
HAL Id: hal-03526705
https://hal.science/hal-03526705

Submitted on 14 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatial eigenmodes of light in atmospheric turbulence
Vyacheslav Shatokhin, David Bachmann, Giacomo Sorelli, Nicolas Treps,

Andreas Buchleitner

To cite this version:
Vyacheslav Shatokhin, David Bachmann, Giacomo Sorelli, Nicolas Treps, Andreas Buchleitner. Spatial
eigenmodes of light in atmospheric turbulence. SPIE Remote Sensing, Sep 2021, Edinburgh, United
Kingdom. �hal-03526705�

https://hal.science/hal-03526705
https://hal.archives-ouvertes.fr


Spatial eigenmodes of light in atmospheric turbulence

Vyacheslav Shatokhin1,2, David Bachmann1, Giacomo Sorelli3,4,5, Nicolas Treps3, Andreas
Buchleitner1,2

1 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3,
D-79104 Freiburg, Germany

2 EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität
Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany

3 Laboratoire Kastler Brossel, Sorbonne Université, ENS-Université PSL, Collège de France,
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ABSTRACT

We carry out a numerical analysis of the spatial structure of the eigenmodes of light in atmospheric turbulence
and assess the distribution of the singular values under variable turbulence conditions characterized by the Fried
parameter and Rytov variance. Under weak scintillation, the highly transmitting eigenmodes found here possess
a modal structure that is reminiscent of Laguerre-Gaussian (LG) modes and their simple superpositions. When
scintillation becomes significant, we establish that the optimal eigenmodes for communication differ substantially
from LG modes and tend to have highly localized transverse intensity distributions.

1. INTRODUCTION

Photons are standard information carriers in free-space quantum communication.1 Until recently, mostly their
polarization degree of freedom has been used to encode information into qubits.2,3 However, photons also offer
higher dimensional, spatial degrees of freedom, which allow for qudit encoding in d-dimensional Hilbert spaces.4

This promises increased channel capacities, enhanced security of quantum key distribution (QKD),5 and stronger
violations of Bell-type inequalities.6

There are two, apparently very different, approaches to high-dimensional spatial encoding. One is based
on using fixed sets of modes. The most common example of the latter is Laguerre-Gaussian (LG) beams,7

which carry an orbital-angular momentum (OAM) and form a complete, orthonormal, and unbounded basis.8

Alternative sets include Bessel-Gaussian (BG),9 as well as Hermite-Gaussian (HG)10 and Ince-Gaussian (IG)11

beams.

The main advantage of using fixed modes is that the latter can be generated and detected using fast and
compact passive devices.12 However, pre-determined sets of modes are not designed for the propagation through
atmospheric turbulence, which causes beam wandering, phase and intensity fluctuations, and other disturbances
of the propagated modes.13 These perturbations amount to turbulence-induced losses and crosstalk among spatial
modes14 and can potentially obliterate quantum communication.15,16 Although partial mitigation of turbulence
effects is possible, e.g., by employing modal diversity,17 entanglement concentration,18 adaptive optics19,20 or
compressed sensing,21 overcoming atmospheric effects still remains the greatest challenge towards long-distance
free-space quantum communication based on high-dimensional spatial encoding.

On the contrary, within the second approach to spatial encoding, which we pursue in our present work,
quantum information is encoded not into fixed modes but rather into spatial eigenmodes∗ of light for a given

Send correspondence to vyacheslav.shatokhin@physik.uni-freiburg.de
∗Throughout this work, for the sake of brevity we oftentimes use the terms eigenmodes and eigenvalues somewhat

loosely – to refer to highly transmitting, or optimal, spatial modes of light for a given realization of turbulence. A strict
mathematical definition of such modes and their singular values, which are actually obtained from the singular value 
decomposition of the transmission matrix of a turbulence channel, is presented in section 2.5.



