
HAL Id: hal-03526618
https://hal.science/hal-03526618v1

Submitted on 14 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Neural Network for Lossy-to-Lossless Image
Coding

Tassnim Dardouri, Mounir Kaaniche, Amel Benazza-Benyahia,
Jean-Christophe Pesquet

To cite this version:
Tassnim Dardouri, Mounir Kaaniche, Amel Benazza-Benyahia, Jean-Christophe Pesquet. Dynamic
Neural Network for Lossy-to-Lossless Image Coding. IEEE Transactions on Image Processing, 2021,
31, pp.569-584. �10.1109/TIP.2021.3132825�. �hal-03526618�

https://hal.science/hal-03526618v1
https://hal.archives-ouvertes.fr


1

Dynamic Neural Network for Lossy-to-Lossless
Image Coding

Tassnim Dardouri, Student Member, IEEE, Mounir Kaaniche, Senior Member, IEEE, Amel Benazza-Benyahia,
and Jean-Christophe Pesquet, Fellow, IEEE,

Abstract—Lifting-based wavelet transform has been exten-
sively used for efficient compression of various types of visual
data. Generally, the performance of such coding schemes strongly
depends on the lifting operators used, namely the prediction and
update filters. Unlike conventional schemes based on linear filters,
we propose, in this paper, to learn these operators by exploiting
neural networks. More precisely, a classical Fully Connected
Neural Network (FCNN) architecture is firstly employed to
perform the prediction and update. Then, we propose to improve
this FCNN-based Lifting Scheme (LS) in order to better take into
account the input image to be encoded. Thus, a novel dynamical
FCNN model is developed, making the learning process adaptive
to the input image contents for which two adaptive learning
techniques are proposed. While the first one resorts to an iterative
algorithm where the computation of two kinds of variables
is performed in an alternating manner, the second learning
method aims to learn the model parameters directly through a
reformulation of the loss function. Experimental results carried
out on various test images show the benefits of the proposed
approaches in the context of lossy and lossless image compression.

Index Terms—Lifting scheme, image compression, adaptive
wavelets, optimization, neural networks, adaptive learning.

I. INTRODUCTION

Discrete Wavelet Transforms (DWTs) have been widely
used in various signal and image processing tasks such as de-
noising, super-resolution, and compression [1], [2]. The main
interest of these transforms is their ability to provide a mul-
tiresolution (or multiscale) representation of the input signal
with a good energy compaction. For instance, these transforms
have been retained in the JPEG2000 image compression stan-
dard [3]. Many research works have been developed showing
their benefits in the compression of other stereo, hologram and
video data [4], [5], [6]. More precisely, the second generation
of wavelets, based on the Lifting Scheme (LS), has attracted
much attention thanks to its low computational cost and its
ability to guarantee a perfect reconstruction of the original
image [7], [8].

Part of this work was supported by the ANR Chair in Artificial Intelligence
BRIDGEABLE and by the Institut Universitaire de France.

T. Dardouri and M. Kaaniche are with Université Sorbonne
Paris Nord, L2TI, UR 3043, F-93430, Villetaneuse, France. E-mail:
tasnim.dardouri@edu.univ-paris13.fr,
mounir.kaaniche@univ-paris13.fr.

A. Benazza-Benyahia is with University of Carthage SUP’COM,
LR11TIC01, COSIM Lab., 2083, El Ghazala, Tunisia. E-mail:
benazza.amel@supcom.rnu.tn.

J.-C. Pesquet is with Centre de Vision Numérique, Université Paris-
Saclay, CentraleSupélec, Inria, 91190 Gif-sur-Yvette, France. E-mail:
jean-christophe@pesquet.eu.

