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In this paper, we are interested in deriving a non-intrusive numerical approach to construct nonlinear and linear parameter varying reduced order models from data. More specifically, based on data collected from a stable non-linear time-domain simulator or experimental bench, we show how we can infer either a reduced order nonlinear or a (quasi) linear parameter dependent model. The proposed approach is based on a very recent procedure called MII for Mixed Interpolation Inference, involving three steps: pencil method, interpolation and model inference. The complete process is illustrated on a polynomial nonlinear Duffing oscillator use-case showing how a reduced either nonlinear or linear parameter varying model can be obtained from time-domain raw data.

MOTIVATIONS AND PROBLEM SETTING

Dynamical models are central mathematical and numerical tools in many engineering fields as they are involved for simulation, analysis, optimisation or control (e.g. in chemistry in [START_REF] Brown | Application of hybrid RANS-LES models to the prediction of flow behaviour in an industrial crystalliser[END_REF] or in fluid mechanics in [START_REF] Willcox | Fourier series for accurate, stable, reduced-order models in large-scale linear applications[END_REF]). In many cases, involved models are either too complex, or hidden in a complex simulator not accessible (or not at a reasonable cost). Being able to construct accurate low complexity surrogate dynamical models is then a cornerstone for further developments. This is the purpose of Reduced Order Model (ROM) construction which can be beneficial in the many-query processes. An overview of the dynamical model reduction research can be found in book of [START_REF] Antoulas | Interpolatory methods for model reduction[END_REF] or in the survey by [START_REF] Benner | Surveys in Differential-Algebraic Equations IV[END_REF]. In addition, dedicated (mostly linear) model reduction and approximation numerical tools such as MORLAB by [START_REF] Benner | MORLAB-3.0 -model order reduction laboratory[END_REF], Chebfun by [START_REF] Driscoll | Chebfun Guide[END_REF] or MOR Toolbox by Poussot-Vassal and Vuillemin (2020) are also being developed. These tools address the closely related computational and linear algebra issues inherent to this research field. Following the definition proposed by [START_REF] Peherstorfer | Dynamic data-driven reduced-order models[END_REF] and [START_REF] Benner | Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms[END_REF], two broad ROM construction can be considered: the intrusive and the non-intrusive ones.

Traditional model reduction approaches usually refer to intrusive methods. This family of techniques require the original dynamical model mathematical description to construct the ROM by usually projecting or minimising some dynamical systems norms (see e.g. the projection-based approaches of [START_REF] Moore | Principal Component Analysis in Linear Systems: Controllability, Observability and Model Reduction[END_REF]; [START_REF] Gugercin | H 2 Model Reduction for Large Scale Linear Dynamical Systems[END_REF]; [START_REF] Van Dooren | H 2optimal model reduction of MIMO systems[END_REF]).

On the other side, non-intrusive methods refer to approaches where only input to state or input to output data are available1 .