realization of turbulence (“frozen” atmosphere). By construction, such eigenmodes are mutually orthogonal
and can be used for spatial encoding of high-dimensional quantum states. Furthermore, since the associated
eigenvalues determine the actual transmission fidelities, eigenmodes with large eigenvalues can be transmitted
through the atmosphere with little loss and distortion.22

While the ‘eigenmodes’ approach has been intensively used for transmission of information and imaging in
strongly scattering media,23 its application to free-space communication has been relatively rare.24–26 Under
weak scintillation, an eigenmode decomposition corresponding to a turbulence medium confined between the
input and output circular apertures was for the first time considered by J.H. Shapiro,24 who used asymptotic
methods to establish the close similarity between significant eigenmodes (that is, those with associated eigenvalues
close to one) and prolate spheroidal wavefunctions.27 The eigenmodes encoding in the limit of weak scintillation
was recently revisited,25 and it was analytically shown that prolate spheroidal wavefunctions behave like scaled
LG functions. Furthermore, some authors claimed26 that even in strong turbulence eigenmodes of light are well-
approximated by LG beams. If true, these results25,26 would link the two aforementioned approaches to high-
dimensional spatial encoding and open up exciting prospectives for robust and lossless free-space communication
under arbitrary turbulence conditions employing the well-known family of LG modes.

The previous results on the atmospheric eigenmodes of light in turbulence24–26 were obtained using approx-
imate analytical methods with restricted validity range. Therefore, in our present contribution, we re-examine
the fundamental properties of the eigenmodes in a “frozen” atmosphere numerically using multiple phase screen
method,28–30 which allows one to attain accurate modelling of a turbulence channel for a broad range of tur-
bulence conditions.14,19,31 In qualitative agreement with previous findings,24,25 we obtain that under weak
scintillation the eigenmodes of turbulence are similar to LG modes and their simple superpositions characterized
by lobed intensity distributions. However, when scintillation becomes significant, we find that highly transmit-
ting eigenmodes of turbulence are not LG beams but spatial modes with a highly localized transverse intensity
distribution.

2. ATMOSPHERIC TURBULENCE

2.1 Stochastic parabolic equation

We find optical eigenmodes in atmospheric turbulence from the singular-value decomposition (SVD)23,32 of a
transmission matrix, which represents, in a specific basis, the turbulence operator. The latter emerges from a
numerical solution of the stochastic parabolic equation13

2ik
∂u(r)

∂z
+ ∆⊥u(r) + 2k2n1(r)u(r) = 0, (1)

where k is the signal wave number, ∆⊥ the transversal part of the Laplace operator, z the propagation direction, 
and n1(r) the fluctuating part of the refractive index of air. We note that n1(r) in (1) is time-independent, 
implying a “frozen” atmosphere, which is adequate since light propagation is much faster than the time scale of 
∼ 10 ms on which the atmosphere changes its state.33

Turbulence enters (1) via the statistical properties of n1(r). The refractive index fluctuations are assumed to 
be a zero-mean, homogeneous, Gaussian random field, whose two-point correlation function, in Markov approxi-
mation34 along the propagation direction, is given by13 〈n1(r1)n1(r2)〉 = δ(z1 − z2)An(ρ1 − ρ2), with r = (ρ, z), 
and An the two-dimensional covariance in the transverse plane. Starting from Kolmogorov’s theory of turbu-
lence,35 the covariance function is obtained as the Fourier transform of the refractive-index power spectral density

Φn(κ). In the inertial range, that is, for spatial wave numbers |κ| satisfying the inequality L0
−1 � |κ| � l0

−1, 
where L0 and l0 are the outer and inner scales of turbulence, respectively (typically, L0 ∼ 10 − 100 m and 
l0 ∼ 1 − 10 mm13), Φn(κ) = 0.033Cn

2κ−11/3, with Cn2 the refractive index structure constant, and κ := |κ|. 
Furthermore, turbulence is assumed to be isotropic, i.e. An(ρ1 − ρ2) = An(|ρ1 − ρ2|).