A conventional lifting structure consists of prediction and up-
date filters that generate the detail and approximation wavelet
coefficients, respectively [9], [10]. Generally, the performance
of LS-based coding schemes strongly depends on the choice
of these filters. For this reason, great attention has been paid
to the design of the prediction and update operators in order
to build compact wavelet representation that is well adapted
to the input data contents [11], [12], [13], [14]. To this end,
the prediction filters are often optimized by minimizing the
variance of the detail coefficients [15]. In addition to such
`2 minimization approach, the use of sparse criteria, e.g.
`1 and weighted `1 measures, has also been investigated
in [16]. Moreover, in [12], [17], the authors proposed to
minimize the detail signal entropy. However, such an opti-
mization problem is solved empirically by using the Nelder-
Mead simplex algorithm. Unlike for prediction filters, the
optimization of the update filter is less straightforward. Two
main approaches have thus been developed for that purpose.
The first one consists in minimizing the reconstruction error
while assuming that the detail coefficients are set to zero in the
synthesis stage [15], [18]. This optimization method leads to a
complex linear system of equations. To reduce this complexity,
another approach has been developed in [14], [19]. It aims at
minimizing the error between the approximation coefficients
and the output of an ideal low-pass filter applied to the original
image. It is also worth noting that other research efforts have
been made to design adaptive directional transforms based on
the concept of lifting scheme [20], [21]. However, the main
drawback of such transforms is that they require transmitting
side information to the decoder, which generally affects the
compression performance, in particular at low bitrates.
To further improve the efficiency of conventional image coding
schemes, it is worth pointing out that particular attention
has been paid recently to Neural Networks (NN). In this
context, most of the developed NN-based coding schemes
proceed as follows. First, a given NN architecture is selected
to convert the input image into a compact representation.
Then, a quantization step followed by an entropy encoding
process is performed. Finally, a synthesis stage is applied to
reconstruct the image. Such schemes are known as end-to-
end compression methods [22], [23], [24], [25], [26], [27],
[28]. It should be noted here that these methods mainly differ
in the employed neural network model or the loss function
used to learn the weights of the model. Moreover, intra
prediction techniques using neural networks for image and
video coding have also been developed [29]. To this end,
Convolutional Neural Networks (CNNs) and Fully Connected



2

Neural Network (FCNN) architectures have been investigated
in [30] and [31], respectively. In [32], the authors propose
to apply FCNNs to small image blocks and CNNs to large
blocks. In addition, other studies have also been devoted to the
improvement of DCT (Discrete Cosine Transform) and DWT-
based coding schemes [33], [34], [35], [36]. Indeed, in [33],
a CNN architecture is used to design a DCT-like transform
for image compression. In [34], the authors apply a DWT
to the input image, and the resulting wavelet subbands are
fed into a CNN to generate new detail coefficients. In [35],
the authors propose also to apply a DWT to the input image
as a pre-processing step. Then, a convolutional autoencoder
is trained end-to-end for a target bitrate set to 0.15 bits per
pixel. While this method outperforms JPEG, it is much less
performant than the JPEG2000 image compression standard.
Recently, a separable lifting structure has been proposed which
makes use of CNNs during the prediction stage [36]. However,
the update stage simply consists of a mean filter. It should be
emphasized that the above methods, as well as most of the
existing neural networks-based compression approaches, do
not generate integer coefficients and so, they are not suitable
for lossless image compression. On the other hand, a few deep
learning approaches devoted to lossless compression have been
developed [37], [38], [39], [40].
The objective of this paper is to design a LS based on
neural network architecture in the context of lossy-to-lossless
image compression. The main contributions of this paper are
described below:

• While adopting a conventional 2D non-separable lifting
scheme composed of three prediction steps followed by
an update step, we first propose to learn the prediction
filters using an FCNN. The same network is then used to
perform the update stage, where the update optimization
problem is reformulated as a prediction problem.

• While the previous FCNN-based lifting scheme relies
on a fixed network, another major contribution of this
work aims to build a dynamical FCNN model adapted to
the contents of the input image to be encoded. To this
end, two adaptive learning strategies taking into account
the input training image are proposed. The first one
resorts to an iterative algorithm that alternates between
the learning of the hidden layer weight parameters and
the computation of the linear weights of the output layer.
The second one aims to directly learn the weights of the
hidden layers while integrating the analytical expression
of the optimal linear weights in the loss function of the
FCNN model.

• Unlike the reported deep learning based coding methods
which have been devoted to either lossless or lossy
compression, the proposed FCNN based LS architectures
present the advantage of allowing lossy as well as lossless
compression.