Within this category, one can mention input-output frequencydomain data-driven model approximation in the Loewner framework (LF), proposed in its linear version in [START_REF] Mayo | A framework for the solution of the generalized realization problem[END_REF] and extended to bilinear and quadratic in [START_REF] Antoulas | Model reduction of bilinear systems in the Loewner framework[END_REF]; [START_REF] Gosea | Data-driven model order reduction of quadratic-bilinear systems[END_REF]. The LF is an interpolatory method dedicated to data-driven cases where frequency response is accessible, instead of models. One strong property is that the Loewner pencil encodes the minimal rational order of the underlying system. Other methods addressing linear and bilinear structures can be mentioned such as Vector Fitting or Adaptive Anderson Antoulas (see [START_REF] Gustavsen | Rational approximation of frequency domain responses by vector fitting[END_REF]; [START_REF] Nakatsukasa | The AAA algorithm for rational approximation[END_REF] respectively). In parallel, linear model identification techniques involving either frequency or time-domain data are also proposed through the Pencil Framework (PF) in [START_REF] Ionita | chapter Matrix pencils in time and frequency domain system identification[END_REF], which is closely related to the Loewner one. From the time-domain data perspective, one can mention Dynamic Mode Decomposition (DMD) by [START_REF] Proctor | Dynamic mode decomposition with control[END_REF]; [START_REF] Gosea | Toward fitting structured nonlinear systems by means of dynamic mode decomposition[END_REF] or quite recently, Operator Inference (OI) by [START_REF] Peherstorfer | Dynamic data-driven reduced-order models[END_REF]; [START_REF] Benner | Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms[END_REF] 2 . One major limitation of these frameworks stands in the need of collecting the system's internal state (variable) time series, which in many cases is impossible because (i) simply not accessible or (ii) unaffordable due to storage limitations. The non-intrusive Mixed Interpolatory Inference (MII) approach proposed in Poussot-Vassal et al. (2020) solves this issue and is used here. In brief, the MII allows the construction of a nonlinear (bilinear, quadratic) ROM from time-domain raw input output data (without any access to model approximation refers to methods where the sought mathematical model description is mostly black-box and where the major objective is to find simple models while identification usually considers parameter identification (see nice tutorial of [START_REF] Schoukens | Linear System Identification in a Nonlinear Setting[END_REF]).

2 Reader can note that both DMD and OI methods solve a least square problem. Sometimes one name or the other appears, depending on the philosophy. Most of the time it ends up with an SVD decomposition. the internal variables). In this paper we naturally extend it to quasi Linear Parameter Varying models (qLPV). Remark 1. (Stability). Within this paper, we consider stable systems only. The case where unbounded signals should be treated a part. An immediate way is to find a stabilising static output feedback law.

Let us consider a n u inputs n y outputs complex simulator driven by accessible time-domain input {u j (t k )} nu j=1 ∈ R generating (stable) output data {y j (t k )} ny j=1 ∈ R collected at constantly sampled time instants {t k } N k=1 ∈ R (N ∈ N) 3 . We denote

y k := y 1 (t k ), y 2 (t k ), . . . , y j (t k ), . . . , y ny (t k ) T ∈ R ny×1 u k := [u 1 (t k ), u 2 (t k ), . . . , u j (t k ), . . . , u nu (t k )] T ∈ R nu×1 ,
(1) the k-th time index of the n y outputs and n u inputs vectors. Then, by constructing the data snapshots matrices

U := | | | u 1 u 2 . . . u N | | | ∈ R nu×N and Y := | | | y 1 y 2 . . . y N | | | ∈ R ny×N , (2) 
the MII process provides a systematic methodology to construct a nonlinear ROM of the form

δ(x) = Âx + Bu + f (x, u) ŷ = Ĉx + Du + ĝ(x, u), (3) 
that accurately reproduces the raw data (2). In (3), x(•) ∈ R r , u(•) ∈ R nu and ŷ(•) ∈ R ny , briefly denoted x, u and ŷ, are the reduced internal, input and approximated output variables respectively. Operator δ(•) stands fo the derivative in the continuous-time and the forward shift in the sampled one. In addition  ∈ R r×r , B ∈ R r×nu , Ĉ ∈ R ny×r and D ∈ R ny×nu , where r is a user-defined model order (i.e. the number internal variables in the first order ordinary differential equations). Moreover, f (x, u) and ĝ(x, u) may have different structures resulting in different realisations given as follows:

• We denote ŜL-ODE the linear realisation as in (3) with f (x, u) = ĝ(x, u) = 0.

• We denote ŜB-ODE the bilinear realisation as in (3) with

f (x, u) = N xu and ĝ(x, u) = F xu, where N ∈ R ny×r and F ∈ R r×r . • We denote ŜQ-ODE the quadratic realisation as in (3) with f (x, u) = Q(x ⊗ x) and ĝ(x, u) = Ĝ(x ⊗ x), where Q ∈ R r×r 2 and Ĝ ∈ R ny×r 2 . • We denote ŜQB-ODE the quadratic bilinear realisation as in (3) with f (x, u) = N xu + Q(x ⊗ x) and ĝ(x, u) = F xu + Ĝ(x ⊗ x), where N ∈ R r×r , F ∈ R ny×r , Q ∈ R r×r 2 and Ĝ ∈ R ny×r 2 .
• We denote ŜqLPV-ODE the quasi linear parameter varying realisation as in (3) with f (x, u) = Âρ ρx and ĝ(x, u) = Ĉρ ρx, where Âρ ∈ R r×r and Ĉρ ∈ R ny×r . In this case, ρ is a varying parameter, typically function of the state x.