2.2 Propagation regimes

Optical turbulence can be characterized by two qualitatively different propagation regimes – of weak and strong
scintillation13 – distinguished by the value of the Rytov variance σ2

R = 1.23C2
nk

7/6z11/6: scintillation is weak
if σ2

R < 1, and strong otherwise. In the optical frequency domain, the strong scintillation regime emerges
for propagation distances exceeding few kilometers.33 Until then, the turbulence effects on the propagating
wave can be oftentimes reduced to random phase errors, which can be described within the single phase screen
model of turbulence.13 A phase screen is fully characterized by the transverse coherence length, which is the
distance over which turbulence-induced phase distortions are correlated, also known as the Fried parameter
r0 = (0.423k2C2

nz)
−3/5.13 For a given r0, the statistics of the phase errors is described by the phase structure

function 〈[φ(ρ1)−φ(ρ2)]2〉 =: Dφ(|ρ1−ρ2|) = 6.88(|ρ1−ρ2|/r0)5/3. With the help of r0, the turbulence strength
experienced by an optical beam of diameter w0 is defined as the ratio W = w0/r0.13

A single phase screen model13 allows for an analytical36 or numerical account of turbulence effects on short
free-space links. A numerical treatment has the decisive advantage of being systematically generalizable to the
strong scintillation regime,28 wherein an extended atmospheric layer is modelled by a sequence of random phase
screens introducing phase errors. In between the screens the wave experiences free diffraction in vacuum. In
other words, a multiple phase screen (MPS) model represents a split-step method to solve (1). The algorithms for
generating individual phase screens are well-known,28–30 whereas their number along the light path is determined
by a simple criterion: For each elementary propagation step of two vacuum propagations connected by one phase
screen, scintillation must be weak (in our simulation we required even more stringently σ2

R < 0.5). In this work,
we address weak, moderate, and strong scintillation conditions, with maximum σ2

R = 6.31, for which modelling
we employ the MPS model of turbulence.

2.3 Turbulence operator

We introduce the turbulence operator T (ρ,∆z) when solving (1) numerically by the split-step method. On an
interval ∆z between the planes zl and zl+1, for which scintillation is weak (see Sec. 2), the solution of (1) can
be expressed as37 u(ρ, zl+1) = T (ρ,∆z)u(ρ, zl), where the turbulence operator reads

T (ρ,∆z) = D

(
∆z

2

)
R(ρ, zl, zl+1)D

(
∆z

2

)
, (2)

with
D(z) = exp

(
−i z

2k
∆⊥

)
, (3)

and

R(ρ, zl, zl+1) = exp

(
−ik

∫ zl+1

zl

n1(ρ, z)dz

)
= exp{−iϕ(ρ)} , (4)

describing, respectively, diffraction and refraction on a thin turbulent layer (i.e. a phase screen). For arbitrary
L, we split the path into N sufficiently small intervals, on each of which we can represent the solution in the
above operator form, to obtain u(ρ, L) = T (ρ, L)u(ρ, 0), where

T (ρ, L) = T (ρ,∆z1) . . . T (ρ,∆zN ). (5)

In the weak scintillation limit, we employ a single phase screen model of turbulence, with T (ρ, L) given by (2);
in the cases of moderate and strong scintillation, the turbulence operator is given by the multiple phase screen
model (5), with N determined by a given value of the Rytov variance σ2

R (see Sec. 2.2). We generate phase
screens using the subharmonics method,30,38,39 which allows for a precise emulation of the statistics of phase
errors for a broad range of spatial frequencies by variable grid spacing.

The turbulence maps (2), and consequently (5), generate unitary evolutions,19 T (i)(ρ, L) = U
(i)
turb, with U

(i)
turb

the unitary operator for a particular realization i of turbulence fluctuations. Thereby, the propagated field u(ρ, L)
is spread over the entire receiver plane at z = L. In practice, the radiation field in the transmitter and receiver



planes is confined by finite-size apertures, resulting in a violation of unitarity, due to the geometric truncation
of the input and output beams described by the projectors ΠT and ΠR. Henceforth, unless stated otherwise, by
the turbulence operator we therefore understand a realistic scenario with finite-size circular apertures,19,40 such

that T (i)(ρ, L) = ΠR U
(i)
turb ΠT .

