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Abstract. In today’s manufacturing industry, staying competitive re-
quires being both cost and time effective, as well as being environmentally
benign. In this paper, two versions of the well-known non-dominated sort-
ing genetic algorithm (NSGA) namely Dynamic-NSGA-II and NSGA-III
are proposed and compared to solve an environmental oriented multi-
objective single unit process plan generation problem in a reconfigurable
manufacturing environment. In addition to the traditional total produc-
tion cost and total production time, two other criteria namely, total
amount of hazardous liquid waste and total amount of greenhouse gases
(GHG) emitted are minimized. Firstly, a non-linear multi-objective in-
teger program (NL-MOIP) is proposed. Secondly, to illustrate the effi-
ciency of the two approaches, several instances of the problem are ex-
perimented and the obtained results are analyzed using three metrics
respectively spacing metric, inverted generational distance and cardinal-
ity of the mixed Pareto fronts.

Keywords: Sustainability · RMS · Process plan generation · Multi-
objective optimization · Dynamic-NSGA-II · NGSA-III.

1 Introduction

Reconfigurable manufacturing system (RMS) is one of the latest manufactur-
ing paradigms. In this paradigm, machine components, machines softwares or
material handling units can be added, removed, modified or interchanged as
needed and when imposed by the necessity to react and respond rapidly and
cost-effectively to changing requirements. RMS is regarded as a convenient man-
ufacturing paradigm for variety productions as well as a flexible enabler for this
variety. Hence, it is a logical evolution of the two manufacturing systems already
used in the industries respectively dedicated manufacturing lines (DML) and
flexible manufacturing systems (FMS). According to Koren [1], father of RMS,
DMLs are inexpensive but their capacities are not fully utilized in several situ-
ations especially under the pressure of global competition, thus they engender
losses. On the other hand, FMSs respond to product changes, but they are not
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designed for structural changes. Hence, in both systems, a sudden market vari-
ation cannot be countered, like demand fluctuation or regulatory requirements.
RMS combines the high flexibility of FMS with the high production rate of DML.
It comprises the positive features of both systems, thanks to its adjustable struc-
ture and design focus.

Nowadays, RMS is a very active research field where multiple state of the
arts have been dedicated covering many areas, such as design, layout optimiza-
tion, reconfigurable control, process planning and production scheduling, etc. In
a multi-objective context, [2] used an adapted version of NSGA-II to integrate
process plan generation to the design problem. In [3], the authors introduced the
concept of reconfigurable and energy efficient manufacturing system (REMS)
and proposed a discrete event simulation model to evaluate its energy efficiency.
Moreover, [4] presented a quantitative framework for sustainable manufacturing
explaining how it can be applied to the automotive industry and how material
alternatives can help to achieve sustainability objectives. Toward sustainable
RMSs and system design through process plan generation, the authors in [5]
proposed a comparative study of an iterative multi-objective integer linear pro-
gramming (I-MOILP) approach with adapted versions of AMOSA and NSGA-II
algorithms. Recently, [6] showed how the RMSs concepts can lead to the design
of sustainable and energy efficient manufacturing systems and how to decrease
the emissions and energy consumption during the life cycle.

In this paper, we adapt two evolutionary approaches, respectively Dynamic-
NSGA-II and NSGA-III, to solve an environmental oriented multi-objective sin-
gle unit process plan generation problem in a reconfigurable environment. Some
experimental results are presented and analyzed using three metrics namely spac-
ing metric, inverted generational distance and cardinality of the mixed Pareto
fronts. The rest of the paper is organized as follows. Section 2 presents the prob-
lem under consideration and its mathematical formulation. Section 3 describes
the proposed two approaches. Section 4 discusses the experimental results and
analyzes. Section 5 concludes the paper with some future work directions.

2 Problem Description and Mathematical Formulation

2.1 Problem Description

Let us consider a single unit of a product to be manufactured in a reconfigurable
environment. The product is composed of a set of operations linked by prece-
dence constraints (see Fig. 1). Moreover, three key data define an operation: the
precedence constraints, the set of candidate tools and the tool approach direc-
tions (TADs) (i.e. x±,y±,z±). Once the operations requirements are identified, a
machine is able to perform a certain number of operations. Given that, for each
machine, the sets of available configurations and compatible tools are identified.
Thus, each operation OPi requires an association of machine-configuration-tool
(M,C, T ) called triplet TOi. The generation of process plan consists of sequenc-
ing the operations to be performed on the used machines under the configurations
and tools, through the precedence graph as well as the triplets to perform each
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operation in the sequence. Table 1 presents a simple example of a generated
process plan in our case.

