ϕDCxt ∈ LDCxt and ϕ′DCxt be one of its sub-formulas of the form [X+ψ]ϕCxt

or [X−ψ]ϕCxt, with ϕCxt ∈ LCxt. By Proposition 1, there is ϕ1
Cxt ∈ L1

Cxt such
that `Cxt ϕCxt ↔ ϕ1

Cxt. So `DCxt [X+ψ]ϕCxt ↔ [X+ψ]ϕ1
Cxt by (REE) and (K+).

Now, thanks to axioms (R+1), (R+2) and (R+3) and because ϕ1
Cxt ∈ L1

Cxt, one can
easily show that there is ψCxt ∈ LCxt such that `DCxt [X+ψ]ϕ1

Cxt ↔ ψCxt. For
the case [X−ψ]ϕCxt we apply the same method using (R−1), (R−2) and (R−3). So
`DCxt ϕ

′
DCxt ↔ ψCxt. Now we replace ϕ′DCxt by ψCxt in ϕDCxt. This yields an

equivalent formula (thanks to (RRE)) with one dynamic operator less. We then apply
to this formula the same process we applied to ϕCxt until we get rid of all the dynamic
operators.

For example, `DCxt [X−α]¬[X]α ↔ 〈U〉¬α. As in DEL, soundness and com-
pleteness follow from Proposition 3:

Theorem 3. |=DCxt ϕ iff `DCxt ϕ.

Theorem 4. Deciding DCxt-validity is decidable.

Finally, we could perfectly enrich this formalism with specific contraction opera-
tors. For example we could add to LDCxt the contraction operator [X $ ψ]ϕ whose
semantics would be defined as follows: for M = (W,R, I), M, w |= [X $ ψ]ϕ
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iff M′, w |= ϕ, where M′ = (W,R′, I) with R′Y = RY for Y 6= X and R′X =
RX ∪ {w ∈ W | M, w |= ¬ψ}. To get a complete axiomatization, we just have
to add to DCxt the following axiom schemas: (1) [X $ ψ]ϕ6=X ↔ ϕ6=X ; (2)
[X $ ψ]¬ϕ ↔ ¬[X $ ψ]ϕ; (3) [X $ ψ][X]α ↔ [X]α ∧ [U](¬ψ → α); and
the distribution axiom (K$). In fact this contraction $ belongs to the family of con-
tractions defined in Definition 3, and so we have `DCxt [X−ψ]ϕ→ [X $ ψ]ϕ.

4 A logical account of norm change
Just as we defined the static notions of obligation and classificatory rules on the basis
of Cxt, we can in the same spirit define the dynamic notions of promulgation and
derogation of obligation and classificatory rules on the basis of DCxt:

+(ϕ⇒X ψ)
def
= X+(ϕ→ ψ)

+OXψ
def
= X+(¬ψ → V)

−(ϕ⇒X ψ)
def
= X−(ϕ→ ψ)

−OXψ
def
= X−(¬ψ → V)

[+(ϕ ⇒X ψ)]χ (resp. [−(ϕ ⇒X ψ)]χ) should be read ‘after the promulgation (resp.
after any derogation) of the classificatory rule ϕ⇒X ψ, χ is true’. Likewise, [+OXψ]ϕ
(resp. [−OXψ]ϕ) should be read ‘after the promulgation (resp. after any derogation)
within context X of the obligation ψ, χ is true’. Then we have the following intuitive
DCxt-theorems:

`DCxt [+(ϕ⇒X ψ)]ϕ⇒X ψ(4)
`DCxt [+OXψ]OXψ(5)
`DCxt PU¬ψ → [−OXψ]PX¬ψ(6)

In particular, DCxt-theorem (6) says that “If ¬ψ is deontically possible then after any
derogation within context X of the obligation ψ, ¬ψ is permitted”.

Example 3. In Example 2, after the legislator’s proclamation that motorized vehicles
having more than 50cc (mf ) are obliged to have a numberplate (event +OX((mt ∧
mf )→ pl ) and that motorized vehicles having less than 50cc (¬mf ) are not obliged to
have a numberplate (event−OX((mt ∧¬mf )→ pl ) we should expect that motorbikes
having more than 50cc have the obligation to have a numberplate and motorbikes
having less than 50cc have the permission not to have a numberplate. This is indeed
the case:

`DCxt PU(mt ∧ ¬mf ∧ ¬pl)→ ([+OX((mt ∧mf )→ pl)]

[−OX((mt ∧ ¬mf )→ pl)]OX((mt ∧mf )→ pl)∧

PX(mt ∧ ¬mf ∧ ¬pl)).