For the sake of simplicity, the proposed FCNN-based pre-
diction and update steps have been designed based on the
analysis transform stage without taking into account the
quantization/coding module as well as the synthesis trans-
form. Compared to the recent CNN-based LS design method

in [36], this work presents the following contributions. First,
we propose here to perform the update using FCNNs, which
results in a fully nonlinear transform unlike [36] where the
update is simply replaced by a mean filter. Second, we resort
to a non separable LS which leads to a reduction of the
number of decomposition stages instead of a separable LS
based decomposition that is used in [36]. Third, our FCNN
weight parameters are trained and learned for each resolution
level, while the weights of the CNN models are kept fixed
across the different resolution levels of the LS-based wavelet
decomposition in [36]. Finally, our dynamical FCNN model is
adaptive and takes into account the input image to be encoded,
which leads to a better generalization performance. Note also
that a preliminary version of our work has been presented in
[41]. While the latter focuses on the alternating optimization
technique, we introduce here a second optimization approach.
A study of both optimization techniques is also conducted.
Finally, compared to [41], more extensive experiments have
been carried out in the context of lossy as well as lossless
compression.
The remainder of this paper is organized as follows. In
Section II, we provide the necessary background on lifting
schemes while emphasizing optimization issues for the in-
volved operators. The principle of the proposed FCNN-based
LS design method is presented in Section III. The adaptive
learning techniques of our dynamical FCNN model are then
described in Section IV. Finally, experimental results are
shown and discussed in Section V, and some conclusions are
drawn in Section VI.

II. BACKGROUND ON LS-BASED IMAGE COMPRESSION

The concept of LS has been widely used in image coding
and lies at the core of the JPEG2000 compression standard. A
conventional LS incorporates three fundamental steps, namely
a polyphase decomposition, a prediction, and an update. The
first step aims at building two disjoint subsets composed of
even and odd samples of the input 1D signal. Then, the
prediction step consists in predicting the samples of one subset
(for example the even one) from those of the other subset
(i.e. the odd one). The resulting prediction error represents
the detail signal. Finally, the odd samples are updated using
the computed detail coefficients, yielding the approximation
signal. By performing this 1D decomposition along the lines
and the columns of an input image, one approximation sub-
band and three detail ones are produced.
However, such separate 1D processing is not the most efficient
way to capture the two-dimensional characteristics of image
edges that are neither horizontal nor vertical. For this reason,
some research efforts have been devoted to the design of 2D
Non Separable Lifting Scheme (NSLS). In this respect, an effi-
cient architecture composed of three prediction steps followed
by an update has been proposed and widely investigated in the
literature [14], [42]. The principle of this architecture will be
described in what follows.

A. Principle of the considered lifting structure
Let x and xj respectively denote the input image and its

approximation subband at resolution level j (where x0 = x).



3

A typical 2D NSLS is shown in Fig. 1.

xj(m,n)
split

+

-

-

-

x3,j(m,n)

x2,j(m,n)

x1,j(m,n)

x0,j(m,n) xj+1(m,n)

x
(HL)
j+1 (m,n)

x
(LH)
j+1 (m,n)

x
(HH)
j+1 (m,n)

Uj

P
(LH)
j

P
(HH)
j

P
(HL)
j

Fig. 1. NSLS decomposition structure.

This decomposition involves different steps. The first one,
designated in Fig. 1 by the split box, aims at partitioning the
input signal xj(m,n) into four polyphase components given
by 

x0,j(m,n) = xj(2m, 2n),
x1,j(m,n) = xj(2m, 2n+ 1),
x2,j(m,n) = xj(2m+ 1, 2n),
x3,j(m,n) = xj(2m+ 1, 2n+ 1).

