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INTRODUCTION

Photons are standard information carriers in free-space quantum communication. [START_REF] Gisin | Quantum communication[END_REF] Until recently, mostly their polarization degree of freedom has been used to encode information into qubits. [START_REF] Ursin | Entanglement-based quantum communication over 144 km[END_REF][START_REF] Liao | Satellite-relayed intercontinental quantum network[END_REF] However, photons also offer higher dimensional, spatial degrees of freedom, which allow for qudit encoding in d-dimensional Hilbert spaces. [START_REF] Forbes | Quantum mechanics with patterns of light: Progress in high dimensional and multidimensional entanglement with structured light[END_REF] This promises increased channel capacities, enhanced security of quantum key distribution (QKD), [START_REF] Cerf | Security of quantum key distribution using d -level systems[END_REF] and stronger violations of Bell-type inequalities. [START_REF] Dada | Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities[END_REF] There are two, apparently very different, approaches to high-dimensional spatial encoding. One is based on using fixed sets of modes. The most common example of the latter is Laguerre-Gaussian (LG) beams, [START_REF] Padgett | Light's orbital angular momentum[END_REF] which carry an orbital-angular momentum (OAM) and form a complete, orthonormal, and unbounded basis. [START_REF] Allen | Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes[END_REF] Alternative sets include Bessel-Gaussian (BG), [START_REF] Gori | Bessel-Gauss beams[END_REF] as well as Hermite-Gaussian (HG) [START_REF] Cox | The resilience of Hermite-and Laguerre-Gaussian modes in turbulence[END_REF] and Ince-Gaussian (IG) [START_REF] Gu | Phenomenology of complex structured light in turbulent air[END_REF] beams.

The main advantage of using fixed modes is that the latter can be generated and detected using fast and compact passive devices. [START_REF] Cox | Structured light in turbulence[END_REF] However, pre-determined sets of modes are not designed for the propagation through atmospheric turbulence, which causes beam wandering, phase and intensity fluctuations, and other disturbances of the propagated modes. [START_REF] Andrews | Laser Beam Propagation through Random Media[END_REF] These perturbations amount to turbulence-induced losses and crosstalk among spatial modes [START_REF] Anguita | Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[END_REF] and can potentially obliterate quantum communication. [START_REF] Krenn | Twisted photon entanglement through turbulent air across Vienna[END_REF][START_REF] Sit | High-dimensional intracity quantum cryptography with structured photons[END_REF] Although partial mitigation of turbulence effects is possible, e.g., by employing modal diversity, 17 entanglement concentration, [START_REF] Ndagano | Characterization and mitigation of information loss in a six-state quantumkey-distribution protocol with spatial modes of light through turbulence[END_REF] adaptive optics [START_REF] Sorelli | Entanglement protection of high-dimensional states by adaptive optics[END_REF][START_REF] Zhao | Performance of real-time adaptive optics compensation in a turbulent channel with high-dimensional spatial-mode encoding[END_REF] or compressed sensing, [START_REF] Mabena | Quantum channel correction with twisted light using compressive sensing[END_REF] overcoming atmospheric effects still remains the greatest challenge towards long-distance free-space quantum communication based on high-dimensional spatial encoding.