We now consider two types of normative inconsistency, classificatory dilemma and
normative dilemma, and show how they might arise from promulgation and derogation.
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Classificatory dilemna By classificatory dilemma we mean that a certain fact ϕ is
classified by a normative system both under ψ and under ¬ψ, i.e. (ϕ⇒X ψ)∧ (ϕ⇒X

¬ψ). An example of classificatory dilemma is the case of someone who finds an object
in the sea and is classified by the normative system as the owner of the object. At
the same time, someone who claims having lost the object and can prove this, is also
classified as the owner of the object. Finally, according to the normative system, there
is no more than one owner of an object. If a person finds an object in the sea and another
person claims that she has lost this object and can prove that, we incur a classificatory
dilemma: the former person is classified as the owner of the object and, at the same
time, she is classified as not being the owner of it.

Example 4. In Example 2, after the legislator’s proclamation that bikes with an engine
must be classified as a motorized vehicles (event+((bk ∧ en)⇒X mt), bikes with an
engine are classified as motorized vehicles and, at the same time, they are classified as
not being motorized vehicles. This is a classificatory dilemma:

[+((bk ∧ en)⇒X mt)](((bk ∧ en)⇒X mt)∧

((bk ∧ en)⇒X ¬mt)).

Example 4 illustrates the following DCxt-theorem:

`DCxt (ϕ⇒X ψ)→ [+(ϕ⇒X ¬ψ)]
((ϕ⇒X ψ) ∧ (ϕ⇒X ¬ψ))

(7)

The Cxt-theorem (1) tells us that a classificatory dilemma implies OX¬ϕ. It follows
that if the normative system X is expanded with ϕ then ⊥ becomes true in X , that is,
the normative system becomes inconsistent:

`DCxt ((ϕ⇒X ψ) ∧ (ϕ⇒X ¬ψ))→ [X+ϕ][X]⊥(8)

Thus, changes generating classificatory dilemmas can be considered as badly designed
normative modifications.

Normative dilemna By normative dilemma we mean a situation in which a nor-
mative system prescribes that a certain fact ψ must be true under a certain condition
ϕ and at the same time ¬ψ must be true under the same condition, i.e. OX(ϕ →
ψ)∧OX(ϕ→ ¬ψ). An example of normative dilemma is the case of a soldier having
at the same time the obligation to kill his enemies during a war and the obligation for
every person not to shoot other people. If a soldier is classified as a person and enemies
are classified as people, we incur a normative dilemma: a soldier has the obligation to
shoot his enemies and the obligation not to shoot his enemies. Note that OX¬ϕ implies
OX(ϕ→ ψ) ∧OX(ϕ→ ¬ψ) for every ψ. So, to be more precise, we should exclude
from the previous definition of normative dilemna the situation in which OX¬ϕ holds.

Example 5. In Example 2, after the legislator’s proclamation that every bike must have
an insurance (event+OX(bk → in) ), bikes have the obligation to have an insurance
and the obligation not have it, which is a normative dilemma:

[+OX(bk → in)](OX(bk → in) ∧OX(bk → ¬in)).
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Example 5 illustrates the following DCxt-theorem:

`DCxt OX(ϕ→ ψ)→ [+OX(ϕ→ ¬ψ)]
(OX(ϕ→ ψ) ∧OX(ϕ→ ¬ψ))

(9)

It is to be noted that, if a normative dilemma OX(ϕ→ ψ) ∧OX(ϕ→ ¬ψ) holds
and the normative system is expanded with ϕ then every fact χ becomes obligatory in
X:

`DCxt (OX(ϕ→ ψ) ∧OX(ϕ→ ¬ψ))→ [X+ϕ]OX⊥(10)

It is worth stressing the similarity between DCxt-theorem (8) and DCxt-theorem
(10). While a classificatory dilemma results in an empty context (DCxt-theorem (8))
under the assumption of the antecedent, a normative dilemma results in a context where
legality is impossible (DCxt-theorem (10)).