The framework can also embed external parameters, but this case in not considered here as it is more related to an additional input variable rather than real nonlinearity.

3 Importantly, the internal states information knowledge is not requiered.

The dynamical models involved in the paper can go either in continuous or sampled time according to the MII step. Conversion from one side to the other can be simply done by Euler transformation and is let to reader's curiosity. In this note, we extend the bilinear or quadratic formalism to the quasi Linear Parameter Varying (qLPV) one. We also claim that the process detailed in the sequel can be readily applied to any complex black-box qLPV simulator.

The MII procedure of Poussot-Vassal et al. ( 2020) is briefly recalled in section 2. Connections and extensions with qLPV modelling is also discussed. The application to a nonlinear Duffing oscillator is given in section 3. Conclusions and perspectives are finally given in section 4.

MII: NON-INTRUSIVE NONLINEAR ROM CONSTRUCTION

The MII is a mixed approach blending PF, LF and OI methods.

Although each steps embed some optimality certificates the complete approach is not proven yet to be optimal in term of resulting model. Still, it provides a fast and scalable solution to the non-intrusive reduced order nonlinear model construction.

For details, reader can refer to Poussot-Vassal et al. (2020) where application is done on a complex meteorological usecase.

Procedure at a glance

Once the constantly sampled time-domain input and output raw data (2) from the simulator have been collected, the main steps of the process are the following.

(1) Construct a linear dynamical FOM (or generating dynamical model) that reproduces as accurately as possible the time-domain raw data by catching the main linear dynamics only (section 2.2).

(2) Compute a linear dynamical ROM that approximates the FOM one using any data or model-based (interpolatory) approach, leading to a simplified input to states to output mapping function (section 2.3). (3) Based on the linear ROM, compute its response and collect the reduced states and shifted states trajectories X and X s . Optimise the ROM by inferring an adjusted reducedorder L, B, Q, QB, qLPV-ODE, as in (3) through a mixed collection of the raw data (2) and the reduced states obtained from the linear ROM simulation to account for possible nonlinearities (section 2.4).

The above three steps are explained in the rest of the section.

Full-order linear model construction via Pencil

On the basis of the collected input data U ∈ R nu×N and output data Y ∈ R ny×N , one first constructs a n-th order linear MIMO FOM linear dynamical function H n ∈ C ny×nu , mapping inputs u to the outputs ỹ. One objective is that the impulse response of H n results in a time-series ỹ(t k ) as close as possible to the raw data gathered in Y 4 . Here we seek for a transfer function H n described by its descriptor realisation

S n : (E n , A n , B n , C n , 0) explained as E n δ(x n ) = A n x n + B n u , ỹ = C n x n (4) where x n ∈ R n , u ∈ R nu
and ỹ ∈ R ny are the (global) internal, input and output variables gathering all the measured outputs5 . The E n , A n , B n and C n matrices are real and of appropriate dimension. They are structured as