2.4 Construction of the turbulence transmission matrix

The transmission matrix of turbulence t(i)(ρ, L) is a representation of the turbulence operator T (i)(ρ, L) in a
particular basis. t(i)(ρ, L) maps S input basis modes {|φs〉} (1 ≤ s ≤ S) into Q output basis modes {|ψq〉}
(1 ≤ q ≤ Q),

|ψq〉 =
S∑
s=1

t(i)qs (ρ, L)|φs〉, (6)

with t
(i)
qs (ρ, L) = 〈ψq|T (i)(ρ, L)|φs〉.

As the input basis, we choose Laguerre-Gaussian (LG) modes. This choice is suggested by the cylindrical sym-
metry of the problem and by the actual quantum communication protocols relying on OAM encoding.15,18,19,31,41

Furthermore, in absence of turbulence as well as under weak turbulence conditions characterized by negligible
scintillations (σ2

R � 1), the transmitting and receiving eigenmodes of the free-space channel are given by prolate
spheroidal wavefunctions,24,27 which are closely related to LG modes.25

The number S is estimated given the transmitter aperture diameter DT = 14.43 cm and the width of fun-
damental mode w0 = 1.0 cm†. Recalling that for LG modes, the beam width increases with the azimuthal and
radial indices, l and p, respectively, as13 w ≈ w0

√
2p+ |l|+ 1, we ensure that w < DT (otherwise, geometric

beam truncation leads to power and entanglement losses43). The latter inequality is well satisfied by setting
p ≤ 20, |l| ≤ 20, wherefrom we obtain S = 861.

As for the output basis, we employ the pixel basis, for which Q is the number of pixels within the receiving
aperture with diameter DR = 57.81 cm‡. We take a standard grid of 512 × 512 pixels28 to represent a square
A = 80× 80 cm2. Hence, Q ' π(512×DR)2/ (4A) ≈ 107500.

2.5 Eigenmodes of light in turbulence

To identify highly transmitting modes of light in turbulence, we perform a singular value decomposition (SVD)23,32

of the transmission matrix,
t(i)(ρ, L) = UDdiagV

†, (7)

where Ddiag = diag(τ1, . . . , τS) is a Q × S diagonal matrix whose elements are the singular values τk of the
transmission matrix, which can be calculated as the square roots of the eigenvalues of the Hermitian matrix
t(i)†(ρ, L)t(i)(ρ, L); U and V have dimensions Q × Q and S × S and U†U = I, V †V = I; the columns of the

matrices U and V are the singular vectors |uk〉 =
∑Q
q=1 ukq|ψq〉 and |vk〉 =

∑S
s=1 vks|φs〉, respectively. SVD (7)

amounts to the following representation of the transmission matrix:

t(i)(ρ, L) =
S∑
s=1

τs|us〉〈vs|. (8)

Next, we present our results for the singular values and the spatial distribution of the highly transmitting modes
under different turbulence conditions.

†The chosen values of DT and w0 are approximately equal to the experimental ones.42

‡While the size of the transmitter aperture allows to avoid geometric truncation of all modes from the input basis, the
increased size of the receiver aperture does so for diffracted output modes.



(a) σ2
R = 0.02

(b) σ2
R = 2.48

R

R

(c) σ2 = 6.31

Figure 1. Distributions of singular values as a function of the mode number together with the corresponding histograms 
underneath (left column), and intensity distributions of three singular vectors |vs〉 (input modes: odd row numbers) and 
their associated singular vectors |us〉 (output modes, even row numbers) with highest singular values (given above the 
input modes), for three values of Rytov variance σ2 : (a) 0.02, (b) 2.48, (c) 6.31. Note the different labels of the x and y 
axes of the input and output modes, reflecting the different diameters of the transmitter and receiver apertures (14.43 cm 
and 57.81 cm, respectively).