Finally, we have shown by DCxt-theorems (7) and (9) that if we want to change
a norm (a classificatory rule or an obligation) to a contrary norm by a sole act of norm
promulgation we end up with a dilemma (either classificatory or normative). Thus, to
avoid dilemmas, we must first derogate the old norm and then promulgate the contrary
norm. This observation is formally expressed by the following DCxt-theorems:

`DCxt ((ϕ⇒X ψ) ∧ 〈U〉¬(ϕ→ ψ))→
[−(ϕ⇒X ψ)][+(ϕ⇒X ¬ψ)]
¬((ϕ⇒X ¬ψ) ∧ (ϕ⇒X ψ))

(11)

`DCxt (OX(ϕ→ ψ) ∧PU¬(ϕ→ ψ))→
[−OX(ϕ→ ψ)][+OX(ϕ→ ¬ψ)]
¬(OX(ϕ→ ¬ψ) ∧OX(ϕ→ ψ))

(12)

Note that by definition of −, these general results hold for any derogation (stemming
from a contraction of Definition 3).

5 Related works
Formal models of norm change have been drawing attention since the seminal work
of Alchourrón and Makinson on the logical structure of derogation in legal codes [3]
which expanded into a more general investigation of the logic of theory change (alias
belief change) [2]. AGM models are about the contraction ofLProp-theories, and focus
on minimal change. In contrast, we here consider a modal language LCxt.1 And our
modal operator−allows to express properties about a family of contractions, which ac-
tually do not necessarily satisfy the AGM criteria of minimal change. However, the va-
lidity ¬[X]ψ → (ϕ↔ [X−ψ]ϕ) captures one of these minimality criteria. Another one
is expressed by the valid formulas α→ [X−ψ][X+ψ]α and [Y ]α→ [X−ψ][X+ψ][Y ]α
, with α ∈ LProp, which correspond to the AGM principle of recovery. The invalid
¬[X]p→ [X−p][X+p]¬[X]p demonstrates that the above formula does not generalize
to all α in LCxt.

1In fact, our formalism satisfies the same dynamic properties about Moore sentences as DEL [17].

11



Although formal analysis of norm change are available in the literature, the issue
of a formal semantics for the dynamics of norms is relatively new. Indeed, most work
in deontic logic is about defining formal semantics describing static deontic concepts.
From this perspective, our research strategy is close in spirit to Segerberg’s [13], who
argued for an integration of AGM belief revision with Hintikka-like static logics of
belief: we here do the same for deontic logic.

Among the few attempts to provide a formal semantics to norm change we here
consider the approach proposed in [11]. There, an extension of the dynamic logic of
permission (DLP) of [16] with operations of granting or revoking a permission was
proposed. They call DLPdyn this DLP extension. Their operations are similar to our
operations of norm promulgation and norm derogation. DLP is itself an extension of
PDL (propositional dynamic logic) [10] where actions are used to label transitions from
one state to another state in a model. The DLPdyn operation of granting a permission
just augments the number of permitted transitions in a model, whereas the operation
of revoking a permission reduces the number of permitted transitions. However there
are important differences between our approach and Pucella & Weissman’s. For us,
normative systems are more basic than obligations and permissions, and the latter are
defined from (and grounded on) the former. Moreover, dynamics of obligations and
permissions are particular cases of normative system change (normative system expan-
sion and contraction). Thus, we can safely argue that our approach is more general
than Pucella & Weissman’s in which only dynamics of permissions are considered. It
is also to be noted that, while in our approach classificatory rules and their dynamics
are crucial concepts in normative change, in DLPdyn they are not considered and even
not expressible. In future work we will analyze the relationships between DLPdyn and
our logic, and possibly a reduction of DLPdyn to our logic DCxt.

While Pucella & Weissman’s revocation of permissions corresponds to public an-
nouncements in DEL, no DEL approaches have proposed the counterpart of their oper-
ation of granting permissions, alias contractions (with the exception of [15], but in the
framework of a logic of preference). Probably the reason for that is that it is difficult to
define contraction operations both preserving standard properties of epistemic models
such as transitivity and Euclidianity and allowing for reduction axioms. As we have
shown, this is possible in our logic DCxt thanks to the intercontextual interaction
axioms.

6 Conclusions
We have introduced a dynamic logic accounting for context change, and have analyzed
several aspects of norm change, viz. the dynamics of permissions, obligations and clas-
sificatory rules. Although the logic has been applied here only to provide a formal anal-
ysis of norm-change, it is clear that its range of applications is much broader. Viewed
in its generality, the logic is a logic of the dynamics of propositional theories, and as
such, can be naturally applied to formal epistemology by studying theory-change, or
to non-monotonic reasoning by studying how the context of an argumentation evolves
during, for instance, a dialogue game. This kind of applications are future research.
Another line of research would be to study the interaction between contexts, and so in
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a dynamic setting. Notice, in particular, that it would be straightforward to define a set
algebra on contexts.
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