E n = blkdiag(E 1 , E 2 , . . . , E ny ), A n = blkdiag(A 1 , A 2 , . . . , A ny ), B n = [B T 1 , B T 2 , . . . , B T ny ] T and C n = blkdiag(C 1 , C 2 , . . . , C ny ), (5) 
where each j-th sub matrix (j = 1, . . . , n y ) has a dimension induced by the j-th sub-generating model constructed with the Pencil method. More specifically the n j -th order transfer H j ∈ C 1×1 has a realisation S j : (E j , A j , B j , C j , 0) which is uniquely defined by the Y snapshot matrix (2). Interested reader is invited to refer to recent comprehensive tutorials of [START_REF] Ionita | chapter Matrix pencils in time and frequency domain system identification[END_REF]; [START_REF] Antoulas | A novel mathematical method for disclosing oscillations in gene transcription: A comparative study[END_REF] for details on the construction steps. One of the main property of the associated sampled-time n j -th transfer function H j (z) = C n (zE n -A n ) -1 B n is that its impulse response generates the sequence ỹj (t k ) that approximates the j-th line of the raw vector Y. Moreover, the order n j is encoded in the (A j , E j ) pencil and revealed by the SVD factorisation. By stacking the j = 1, . . . , n y sub-generating models S j linking each input to each output, one obtains (4). The resulting dimension is n = ny j=1 n .

Reduced order linear model via interpolation

Now we have H n , a linear model of dimension n, potentially very large (according to the number of inputs, outputs and time samples) but also very sparse due to the block structure of (5). The next step consists in reducing the dimensionality n of the internal state vector to cope with operator inference numerical limitations. One then seeks for a r-th order linear model H r (r n) with realisation S r given as, E r δ(x r ) = A r x r + B r u , y = C r x r , (6) where x r ∈ R r , u ∈ R nu and y ∈ R ny , that well restitutes the input-output mapping of the FOM. This can be done by either (projection) intrusive methods (see e.g. [START_REF] Gugercin | H 2 Model Reduction for Large Scale Linear Dynamical Systems[END_REF] or non-intrusive one as the LF exposed in [START_REF] Mayo | A framework for the solution of the generalized realization problem[END_REF] (see also [START_REF] Gosea | Data-driven model order reduction of quadratic-bilinear systems[END_REF]). Here, this second solution is preferred for different numerical reasons, let aside from the discussion and detailed in Poussot-Vassal et al. (2020). The major benefit is to be able to construct a simple model that remains close to the original full order one and potentially to the raw data. This last statement is the major limiting factor of the proposed framework. Indeed, the reduced states embed the main dynamics of the model and the input sequence. As pointed above, this aspect will be considered in future works.

Nonlinear ROM inference

Now one has access to a ROM S r being representative of the FOM S n . However, as already pointed in the construction of S n , the ROM may capture the linear dynamics only and poorly the nonlinear ones. Moreover, the reduction may have been done at the cost of a deteriorated accuracy. This is why now one aims at inferring a (linear or nonlinear) model as in (3) by taking advantage of this ROM model, as a complement of the raw data (2). This last step will first adjust the model, and if necessary, suggest the addition of a nonlinear term.

At this point, by simply simulating S r in response to the raw input data U, one can collect the a reduced state-space data snapshot matrix in addition to the original raw data (2). The reduced state and shifted state trajectories are given as6 -1) and

X := | | | x1 x2 . . . xN-1 | | | ∈ R r×(N
Xs := | | | x2 x3 . . . xN | | | ∈ R r×(N -1) . (7) 
This last point is the key enabler to apply operator inference as in [START_REF] Peherstorfer | Dynamic data-driven reduced-order models[END_REF]. In addition, we suggest to use the extended process proposed by Gosea and Pontes-Duff (2020) which considers multiple nonlinear structures, from which we also straightforwardly add the qLPV one.

Inferring a nonlinear ROM as in Gosea and Pontes-Duff ( 2020) consists in solving least-squares problems: for the linear structure solve ( 9), for the bilinear structure solve (10), for the quadratic one solve ( 11), for the quadratic and bilinear one solve ( 12) and finally, for the qLPV form, solve ( 13) where,

H = [e 1 ⊗ e 1 e 2 ⊗ e 2 . . . e N -1 ⊗ e m ] ∈ R (N -1) 2 ×(N -1) , P = [ρ 1 ρ 2 . . . ρ N -1 ] ∈ R 1×(N -1) (8
) where e i is the unit vector of size r containing 1 at the k-th position and ρ k the parameter value at the k time instant.