3. RESULTS

We consider the propagation of a monochromatic wave with wavelength λ = 1064 nm and width w0 = 1.0 cm
across a horizontal free-space link of length L = 6000 m. As already mentioned, a turbulent medium is confined
by two circular apertures with diameters DT = 14.43 cm and DR = 57.81 cm in the transmitter and receiver
planes, respectively. In absence of turbulence, such free-space link supports24,25

M =
πD2

R

4(λL/DT )2
≈ 135 (9)

highly transmitting modes. We calculated eigenmodes for three values of the turbulence strength strength,
W = 0.02, 0.28, 0.50, corresponding to weak (σ2

R = 0.02), moderate (σ2
R = 2.48), and strong (σ2

R = 6.31)
scintillation, respectively. The associated transmission matrices were generated using 1, 9 and 23 phase screens.
SVD of the transmission matrix, according to (7), renders the representations (8) in terms of singular values τs
and left and right singular vectors |vs〉 and |us〉. The results of this analysis are displayed in Fig. 1.

We observe that under weak scintillation (σ2
R = 0.02), there are 134 highly transmitting modes with τs ≥

0.995, which is close to the theoretical value in absence of turbulence,24,25 M = 135 (see Eq. (9) and the vertical
dashed line in the top left panel of Fig. 1). It is under these conditions that a similarity of eigenmodes with τs ≈ 1
to LG modes was shown.25 To illustrate their typical behaviour, we here provide intensity distributions for three
such modes. Both the input and output modes in this case exhibit intensity distributions indeed reminiscent of
LG modes with p = 0, l = 0 (second column, first and second row) or of superpositions of the LG modes p = 0,
l = ±1 (third column, first and second row) and of the LG modes p = 0, l = ±2 (fourth column, first and second
row) with two and four lobes, respectively (see, e.g.41). Despite the very small value of the Rytov variance,
the combined impact of turbulence distortions and diffraction is manifest in slight deviations of the intensity
distributions of the input and output modes from the intensity distributions of LG modes and superpositions
thereof.

As the Rytov variance increases to σ2
R = 2.48 and σ2

R = 6.31, we observe that the singular value histograms
(Fig. 1, left column, rows four and six) rapidly lose the bi-modal shape of the weak turbulence limit and flatten
out. Still there are more than 100 modes with τs > 0.95 (moderate scintillation) and τs > 0.87 (strong scintilla-
tion). The input and output singular vectors corresponding to large singular values have intensity distributions 
that, at first glance, look random (see rows three to six in Fig. 1). However, in all cases most of the intensity 
distribution is localized at random positions in the tranverse input and output planes around one, sometimes two, 
maxima with a characteristic width of the order of ∼ 1 cm = w0. These maxima resemble the displaced intensity 
distributions of the basis modes garnished by noise. The structure and transverse localization properties of these 
spatial modes will be explored in future work.

4. CONCLUSION

We studied spatial eigenmodes of light in frozen atmospheric turbulence. We considered a horizontal channel 
wherein a turbulent medium is confined between two finite-size circular apertures. To describe monochromatic 
wave propagation across this channel, we employed multiple phase screens method and generated channel’s 
transmission matrix for weak, moderate, and strong scintillation conditions. By means of the singular value 
decomposition of the transmission matrix, even within the strong scintillation regime, we identified ∼ 100 highly 
transmitting eigenmodes in the transmitter and receiver planes that are mapped onto each other with little loss. 
Under weak scintillation, our calculations confirm the previous results25, 26 that eigenmodes with large singular 
values are closely related to Laguerre-Gaussian modes. However, under moderate to strong scintillation, the 
highly transmitting eigenmodes differ very significantly from standard mode families, and are characterized by 
pronounced transverse localization. These promising observations, and their consequences for high-dimensional 
spatial encoding in atmospheric turbulence deserve further studies.
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