Fig. 1. An illustrative product schema and operations precedence graph

Table 1. Illustrative structure of a process plan

Operation OP1 OP2 OP3 OP4 OP5

Machine M2 M1 M3 M3 M1

Configuration C2 C3 C1 C1 C2

Tool T2 T1 T3 T1 T1

2.2 Mathematical Formulation

The following notations are used:

Parameters
n Number of operations
OP Set of operations
i, i′ Index of operations
PRi Set of predecessors of operation OPi

m Number of machines
M Set of machines
j, j′ Index of machine
G Set of greenhouse gases
g Index of greenhouse gases
li,t Required liquid for operation OPi when using triplet t per time unit
EPi,t Estimated hazardous liquid waste for operation OPi when using triplet t
fef Emission factor for electricity consumption
fi,g Operation OPi emitting greenhouse gas type g per time unit
t, t′ Index of triplet
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TOi Set of available triplets for operation OPi

TMj Set of available triplets using machine Mj

T Set of triplets, where T = TOi ∪ TMj

c, c′¿ Index of configurations
tl, tl′ Index of tools
p, p′ Index of positions in the sequence
GWPg Global warning potential for emitted greenhouse gas type g

Cost Parameters
CCMj,j′ Machine changeover cost per time unit
CCCc,c′ Configuration changeover cost per time unit
CCTtl,tl′ Tool changeover cost per time unit
Pci,t Operation OPi processing cost when using triplet t per time unit
DCGHG Disposal cost of the emitted greenhouse gases
DCLHW Disposal cost of the hazardous liquid waste

Time Parameters
TCMj,j′ Machine changeover time
TCCc,c′ Configuration changeover time
TCTtl,tl′ Tool changeover time
Pti,t Operation OPi processing time when using triplet t

Energy Parameters
ECMj,j′ Machine changeover energy per time unit
ECCc,c′ Configuration changeover energy per time unit
ECTtl,tl′ Tool changeover energy
Pei,t Operation OPi processing energy when using triplet t per time unit
IECj Initial energy consumption of machine Mj

Decision Variables

xt
i,p = 1 if operation OPi is using triplet t at the pth position, 0 otherwise.

ymp,t = 1 if machine Mj is using triplet t at the pth position, 0 otherwise.
MCp−1

p (j, j′) = 1 if there has been a change from machine Mj to machine
M ′j between positions p− 1 and p, 0 otherwise.
TCj,p−1

p (t, t′) = 1 if there has been a change from triplet t to triplet t′ of
machine Mj between positions p− 1 and p, 0 otherwise.

Objective Functions
Our problem can be formulated as a non-linear multi-objective integer pro-

gram (NL-MOIP), where four objectives are minimized:

1. The total production cost fc: Equation (1) shows the total production cost
to be minimized. It includes the following costs: machine changeover cost,
configuration changeover cost, tool changeover cost, processing cost, emit-
ted greenhouse gases cost and disposal cost of the emitted hazardous waste
during the production.
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fc =

n∑
p=1

n∑
i=1

∑
t∈TOi

xti,p × Pci,t × Pti,t+

n∑
p=2

m∑
j=1

m∑
j′=1

MCp−1
p (j, j′) × CCMj,j′ × TCMj, j′+

n∑
p=2

m∑
j=1

∑
t∈Mj

∑
t′∈Mj

TCj,p−1
p (t, t′) × (CCTtl,tl′ × TCTtl,tl′+

CCCc,c′ × TCCc,c′) + (DCGHG × fGHG +DCLWH × fLHW )

(1)

2. The total production time ft: Equation (2) defines the total production
time to be minimized. It includes: machine changeover time, configuration
changeover time, tool changeover time and processing time.

ft =

n∑
p=1

n∑
i=1

∑
t∈TOi

xti,p × Pti,t+

n∑
p=2

m∑
j=1

m∑
j′=1

MCp−1
p (j, j′) × TCMj,j′+

n∑
p=2

m∑
j=1

∑
t∈Mj

∑
t′∈Mj

TCj,p−1
p (t, t′) × (TCCc,c′ + TCTtl,tl′)

(2)

3. The amount of hazardous liquid waste fLHW : Equation (3) defines the
amount of hazardous liquid waste to be minimized. It comprises the haz-
ardous liquid waste during processing of the operations, including: wastes
oils/water, hydrocarbons/water mixtures, emulsions; wastes from the pro-
duction, formulation and use of resins, latex, plasticizers, glues/adhesives;
wastes resulting from surface treatment of metals and plastics; residues aris-
ing from industrial waste disposal operations.

fLHW =

n∑
p=1

n∑
i=1

∑
t∈TOi

xti,p × li,t × Pti,t × EPi,t (3)