Note that the least-square problems are be easily solved in standard computers through SVD computations, as long as the snapshot collection data matrices is limited. This last considerations is one practical justification for this mixed inference and reduction framework. Reader may notice that in comparison with [START_REF] Peherstorfer | Dynamic data-driven reduced-order models[END_REF]; [START_REF] Benner | Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms[END_REF], the internal variable of the complete simulator is not required here. It is reconstructed prior any inference instead. At this point, unlike what is proven in [START_REF] Peherstorfer | Dynamic data-driven reduced-order models[END_REF], we cannot ensure that the non-intrusive inferred operator asymptotically converges to the original reduced model obtained by intrusive methods. This point is also under investigations but requires further numerical considerations.

ACADEMIC EXAMPLE: DUFFING OSCILLATOR

In this section, let us illustrate the proposed MII procedure to construct a nonlinear and qLPV ROM dynamical model directly from data. To this aim, we consider a simple model simulating the Duffing oscillator. Duffing oscillators are used in a variety of engineering applications (mechanical systems, nonlinear vibration of beams and plates and fluid flow induced vibration). The Duffing equation can be given by the following second order dynamical equation ẍ(t) + δ ẋ(t) + αx(t) + βx 3 (t) = u(t), (14) where {δ, α, β, γ, ω} = {0.1, 1, 0.01, 1, 0.5} and with u(t) = γ cos(ωt). A first order nonlinear ordinary differential equation ŜNL-ODE can be explained as

ẋ1 (t) = -δx 1 (t) -αx 2 (t) -βx 3 2 (t) + u(t) ẋ2 (t) = x 1 (t) (15) min Â, B, Ĉ, D Xs Y - Â B Ĉ D X U F , (9) min 
Â, B, Ĉ, D, N , F Xs Y - Â B N Ĉ D F X U XU F , (10) min 
Â, B, Ĉ, D, Q, Ĝ Xs Y - Â B Q Ĉ D Ĝ X U ( X ⊗ X)H F , (11) min 
Â, B, Ĉ, D, N , F , Q, Ĝ Xs Y - Â B N Q Ĉ D F Ĝ X U XU ( X ⊗ X)H F , (12) min 
Â, B, Ĉ, D, Âρ, Ĉρ Xs Y - Â B Âρ Ĉ D Ĉρ X U XP F . (13) 
and is considered in the rest of the section. Before applying the proposed approach, let us reformulate it in both quadratic and qLPV forms.

Analytic approach: qLPV and quadratic models

First, let us notice that the nonlinear model ( 15) can be turned into a parameter dependent one ŜqLPV-ODE given e.g. as

   ẋ1 = -δx 1 -αx 2 -βρ 2 x 2 + u ẋ2 = x 1 ρ = x 2 . ( 16 
)
Second, from an other perspective, by first introducing

z 1 (t) = x 3 2 (t) z 2 (t) = x 2 2 (t) ⇒ ż1 (t) = 3x 2 2 (t)x 1 (t) = 3x 1 (t)z 2 (t) ż2 (t) = 2x 2 (t)x 1 (t) = 2x 1 (t)x 2 (t) , (17) 
the nonlinear model ( 15) can be recasted as a quadratic one with realisation ŜQ-ODE

ẋ(t) = Ax(t) + Bu(t) + Q (x(t) ⊗ x(t)) , (18) where A 
=    -δ -α -β 0 1 0 0 0 0 0 0 0 0 0 0 0    , B =    1 0 0 0    , (19) 
[Q] 3,4 = 3 and [Q] 4,2 = 2 (the internal state vector being

x(t) = [x 1 (t), x 2 (t), z 1 (t), z 2 (t)] T ). In short, one gets      ẋ1 = -δx 1 -αx 2 -βz 1 + u ẋ2 = x 1 ż1 = 3x 1 z 2 ż2 = 2x 1 x 2 . ( 20 
)
In this simplified case it is somehow easy to derive different models, but in the general case, it may not always be the true, especially if we do not have access to the model but to the inputoutput data only.