(1)

Then, three prediction filters, denoted in Fig. 1 by P
(HH)
j ,

P
(LH)
j and P

(HL)
j , are applied to generate three detail sub-

bands oriented diagonally x
(HH)
j+1 , vertically x

(LH)
j+1 and hor-

izontally x
(HL)
j+1 , respectively. Finally, an update filter Uj is

used to produce the approximation subband xj+1. Therefore,
the resulting wavelet coefficients are obtained as follows:

xj+1
(HH)(m,n) = x3,j(m,n)−

(
(P

(HH)
0,j )>x

(HH)
0,j (m,n)

+ (P
(HH)
1,j )>x

(HH)
1,j (m,n) + (P

(HH)
2,j )>x

(HH)
2,j (m,n)

)
,

(2)

xj+1
(LH)(m,n) = x2,j(m,n)−

(
(P

(LH)
0,j )>x

(LH)
0,j (m,n)

+ (P
(LH)
1,j )>x

(LH)
1,j (m,n) + (P

(LH)
2,j )>x

(HH)
j+1 (m,n)

)
,

(3)

x
(HL)
j+1 (m,n) =x1,j(m,n)−

(
(P

(HL)
0,j )>x

(HL)
0,j (m,n)

+ (P
(HL)
1,j )>x

(HH)
j+1 (m,n)

)
, (4)

xj+1(m,n) = x0,j(m,n) +
(
(U

(HL)
0,j )>x

(HL)
j+1 (m,n)

+ (U
(LH)
1,j )>x

(LH)
j+1 (m,n) + (U

(HH)
2,j )>x

(HH)
j+1 (m,n)

)
,

(5)

where for every i ∈ {0, 1, 2} and o ∈ {HL,LH,HH},
• P

(o)
i,j = (p

(o)
i,j (s, t))(s,t)∈P(o)

i,j
and U

(o)
i,j =

(u
(o)
i,j (s, t))(s,t)∈U(o)

i,j
are the prediction and update weight

vectors whose supports are respectively denoted by P(o)
i,j and

U (o)
i,j .
• x

(o)
i,j (m,n) = (xi,j(m + s, n + t))

(s,t)∈P(o)
i,j

is a reference

vector used to generate x(o)j+1(m,n).
• x

(HH)
j+1 (m,n) = (x

(HH)
j+1 (m + s, n + t))

(s,t)∈P(LH)
2,j

and

x
(HH)
j+1 (m,n) = (x

(HH)
j+1 (m + s, n + t))

(s,t)∈P(HL)
1,j

are

two reference vectors used to compute x
(LH)
j+1 (m,n) and

x
(HL)
j+1 (m,n), respectively.
• x

(o)
j+1(m,n) = (x

(o)
j+1(m+s, n+t))

(s,t)∈U(o)
i,j

is the reference
vector containing the set of detail samples used in the update
step.
Note that a multiresolution representation of the input image
is finally obtained by recursively repeating this decomposition
to the resulting approximation subband xj+1. For image
reconstruction, the synthesis stage of such NSLS can be
easily deduced by reverting the order of lifting operations.
Thus, it can be noticed that the key step in the design of
LS-based decomposition is the choice of the predictor and
update filters. While the JPEG2000 compression standard
employs filters with fixed weights [3], it appears interesting
to make these weights adaptable to the image contents and
to build more efficient optimized lifting schemes for image
coding. While the state-of-the-art prediction and update
optimization methods have been summarized in Section I, let
us now describe the most commonly used approaches.

B. Optimization of the prediction and update filters

Since the detail signal can be seen as a prediction error, the
prediction filters P

(o)
j are often optimized by minimizing the

variance of the detail coefficients x(o)j+1:

J (P(o)
j ) =

Mj∑
m=1

Nj∑
n=1

(
xi,j(m,n)− (P

(o)
j )>x̃

(o)
j (m,n)

)2
(6)

where Mj ×Nj represents the number of samples xi,j(m,n)
to be predicted, P

(o)
j is the prediction filter to be optimized,

and x̃
(o)
j is the reference vector gathering the samples used

to generate the detail coefficients x(o)j+1. For example, for the
diagonal detail subband x

(HH)
j+1 , according to Eq. (2), these

prediction and reference vectors read

P
(HH)
j = (P

(HH)
0,j ,P

(HH)
1,j ,P

(HH)
2,j )> (7)

x̃
(HH)
j (m,n) = (x

(HH)
0,j (m,n),x

(HH)
1,j (m,n),x

(HH)
2,j (m,n))>

(8)

By minimizing the criterion J , given by Eq. (6), it can be
noticed that the optimal predictor P

(o)
j can be found by solving

the well-known Yule-Walker equations:

E[x̃
(o)
j (m,n)x̃

(o)
j (m,n)>]P

(o)
j = E[xi,j(m,n)x̃

(o)
j (m,n)],

(9)
where E[·] denotes the mathematical expectation which is
empirically estimated by an average operation.