4. The amount of greenhouse gases emitted fGHG: Equation (4) defines the
amount of greenhouse gases emitted during the manufacturing process to
be minimized. It is composed of two parts. The first considers the energy
consumption taking into account the emission factor for consumed electricity.
The second considers the emitted gases taking into account the factor of
global warning potential (GWP). In this research work, GWP factor is used
to convert emissions of the other greenhouse gases into CO2 equivalents.

fGHG = fef × fEC +

n∑
p=1

n∑
i=1

∑
t∈TOi

∑
g∈G

xti,p × Pti,t × fi,g ×GWPg (4)

Equation (5) describes how to compute the total energy consumption fEC

during the production process.
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fEC =

n∑
p=1

n∑
i=1

m∑
j=1

∑
t∈TOi

yjp,t × xti,p × IECj+

n∑
p=1

n∑
i=1

∑
t∈TOi

xti,p × Pei,t × Pti,t+

n∑
p=2

m∑
j=1

m∑
j′=1

MCp−1
p (j, j′) × ECMj,j′ × TCMj,j′+

n∑
p=2

m∑
j=1

∑
t∈TMj

∑
t′∈TMj

TCj,p−1
p (t, t′)×

(TTCtl,tl′ × ETCtl,tl′ + TCCc,c′ + ECCc,c′)

(5)

fEC is a non-linear function. To linearize it, we can use the following equations:
yjp,t × xt

i,p = z S.t : z ≤ xt
i,p, z ≤ yjp,t, z ≥ yjp,t + xt

i,p − 1, z ∈ {0, 1}
A complete description of the nine constraints associated to our problem are

depicted in [7].

3 Proposed Approaches

In this section, we describe the adapted two evolutionary approaches, namely
Dynamic-NSGA-II and NSGA-III. Two genetic operators, respectively crossover
and mutation, are used as illustrated in Fig. 2 and Fig. 3. For clear descriptions
of the considered coded process plan as well as the crossover and the mutation
operators, refer to [8].

Fig. 2. Illustrative crossover operator

Fig. 3. Illustrative mutation operator

3.1 Dynamic Non Dominated Sorting Genetic Algorithm II
(Dynamic-NSGA-II)

NSGA-II is an updated version of the non-dominated sorting genetic algorithm
(NSGA) [9], well-known for solving multi-objective problems. The NSGA-II
mechanism begins by ranking the solutions according to their non-domination
score to get a set of Pareto front solutions. Then, the crowding distance tech-
nique, which guarantees diversity along the obtained Pareto front solutions, is
applied on the last front to complete the next generation parent population size.
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Nevertheless, the lateral diversity is not maintained. For better convergence, we
proposed an adapted version of NSGA-II called Dynamic-NSGA-II. It uses a
new diversity preservation technique called dynamic crowding distance, which
can maintain lateral diversity and a uniform distribution of the Pareto front
solutions. Algorithm 1 presents the main steps of the Dynamic-NSGA-II.

1: input data
2: initialize populationSize, iteration, pmutation, mutationRatio, pcrossover
3: randomize parentPopulation
4: for iter = 1 : iteration do
5: generate childPopulation from parentPopulation
6: population = parentPopulation ∪ childPopulation
7: F = fastNonDominatedSorting(population)
8: for l = 1 : size(F ) do
9: if size(newPopulation)+size(Fl) < populationSize then

10: newPopulation+ = Fl

11: else
12: DynamicCrowdingDistanceSorting(Fl)
13: for k = 1 : size(Fl) do
14: if size(newPopulation) < populationSize then
15: newPopulation+ = F k

l

16: else
17: break;
18: end if
19: end for
20: end if
21: end for
22: parentPopulation = newPopulation
23: end for
24: return parentPopulation

3.2 Non Dominated Sorting Genetic Algorithm III (NSGA-III)

The NSGA-III’s [10] framework is based on the NSGA-II. The major difference
between the two algorithms is the selection mechanism. NSGA-III replaces the
crowding distance with a reference point based niche mechanism, which can help
spread out Pareto optimal fronts and improve population diversity. Note that,
the same procedures (i.e., initial population, crossover and mutation operators)
used for Dynamic-NSGA-II are being considered for NSGA-III. Algorithm 2
presents the main steps of NSGA-III.

1: Compute the number of reference points (H) to place on the hyper-plan
2: Generate the initial population randomly taking into account the resources

assignment constraints (POP chromosomes)
3: Realize the non-dominated population sorting
4: for i = 1 Stopping criteria do
5: Select two parents P1 and P2 using the tournament method
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6: Apply the crossover between P1 and P2 with a probability Pc

7: Compute the non-dominated population sorting
8: Normalize the population members
9: Associate the population member with the reference points

10: Apply the niche preservation (counter)
11: Keep the niche obtained solutions for the next generation
12: end for

4 Experimental Results and Analyses

The following experiments were implemented with a 4.0 GHZ Intel Core i7 pro-
cessor and 16 GB RAM. The two approaches were implemented with a Java-
Cplex. An instance is defined by the number of operations and the number of
available reconfigurable machines and represented by nbOperations-nbMachines.
To analyze the Pareto solutions, two metrics, respectively Spacing metric [11]
and inverted generational distance (IGD) [12], are used. Due to the space limi-
tation, we replace Dynamic-NSGA-II by D-NSGA-II in the following tables.