Numerical MII approach

From either the nonlinear (15), the qLPV (16) of the quadratic (20) model, it is possible to simulate the process and to collect outputs. Here we consider that we collect x 1 (t k ) and x 2 (t k ) as output variables. For this numerical illustration, the process is simulated over 20 seconds with a sampling time t s = 0.05. By invoking the MII recalled in section 2, we are able to construct different ROM with varying user-defined complexity levels.

Figure 1 shows the relative norm mismatch error J = 100||y -ŷ|| 2 /||y|| 2 (in percentage), between the raw data y obtained from the simulator and the output obtained by the inferred r-th order reduced models (3) ŷ obtained with different nonlinear model structures (from linear to nonlinear and qLPV). The qLPV model is computed by considering as varying parameter ρ = x 2 , as in ( 16).

Interestingly, Figure 1 illustrates the benefit of the nonlinear term for an improved accuracy (linear models are less accurate that nonlinear and parametric ones). As shown in ( 20), a quadratic model is able to theoretically perfectly restitute the behaviour. Therefore, with no surprise, the best approximation is obtained by adding the quadratic term. The combined bilinear and quadratic ROM does not improve that much the model accuracy. In the flavour of this paper, the qLPV also performs better than the linear and, as shown in ( 16) should be able to exactly recover the data. However, in our case, we observe some limitations connected to the considered data set that way not be long enough or to the pencil method step polluting the process.

In addition, on Figure 1 one observes that increasing the model order r results in general better matching. Some non monotone behaviours are observed but can be reasonably be attributed to numerical issues.

By now considering r = 5-th order model only, Q-ODE and qLPV-ODE structures are computed for a snapshot constructed over 40 seconds. The quadratic model which matrices are given in ( 22), ( 23), ( 24) and ( 25) and the qLPV one which matrices are given in ( 26), ( 27), (28) 7 provide a good restitution. Figure 2 shows the prediction when models are fed by sightly different input variables, here u(t) = 1.2γ cos(0.5ωt)e -.01t (21) instead of u(t) = γ cos(ωt). Clearly, the models well behave illustrating that the derived model can be used for other purposes. It confirms the importance of the nonlinear quadratic term and the interest of the parametric one, especially at the beginning of the simulation.

CONCLUSION

In this brief note the MII non-intrusive nonlinear ROM construction method is applied and extended in the context of qLPV models. This preliminary work shows the link between nonlinear model inference and qLPV modelling. An interesting nonlinear academic application considering the Duffing oscillator illustrates the potentiality of the approach. Obviously, this paper presents a first attempt to nonlinear and parameter dependent modelling with a systematic way. Obviously, multiples steps and questions remain open. This includes convergence conditions, the uniqueness of the parametrisation, the sensitivity to noise (that can be addressed by matrices regularisation terms) etc. These questions will be addressed in future works of the authors, as well as numerical issues related to the appropriate choice of model structure. However, authors believe that the propose sequential scheme provides a rather simple way ton construct simplified models, with a rather few tuning parameters. Of course, future studies should consider performance / complexity trade-off with other methods, such as the one given in [START_REF] Cox | Linear parameter-varying subspace identification: A unified framework[END_REF]. 
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 1 Fig. 1. Mismatch error as a function of the approximation orderr for different inferred model structures: linear (dotted blue), bilinear (dash dotted red), quadratic (dashed yellow) and bilinear quadratic (solid purple).
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 2 Fig. 2. Time response of the nonlinear Duffing oscillator (solid blue lines) and its non-intrusive nonlinear quadratic inferred reduced order model of dimension r = 5 (dashed red lines).

Identification and non-intrusive data-driven model approximation are really close fields. The literature is quite blurred when comparing the approaches and this complete comparison is not done in this paper. In our case, we consider that

Note that here we construct a generating model embedding the input data dynamics. Usually, the objective would be to construct a model such that feeding Hn with the time-domain data u(t k ) collected in U lead to the raw data, instead of the impulse. This point will be performed in future developments not implemented in the present contributions.

In the rest of the paper we consider nu = 1 for simplicity. Extensions to multiple inputs naturally follows.

Note that as r is likely to be low, the dimension and thus the memory required to store these matrices is moderate.