4

Once the diagonal, horizontal and vertical prediction filters
are obtained, the update filter remains to be set. However, its
optimization is more challenging and few works have been
developed for that purpose. As mentioned in Section I, a
simple and efficient method has been proposed in [14], [19],
which aims at minimizing the quadratic error between the
approximation signal and the decimated version of the output
of an ideal low-pass filter. This error is expressed as follows:

J̃ (Uj) =

Mj∑
m=1

Nj∑
n=1

(
xj+1(m,n)− yj+1(m,n)

)2
=

Mj∑
m=1

Nj∑
n=1

(
x0,j(m,n) + U>j x̃j+1(m,n)

− yj+1(m,n)
)2
, (10)

where
• Uj = (U

(HL)
0,j ,U

(LH)
1,j ,U

(HH)
2,j )> is the update vector to be

optimized,
• x̃j+1(m,n) = (x

(HL)
j+1 (m,n),x

(LH)
j+1 (m,n),x

(HH)
2,j (m,n))>

is the update reference vector composed of the detail signals,
• yj+1(m,n) = (h ∗ xj)(2m, 2n), and
• h(m,n) = 1

4 sinc(
mπ
2 ) sinc(nπ2 ) is the impulse response of

the 2D ideal rectangular low-pass filter.
By minimizing the criterion J̃ , given by Eq. (10), it can be
shown that the optimal update filter Uj satisfies the following
equation:

E[x̃j+1(m,n)x̃j+1(m,n)
>]Uj

= E[yj+1(m,n)x̃j+1(m,n)]− E[x0,j(m,n)x̃j+1(m,n)].
(11)

Therefore, Equations (9) and (11) show that the optimal
prediction and update filters are the solutions of a linear system
of equations.
In section III, we will present a novel approach for the
optimization of the prediction and update.

III. PROPOSED FCNN-BASED LS

A. Motivation

To go beyond the conventional linear models and achieve
a more accurate nonlinear approximation, we now propose
to perform the prediction and update steps by using a neural
network, and more specifically an FCNN model. The choice
of this NN architecture is motivated by the following reasons.
First, the FCNN is a simple and efficient NN for both intra-
and inter-prediction tasks [31], [43]. Moreover, it does not
require handling a large amount of data during the training
phase. Indeed, in our context, the training samples correspond
to a set of vectors containing the neighboring pixels used to
predict the different image pixels. Thus, even with a relatively
small size training set (for example including a few hundred
images), by performing the prediction for each pixel of the
image, the number of training samples becomes large enough
for learning.
Therefore, in the chosen NSLS analysis structure, the three
prediction lifting operators followed by the update one will

be replaced by FCNN blocks denoted by f
(o)
j with o ∈

{HH,LH,HL,LL}. The new FCNN-based NSLS analysis
structure is depicted in Fig. 2.

xj(m,n)
split

+

-

-

-

x3,j(m,n)

x2,j(m,n)

x1,j(m,n)

x0,j(m,n) xj+1(m,n)

x
(HL)
j+1 (m,n)

x
(LH)
j+1 (m,n)

x
(HH)
j+1 (m,n)

f
(LL)
j

f
(HH)
j

f
(LH)
j

f
(HL)
j

Fig. 2. FCNN-based NSLS analysis structure.

B. FCNN-based prediction stage

As the detail signal x(o)j+1 corresponds to a prediction error,
the first three prediction steps in the proposed FCNN-based
LS can be rewritten as follows:

∀ o ∈ {HH,LH,HL},
x
(o)
j+1(m,n) = xi,j(m,n)− x̂i,j(m,n)

= xi,j(m,n)− f (o)j (x̃
(o)
j (m,n))

(12)

where xi,j(m,n) (with i ∈ {1, 2, 3}) is the polyphase com-
ponent to be predicted and x̂i,j(m,n) = f

(o)
j (x̃

(o)
j (m,n))

is the predicted value. The latter corresponds to the output
of a standard FCNN architecture applied to the input vector
x̃
(o)
j (m,n) which represents the reference vector used in

the prediction step for producing the associated detail signal
x
(o)
j+1(m,n).