On the contrary, within the second approach to spatial encoding, which we pursue in our present work, quantum information is encoded not into fixed modes but rather into spatial eigenmodes * of light for a given realization of turbulence ("frozen" atmosphere). By construction, such eigenmodes are mutually orthogonal and can be used for spatial encoding of high-dimensional quantum states. Furthermore, since the associated eigenvalues determine the actual transmission fidelities, eigenmodes with large eigenvalues can be transmitted through the atmosphere with little loss and distortion. [START_REF] Zhao | Capacity limits of spatially multiplexed free-space communication[END_REF] While the 'eigenmodes' approach has been intensively used for transmission of information and imaging in strongly scattering media, [START_REF] Rotter | Light fields in complex media: Mesoscopic scattering meets wave control[END_REF] its application to free-space communication has been relatively rare. [START_REF] Shapiro | Normal-mode approach to wave propagation in the turbulent atmosphere[END_REF][START_REF] Borcea | Multimode communication through the turbulent atmosphere[END_REF][START_REF] Belmonte | Approaching fundamental limits to free-space communication through atmospheric turbulence[END_REF] Under weak scintillation, an eigenmode decomposition corresponding to a turbulence medium confined between the input and output circular apertures was for the first time considered by J.H. Shapiro, 24 who used asymptotic methods to establish the close similarity between significant eigenmodes (that is, those with associated eigenvalues close to one) and prolate spheroidal wavefunctions. [START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty -IV: Extensions to many dimensions; generalized prolate spheroidal functions[END_REF] The eigenmodes encoding in the limit of weak scintillation was recently revisited, [START_REF] Borcea | Multimode communication through the turbulent atmosphere[END_REF] and it was analytically shown that prolate spheroidal wavefunctions behave like scaled LG functions. Furthermore, some authors claimed [START_REF] Belmonte | Approaching fundamental limits to free-space communication through atmospheric turbulence[END_REF] that even in strong turbulence eigenmodes of light are wellapproximated by LG beams. If true, these results [START_REF] Borcea | Multimode communication through the turbulent atmosphere[END_REF][START_REF] Belmonte | Approaching fundamental limits to free-space communication through atmospheric turbulence[END_REF] would link the two aforementioned approaches to highdimensional spatial encoding and open up exciting prospectives for robust and lossless free-space communication under arbitrary turbulence conditions employing the well-known family of LG modes.

The previous results on the atmospheric eigenmodes of light in turbulence [START_REF] Shapiro | Normal-mode approach to wave propagation in the turbulent atmosphere[END_REF][START_REF] Borcea | Multimode communication through the turbulent atmosphere[END_REF][START_REF] Belmonte | Approaching fundamental limits to free-space communication through atmospheric turbulence[END_REF] were obtained using approximate analytical methods with restricted validity range. Therefore, in our present contribution, we re-examine the fundamental properties of the eigenmodes in a "frozen" atmosphere numerically using multiple phase screen method, [START_REF] Schmidt | Numerical Simulation of Optical Wave Propagtion[END_REF][START_REF] Martin | Intensity images and statistics from numerical simulation of wave propagation in 3-d random media[END_REF][START_REF] Lane | Simulation of a Kolmogorov phase screen[END_REF] which allows one to attain accurate modelling of a turbulence channel for a broad range of turbulence conditions. [START_REF] Anguita | Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[END_REF][START_REF] Sorelli | Entanglement protection of high-dimensional states by adaptive optics[END_REF][START_REF] Leonhard | Protecting the entanglement of twisted photons by adaptive optics[END_REF] In qualitative agreement with previous findings, [START_REF] Shapiro | Normal-mode approach to wave propagation in the turbulent atmosphere[END_REF][START_REF] Borcea | Multimode communication through the turbulent atmosphere[END_REF] we obtain that under weak scintillation the eigenmodes of turbulence are similar to LG modes and their simple superpositions characterized by lobed intensity distributions. However, when scintillation becomes significant, we find that highly transmitting eigenmodes of turbulence are not LG beams but spatial modes with a highly localized transverse intensity distribution.

ATMOSPHERIC TURBULENCE

Stochastic parabolic equation

We find optical eigenmodes in atmospheric turbulence from the singular-value decomposition (SVD) [START_REF] Rotter | Light fields in complex media: Mesoscopic scattering meets wave control[END_REF][START_REF] Miller | Waves, modes, communications, and optics: a tutorial[END_REF] of a transmission matrix, which represents, in a specific basis, the turbulence operator. The latter emerges from a numerical solution of the stochastic parabolic equation 132ik ∂u(r) ∂z