For both Dynamic-NSGA-II and NSGA-III, the used parameters are as fol-
lows: Population-size= 40, number of iterations= 1000, probability of mutation=
90%, probability of crossover= 10% and mutation ratio= 0.3. Furthermore, to
show the impact of the number of iterations on the quality of the Pareto fronts,
instance 100-20bis refers to the situation where the number of iterations= 2000.

Table 2 presents the obtained numerical results, where two performance in-
dicators are used, the CPU calculation time (in seconds) and the cardinality of
the Pareto front (number of Pareto optimal process plans) of each instance.

Table 2. CPU time and cardinality of the Pareto fronts: D-NSGA-II vs NSGA-III

Instance
CPU(seconds) Cardinality of the Pareto fronts

D-NSGA-II NSGA-III D-NSGA-II NSGA-III
10-5 417.87 212.35 3 7
13-6 484.41 309.86 8 9
15-10 495.17 337.73 3 5
25-10 673.23 536.46 19 19
35-15 937.36 808.39 13 21
40-15 1057.23 950.05 16 26
50-20 1541.40 1485.96 20 13
100-20 3894.79 3740.28 16 13
100-20bis 15095.79 14281.22 44 37

Table 3 presents a comparison of the Pareto fronts obtained by Dynamic-
NSGA-II and NSGA-III, where # Pareto front corresponds to the number of
Pareto optimal process plans maintained in the new Pareto front (ie., contribu-
tions of Dynamic-NSGA-II and NSGA-III Pareto fronts in the new mixed Pareto
front). The idea is to construct a new Pareto front based on the two Pareto fronts
of respectively Dynamic-NSGA-II and NSGA-III. Moreover, Table 4 shows the
obtained metric values.



Sustainable Process Plan Generation in RMS 9

Table 3. Performances comparisons: D-NSGA-II vs NSGA-III

Instance
Combination of the Pareto fronts of D-NSGA-II, NSGA-III

Total of
cardinality

# Pareto
front of
D-NSGA-II

# Pareto
front of
NSGA-III

# Pareto front in
common between

D-NSGAII & NSGA-III
10-5 4 1 1 2
13-6 11 2 3 6
15-10 5 0 5 0
25-10 32 16 16 0
35-15 28 8 20 0
40-15 37 11 26 0
50-20 23 10 13 0
100-20 24 11 13 0
100-20bis 60 23 37 0

Table 4. Spacing metric and IGD values: D-NSGA-II vs NSGA-III

Instance
Spacing metric IGD

D-NSGA-II NSGA-III D-NSGA-II NSGA-III
10-5 695.13 128.72 64.28 48.36
13-6 40.26 108.74 36.05 36.05
15-10 2.89 2.24 17.03 10.44
25-10 328.76 613.40 524.31 426.61
35-15 302.38 264.62 357.54 761
40-15 340.74 179.48 192.93 310.27
50-20 265.18 321.57 229.98 230.36
100-20 805.53 5941.80 379.44 594.32
100-20bis 126.56 185.24 329.95 549.28

From the above three tables, we can distinguish three observations:

• Observations 1: From Table 2, we can see that, NSGA-III has better compu-
tational time, where Dynamic-NSGA-II has acquired more Pareto solutions
for large instances.

• Observations 2: From Table 3, we observe that, NSGA-III completely dom-
inates Dynamic-NSGA-II.

• Observations 3: From Table 4, we can conclude that Dynamic-NSGA-II al-
gorithm has a great advantage in promoting diversity. Moreover, it indicates
a major progression of the region covered by the Pareto front.

5 Conclusion and Perspectives

In this paper, we considered an environmental oriented multi-objective pro-
cess plan generation problem in a reconfigurable manufacturing environment.
We adapted two evolutionary approaches, respectively, Dynamic-NSGA-II and
NSGA-III. To show the efficiencies of both approaches, some experimental re-
sults were realized and the obtained results were analyzed using three metrics
respectively, spacing metric, inverted generational distance and cardinality of
the mixed Pareto fronts.
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For future works, shortly, in addition to reducing the traditional total produc-
tion cost and completion time, minimizing the maximum machines exploitation
time can be considered as a novel optimization criterion for high quality prod-
ucts. Moreover, other evolutionary-based approaches such as AMOSA, MOPSO,
etc., can be adapted and compared.
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