More precisely, as illustrated by Fig. 3, in order to find the
predicted value x̂i,j(m,n) from the input reference vector
x̃
(o)
j (m,n), H hidden layers are firstly used. The output values

of their neurons (or units) are computed by applying a linear
combination (with bias) followed by a nonlinear activation
function. The different parameters involved in the computation
of all the neuron values in these layers are denoted by Θ

(o)
j .

Finally, an output layer with a single neuron is performed
yielding the computation of x̂i,j(m,n) from the unit values
of the last hidden layer based on a linear combination. The pa-
rameters associated with this last operation will be designated
by w

(o)
j .

The set of weights
(
Θ

(o)
j ,w

(o)
j

)
is learned by performing

the forward and backward propagation passes, while minimiz-
ing a loss function. To this end, each FCNN-based prediction



5

x̂i,j(m, n)

w
(o)
jΘ

(o)
jx̃

(o)
j (m, n)

Output layerInput layer Hidden layers

Fig. 3. FCNN-based prediction stage.

stage is trained by minimizing the `2-norm of the prediction
error (i.e. the Mean Square Error (MSE)) given by

L(xi,j , x̂i,j) =
1

Mj ×Nj

Mj∑
m=1

Nj∑
n=1

(
xi,j(m,n)− x̂i,j(m,n)

)2
.

(13)
To optimize the above loss function, a Mini-Batch Gradient
Descent (MBGD) algorithm has been used [44]. Thus, by com-
puting the gradient of the loss function at each iteration (i.e.
for each mini-batch) and updating the model parameters from
one mini-batch to another within the whole training dataset,
and by repeating this process many times (i.e. many epochs)
until convergence of the algorithm, we will obtain the optimal
weights

(
Θ

(o)
j ,w

(o)
j

)
that allow us to compute x̂i,j(m,n).

Then, we deduce the detail wavelet coefficients x(o)j+1(m,n)
by using Eq. (12). For lossless compression purposes, it is
worth pointing out that, in Eq. (12), a rounding operator is
applied to the predicted value x̂i,j(m,n) (i.e. to the output of
the FCNN model f (o)j (x̃

(o)
j (m,n)) in order to generate integer

wavelet coefficients of the input test images.
Note also that in our FCNN-based LS design method, the
learning process is separately performed for each predic-
tion/update stage of the wavelet decomposition. For instance,
at each resolution level j, three separate FCNN models f (HH)

j ,
f
(LH)
j and f

(HL)
j are employed to generate the three detail

subbands oriented diagonally, vertically and horizontally, re-
spectively. The latter are then used to generate the approxima-
tion subband based on the FCNN model f (LL)j .
Example: FCNN-based diagonal prediction stage
To better illustrate the use of the previous described FCNN-
based prediction stage, we will consider the example of
the first prediction stage dedicated to the generation of the
diagonal detail coefficients x(HH)

j+1 (m,n). As seen in Fig. 2,
this stage aims at predicting the samples x3,j(m,n) from their
neighboring samples x0,j(m,n), x1,j(m,n) and x2,j(m,n).
The selected neighboring samples will form the reference vec-
tor x̃

(HH)
j (m,n) associated with the input layer of the FCNN

model (see Fig. 3). After training the FCNN model using
the MBGD algorithm, the optimal weights

(
Θ

(HH)
j ,w

(HH)
j

)
are obtained. These weights are then applied to the test
images to compute the predicted samples x̂3,j(m,n) given
the reference vectors x̃

(HH)
j (m,n). Finally, the difference

between the original pixels x3,j(m,n) and the predicted ones

x̂3,j(m,n) will correspond to the diagonal detail coefficients
x
(HH)
j+1 (m,n).