+ ∆ ⊥ u(r) + 2k 2 n 1 (r)u(r) = 0, ( 1 
)
where k is the signal wave number, ∆ ⊥ the transversal part of the Laplace operator, z the propagation direction, and n 1 (r) the fluctuating part of the refractive index of air. We note that n 1 (r) in ( 1) is time-independent, implying a "frozen" atmosphere, which is adequate since light propagation is much faster than the time scale of ∼ 10 ms on which the atmosphere changes its state. 33 Turbulence enters (1) via the statistical properties of n 1 (r). The refractive index fluctuations are assumed to be a zero-mean, homogeneous, Gaussian random field, whose two-point correlation function, in Markov approximation 34 along the propagation direction, is given by 13 n 1 (r

1 )n 1 (r 2 ) = δ(z 1 -z 2 )A n (ρ 1 -ρ 2 )
, with r = (ρ, z), and A n the two-dimensional covariance in the transverse plane. Starting from Kolmogorov's theory of turbulence, 35 the covariance function is obtained as the Fourier transform of the refractive-index power spectral density Φ n (κ). In the inertial range, that is, for spatial wave numbers |κ| satisfying the inequality L

0 -1 |κ| l 0 -1
, where L 0 and l 0 are the outer and inner scales of turbulence, respectively (typically, L 0 ∼ 10 -100 m and

l 0 ∼ 1 -10 mm 13 ), Φ n (κ) = 0.033C n 2 κ -11/3 , with C n 2
the refractive index structure constant, and κ := |κ|. Furthermore, turbulence is assumed to be isotropic, i.e. A n (ρ

1 -ρ 2 ) = A n (|ρ 1 -ρ 2 |).

Propagation regimes

Optical turbulence can be characterized by two qualitatively different propagation regimes -of weak and strong scintillation [START_REF] Andrews | Laser Beam Propagation through Random Media[END_REF] -distinguished by the value of the Rytov variance σ 2 R = 1.23C 2 n k 7/6 z 11/6 : scintillation is weak if σ 2 R < 1, and strong otherwise. In the optical frequency domain, the strong scintillation regime emerges for propagation distances exceeding few kilometers. [START_REF] Tyson | Principles of Adaptive Optics[END_REF] Until then, the turbulence effects on the propagating wave can be oftentimes reduced to random phase errors, which can be described within the single phase screen model of turbulence. [START_REF] Andrews | Laser Beam Propagation through Random Media[END_REF] A phase screen is fully characterized by the transverse coherence length, which is the distance over which turbulence-induced phase distortions are correlated, also known as the Fried parameter r 0 = (0.423k 2 C 2 n z) -3/5 . [START_REF] Andrews | Laser Beam Propagation through Random Media[END_REF] For a given r 0 , the statistics of the phase errors is described by the phase structure function

[φ(ρ 1 )-φ(ρ 2 )] 2 =: D φ (|ρ 1 -ρ 2 |) = 6.88(|ρ 1 -ρ 2 |/r 0 ) 5/3
. With the help of r 0 , the turbulence strength experienced by an optical beam of diameter w 0 is defined as the ratio W = w 0 /r 0 . [START_REF] Andrews | Laser Beam Propagation through Random Media[END_REF] A single phase screen model [START_REF] Andrews | Laser Beam Propagation through Random Media[END_REF] allows for an analytical [START_REF] Paterson | Atmospheric turbulence and orbital angular momentum of single photons for optical communication[END_REF] or numerical account of turbulence effects on short free-space links. A numerical treatment has the decisive advantage of being systematically generalizable to the strong scintillation regime, [START_REF] Schmidt | Numerical Simulation of Optical Wave Propagtion[END_REF] wherein an extended atmospheric layer is modelled by a sequence of random phase screens introducing phase errors. In between the screens the wave experiences free diffraction in vacuum. In other words, a multiple phase screen (MPS) model represents a split-step method to solve (1). The algorithms for generating individual phase screens are well-known, [START_REF] Schmidt | Numerical Simulation of Optical Wave Propagtion[END_REF][START_REF] Martin | Intensity images and statistics from numerical simulation of wave propagation in 3-d random media[END_REF][START_REF] Lane | Simulation of a Kolmogorov phase screen[END_REF] whereas their number along the light path is determined by a simple criterion: For each elementary propagation step of two vacuum propagations connected by one phase screen, scintillation must be weak (in our simulation we required even more stringently σ 2 R < 0.5). In this work, we address weak, moderate, and strong scintillation conditions, with maximum σ 2 R = 6.31, for which modelling we employ the MPS model of turbulence.