C. FCNN-based update stage

Unlike the generation of the detail wavelet coefficients that
is easily achieved by using the previous FCNN approach for
prediction, the computation of the approximation coefficients
requires more care. For this purpose, we propose to focus on
the optimization approach described in Section II-B. Indeed,
inspired from (10), we define the following error signal:

ej(m,n) = yj+1(m,n)− xj+1(m,n)

= yj+1(m,n)− x0,j(m,n)−U>j x̃j+1(m,n).
(14)

In the above equation, we propose to replace the linear term
depending on the update operator by a nonlinear one which
corresponds to the output of an FCNN. Thus, Eq. (14) can be
rewritten as

ẽj(m,n) = tj(m,n)− t̂j(m,n)
= tj(m,n)− f (LL)j (x̃j+1(m,n)) (15)

where tj(m,n) = yj+1(m,n)− x0,j(m,n).
Therefore, according to Eq. (15), the update optimiza-
tion problem is reformulated as a prediction problem that
consists in optimally predicting the target input signal
tj(m,n) from the reference signal x̃j+1(m,n). Similarly
to the previous FCNN-based prediction optimization tasks,
the FCNN-based update aims at finding the predicted value
t̂j(m,n) = f

(LL)
j (x̃j+1(m,n)) from the input reference

vector x̃j+1(m,n). The associated FCNN weight parameters(
Θ

(LL)
j ,w

(LL)
j

)
will be optimized by minimizing a loss

function similar to the previous one, namely L(tj , t̂j). Once
the network is trained, the resulting optimal weights are
used to compute its output t̂j(m,n) from the input vector
x̃j+1(m,n). The approximation coefficients resulting from the
FCNN-based update stage are deduced as

xj+1(m,n) = x0,j(m,n) + t̂j(m,n). (16)

Again, to generate integer approximation coefficients, for
lossless compression, a rounding operator is also applied to
t̂j(m,n) in Eq. (16) during the test phase.
To illustrate the proposed FCNN-based transform, Fig. 4(b)
shows the obtained wavelet subbands for a given image at the
first resolution level. Note that the FCNN-based prediction and
update steps are performed by using the spatial supports shown
in Fig. 7. Thus, similar to the wavelet subbands obtained with
the conventional LS (see Fig. 4(a)), the FCNN-based decom-
position results in subbands representing the approximation
coefficients as well as the detail ones oriented horizontally,
vertically and diagonally.
Once the FCNN models of the different prediction operations
as well as the update are obtained, the wavelet coefficients
are generated and then encoded using an entropy coder. For
image reconstruction purposes, and similar to classical LS,
the FCNN-based LS synthesis stage can be easily obtained by
reverting the order of the lifting operations, inverting the signs



6

(a) (b)

Fig. 4. Image subband representations using: (a) conventional LS (9/7 wavelet
transform), (b) FCNN-based NSLS.

(+ and −), and replacing the splitting step by a merging step.
Note that this synthesis stage is performed using the same
FCNN models as those obtained at the analysis stage. As in
the case of conventional LS, the proposed FCNN-based LS
guarantees the perfect reconstruction property when the integer
version of the wavelet coefficients is employed while including
a rounding operator applied to the output of the FCNN.

IV. DYNAMICAL FCNN-BASED LS CONSTRUCTION

A. Motivation

In the previous prediction and update design methods, the
FCNN model is trained by minimizing a loss function. Then,
the learned weights are kept fixed after training, and used
to generate the wavelet representation of any image in the
test set. However, in practice, the test dataset images may
have some characteristics or some specific contents that are
different from those of the training set. In this case, the
performance of the previous static FCNN-based models may
be sub-optimal. Therefore, it may appear interesting to design
a dynamical or adaptive FCNN model where some of the
parameters depend on the input image, while maintaining an
acceptable complexity.
To achieve this goal, let us recall the main operations per-
formed inside the classical FCNN model. The architecture
of the latter consists of two main blocks. The first one,
parameterized by Θ

(o)
j , allows to compute the values of the

inputs of the neurons in the hidden layers. The second block,
parameterized by w

(o)
j , produces the output of the FCNN

(i.e. predicted value) based on a linear combination of the
neuron output values at the last hidden layer. In order to
develop a dynamical FCNN model, we propose adjusting the
computation of the weight parameters in the second block by
taking into account the input image of the network. As a result,
the weights associated to the last layer of our new model will
depend on the input image xj,k, and so, they will be denoted
by w

(o)
j,k where k indicates the index of the image in the dataset

and j represents the resolution level. Thus, the new dynamical
FCNN-based model can be summarized by the block diagram
depicted in Fig. 5.
To make the computation of the output layer weights adaptive
to the input image, different strategies will now be explored.