Turbulence operator

We introduce the turbulence operator T (ρ, ∆z) when solving (1) numerically by the split-step method. On an interval ∆z between the planes z l and z l+1 , for which scintillation is weak (see Sec. 2), the solution of (1) can be expressed as 37 u(ρ, z l+1 ) = T (ρ, ∆z) u(ρ, z l ), where the turbulence operator reads

T (ρ, ∆z) = D ∆z 2 R(ρ, z l , z l+1 ) D ∆z 2 , (2) 
with

D(z) = exp -i z 2k ∆ ⊥ , (3) 
and

R(ρ, z l , z l+1 ) = exp -ik z l+1 z l n 1 (ρ, z)dz = exp{-iϕ(ρ)} , (4) 
describing, respectively, diffraction and refraction on a thin turbulent layer (i.e. a phase screen). For arbitrary L, we split the path into N sufficiently small intervals, on each of which we can represent the solution in the above operator form, to obtain u(ρ, L) = T (ρ, L) u(ρ, 0), where

T (ρ, L) = T (ρ, ∆z 1 ) . . . T (ρ, ∆z N ). (5) 
In the weak scintillation limit, we employ a single phase screen model of turbulence, with T (ρ, L) given by (2); in the cases of moderate and strong scintillation, the turbulence operator is given by the multiple phase screen model ( 5), with N determined by a given value of the Rytov variance σ 2 R (see Sec. 2.2). We generate phase screens using the subharmonics method, [START_REF] Lane | Simulation of a Kolmogorov phase screen[END_REF][START_REF] Eichhorn | Transport of High-Dimensional Photonic States across a Turbulent Atmosphere[END_REF][START_REF] Sorelli | Quantum state transfer in diffractive and refractive media[END_REF] which allows for a precise emulation of the statistics of phase errors for a broad range of spatial frequencies by variable grid spacing.

The turbulence maps (2), and consequently (5), generate unitary evolutions, [START_REF] Sorelli | Entanglement protection of high-dimensional states by adaptive optics[END_REF] 

T (i) (ρ, L) = U (i) turb , with U (i) turb
the unitary operator for a particular realization i of turbulence fluctuations. Thereby, the propagated field u(ρ, L) is spread over the entire receiver plane at z = L. In practice, the radiation field in the transmitter and receiver planes is confined by finite-size apertures, resulting in a violation of unitarity, due to the geometric truncation of the input and output beams described by the projectors Π T and Π R . Henceforth, unless stated otherwise, by the turbulence operator we therefore understand a realistic scenario with finite-size circular apertures, [START_REF] Sorelli | Entanglement protection of high-dimensional states by adaptive optics[END_REF][START_REF] Schuler | Spatial eigenmodes of atmospheric turbulence[END_REF] such that

T (i) (ρ, L) = Π R U (i) turb Π T .

Construction of the turbulence transmission matrix

The transmission matrix of turbulence t (i) (ρ, L) is a representation of the turbulence operator T (i) (ρ, L) in a particular basis.

t (i) (ρ, L) maps S input basis modes {|φ s } (1 ≤ s ≤ S) into Q output basis modes {|ψ q } (1 ≤ q ≤ Q), |ψ q = S s=1 t (i) qs (ρ, L)|φ s , (6) 
with

t (i) qs (ρ, L) = ψ q |T (i) (ρ, L)|φ s .
As the input basis, we choose Laguerre-Gaussian (LG) modes. This choice is suggested by the cylindrical symmetry of the problem and by the actual quantum communication protocols relying on OAM encoding. [START_REF] Krenn | Twisted photon entanglement through turbulent air across Vienna[END_REF][START_REF] Ndagano | Characterization and mitigation of information loss in a six-state quantumkey-distribution protocol with spatial modes of light through turbulence[END_REF][START_REF] Sorelli | Entanglement protection of high-dimensional states by adaptive optics[END_REF][START_REF] Leonhard | Protecting the entanglement of twisted photons by adaptive optics[END_REF][START_REF] Krenn | Twisted light transmission over 143 km[END_REF] Furthermore, in absence of turbulence as well as under weak turbulence conditions characterized by negligible scintillations (σ 2 R 1), the transmitting and receiving eigenmodes of the free-space channel are given by prolate spheroidal wavefunctions, [START_REF] Shapiro | Normal-mode approach to wave propagation in the turbulent atmosphere[END_REF][START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty -IV: Extensions to many dimensions; generalized prolate spheroidal functions[END_REF] which are closely related to LG modes. [START_REF] Borcea | Multimode communication through the turbulent atmosphere[END_REF] The number S is estimated given the transmitter aperture diameter D T = 14.43 cm and the width of fundamental mode w 0 = 1.0 cm † . Recalling that for LG modes, the beam width increases with the azimuthal and radial indices, l and p, respectively, as [START_REF] Andrews | Laser Beam Propagation through Random Media[END_REF] w ≈ w 0 2p + |l| + 1, we ensure that w < D T (otherwise, geometric beam truncation leads to power and entanglement losses [START_REF] Sorelli | Entanglement of truncated quantum states[END_REF] ). The latter inequality is well satisfied by setting p ≤ 20, |l| ≤ 20, wherefrom we obtain S = 861.

As for the output basis, we employ the pixel basis, for which Q is the number of pixels within the receiving aperture with diameter D R = 57.81 cm ‡ . We take a standard grid of 512 × 512 pixels [START_REF] Schmidt | Numerical Simulation of Optical Wave Propagtion[END_REF] to represent a square

A = 80 × 80 cm 2 . Hence, Q π(512 × D R ) 2 / (4A) ≈ 107500.

Eigenmodes of light in turbulence

To identify highly transmitting modes of light in turbulence, we perform a singular value decomposition (SVD) [START_REF] Rotter | Light fields in complex media: Mesoscopic scattering meets wave control[END_REF][START_REF] Miller | Waves, modes, communications, and optics: a tutorial[END_REF] of the transmission matrix,

t (i) (ρ, L) = U D diag V † , (7) 
where D diag = diag(τ 1 , . . . , τ S ) is a Q × S diagonal matrix whose elements are the singular values τ k of the transmission matrix, which can be calculated as the square roots of the eigenvalues of the Hermitian matrix t (i) † (ρ, L)t (i) (ρ, L); U and V have dimensions Q × Q and S × S and U † U = I, V † V = I; the columns of the matrices U and V are the singular vectors |u k = Q q=1 u kq |ψ q and |v k = S s=1 v ks |φ s , respectively. SVD (7) amounts to the following representation of the transmission matrix:

t (i) (ρ, L) = S s=1 τ s |u s v s |. (8) 
Next, we present our results for the singular values and the spatial distribution of the highly transmitting modes under different turbulence conditions. 

RESULTS

We consider the propagation of a monochromatic wave with wavelength λ = 1064 nm and width w 0 = 1.0 cm across a horizontal free-space link of length L = 6000 m. As already mentioned, a turbulent medium is confined by two circular apertures with diameters D T = 14.43 cm and D R = 57.81 cm in the transmitter and receiver planes, respectively. In absence of turbulence, such free-space link supports [START_REF] Shapiro | Normal-mode approach to wave propagation in the turbulent atmosphere[END_REF][START_REF] Borcea | Multimode communication through the turbulent atmosphere[END_REF] 

M = πD 2 R 4(λL/D T ) 2 ≈ 135 (9) 
highly transmitting modes. We calculated eigenmodes for three values of the turbulence strength strength, W = 0.02, 0.28, 0.50, corresponding to weak (σ 2 R = 0.02), moderate (σ 2 R = 2.48), and strong (σ 2 R = 6.31) scintillation, respectively. The associated transmission matrices were generated using 1, 9 and 23 phase screens. SVD of the transmission matrix, according to (7), renders the representations (8) in terms of singular values τ s and left and right singular vectors |v s and |u s . The results of this analysis are displayed in Fig. 1.

We observe that under weak scintillation (σ 2 R = 0.02), there are 134 highly transmitting modes with τ s ≥ 0.995, which is close to the theoretical value in absence of turbulence, [START_REF] Shapiro | Normal-mode approach to wave propagation in the turbulent atmosphere[END_REF][START_REF] Borcea | Multimode communication through the turbulent atmosphere[END_REF] M = 135 (see Eq. ( 9) and the vertical dashed line in the top left panel of Fig. 1). It is under these conditions that a similarity of eigenmodes with τ s ≈ 1 to LG modes was shown. [START_REF] Borcea | Multimode communication through the turbulent atmosphere[END_REF] To illustrate their typical behaviour, we here provide intensity distributions for three such modes. Both the input and output modes in this case exhibit intensity distributions indeed reminiscent of LG modes with p = 0, l = 0 (second column, first and second row) or of superpositions of the LG modes p = 0, l = ±1 (third column, first and second row) and of the LG modes p = 0, l = ±2 (fourth column, first and second row) with two and four lobes, respectively (see, e.g. [START_REF] Krenn | Twisted light transmission over 143 km[END_REF] ). Despite the very small value of the Rytov variance, the combined impact of turbulence distortions and diffraction is manifest in slight deviations of the intensity distributions of the input and output modes from the intensity distributions of LG modes and superpositions thereof.

As the Rytov variance increases to σ 2 = 2.48 and σ 2 R = 6.31, we observe that the singular value histograms (Fig. 1, left column, rows four and six) rapidly lose the bi-modal shape of the weak turbulence limit and flatten out. Still there are more than 100 modes with τ s > 0.95 (moderate scintillation) and τ s > 0.87 (strong scintillation). The input and output singular vectors corresponding to large singular values have intensity distributions that, at first glance, look random (see rows three to six in Fig. 1). However, in all cases most of the intensity distribution is localized at random positions in the tranverse input and output planes around one, sometimes two, maxima with a characteristic width of the order of ∼ 1 cm = w 0 . These maxima resemble the displaced intensity distributions of the basis modes garnished by noise. The structure and transverse localization properties of these spatial modes will be explored in future work.

CONCLUSION

We studied spatial eigenmodes of light in frozen atmospheric turbulence. We considered a horizontal channel wherein a turbulent medium is confined between two finite-size circular apertures. To describe monochromatic wave propagation across this channel, we employed multiple phase screens method and generated channel's transmission matrix for weak, moderate, and strong scintillation conditions. By means of the singular value decomposition of the transmission matrix, even within the strong scintillation regime, we identified ∼ 100 highly transmitting eigenmodes in the transmitter and receiver planes that are mapped onto each other with little loss. Under weak scintillation, our calculations confirm the previous results 25, 26 that eigenmodes with large singular values are closely related to Laguerre-Gaussian modes. However, under moderate to strong scintillation, the highly transmitting eigenmodes differ very significantly from standard mode families, and are characterized by pronounced transverse localization. These promising observations, and their consequences for high-dimensional spatial encoding in atmospheric turbulence deserve further studies.

Figure 1 .

 1 Figure 1. Distributions of singular values as a function of the mode number together with the corresponding histograms underneath (left column), and intensity distributions of three singular vectors |vs (input modes: odd row numbers) and their associated singular vectors |us (output modes, even row numbers) with highest singular values (given above the input modes), for three values of Rytov variance σ 2 : (a) 0.02, (b) 2.48, (c) 6.31. Note the different labels of the x and y axes of the input and output modes, reflecting the different diameters of the transmitter and receiver apertures (14.43 cm and 57.81 cm, respectively).

† The chosen values of DT and w0 are approximately equal to the experimental ones. 42 ‡ While the size of the transmitter aperture allows to avoid geometric truncation of all modes from the input basis, the increased size of the receiver aperture does so for diffracted output modes.
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