Input layer Hidden layers Output layer

y
(o)
j,kΘ

(o)
jx̃

(o)
j,k(m,n) w

(o)
j,k x̂i,j,k(m,n)

Adaptive to the k-th image

Fig. 5. Proposed dynamical FCNN-based model.

B. Transfer learning approach

A straightforward strategy consists of a transfer learning
approach based on the use of a pre-trained model. More
precisely, by assuming that the traditional FCNN-based model
has been learned on the training dataset (as explained in
Section III), let us explain how to handle each input image
xj,k in the test set.
First, the vector Θ

(o)
j is extracted from the learned parameters

of the pre-trained FCNN model. The extracted weights are
then applied to each image xj,k to compute the vector y

(o)
j,k

associated to the last hidden layer. Finally, a fine-tuning is
performed to deduce the optimal weights of the output layer
w

(o)
j,k by minimizing the following criterion:

J (w(o)
j,k) =

Mj,k∑
m=1

Nj,k∑
n=1

(
xi,j,k(m,n)− x̂i,j,k(m,n)

)2
=

Mj,k∑
m=1

Nj,k∑
n=1

(
xi,j,k(m,n)− (w

(o)
j,k)
>y

(o)
j,k(m,n)

)2
(17)

where Mj,k and Nj,k are the width and the height of the image
xj,k, divided by 2.
As shown in Eq. (9), the optimal weights of each image xj,k
are given by

w
(o)
j,k =

(
E[y

(o)
j,k(m,n)y

(o)
j,k(m,n)

>]
)−1

× E[xi,j,k(m,n)y
(o)
j,k(m,n)]. (18)

Once the optimal weights w
(o)
j,k are obtained, the predicted

values x̂i,j,k(m,n) are computed as

x̂i,j,k(m,n) = (w
(o)
j,k)
>y

(o)
j,k(m,n). (19)

and the final detail coefficients are deduced from (12).
Note that, in a similar way, we compute t̂j,k(m,n) for each
image and deduce the corresponding approximation subband
from (16).

C. Adaptive learning techniques

While the main advantage of the previous approach
lies in its simplicity, a more sophisticated one consists
in implementing an adaptive learning process by taking
into account the input image of the training set. Thus, the
traditional training process for an FCNN model will be
modified to take into account that the weight parameters of
the output layer w

(o)
j,k depend on the input image. Therefore,

the objective of the new training process is to find the



7

vector of parameters Θ
(o)
j while adapting w

(o)
j,k to each input

image xj,k. In the following, we propose two techniques for
achieving this objective: an alternating approach and a direct
one.

Alternating optimization technique
In this technique, because of the dependence between the
parameters Θ

(o)
j and w

(o)
j,k , we propose an iterative algorithm

that alternates between the computation of w
(o)
j,k and the

update of Θ
(o)
j . More specifically, the learning process will

be achieved as follows. For each image xj,k, two main steps
are performed in an iterative way. Let us start from a given
initialization of Θ

(o)
j . At each iteration `, we will produce in

the first step the output of the last hidden layer y
(o)
j,k . Then,

the weight parameters of the output layer w
(o,`)
j,k will be

computed by minimizing the `2-norm of the prediction error
(see Eq. (18)). After that, in the second step, we update the
weights Θ

(o,`)
j while setting the weight values for the output

layer to those obtained at the first step. This leads to

Θ
(o,`)
j

= argmin
Θ

(o)
j

∑
k,m,n

(
xi,j,k(m,n)− (w

(o,`)
j,k )>y

(o,`)
j,k (m,n;Θ

(o)
j )
)2

(20)

The different steps of this alternating optimization technique
are summarized in Algorithm 1.
Algorithm 1: Alternating optimization
At each resolution level j and subband o, starting from a given
initialization of Θ

(o)
j , do

À Set Θ
(o,0)
j = Θ

(o)
j

Á for ` = 1, 2, . . . , `max

(a) For every image k in the training set, compute y
(o,`)
j,k

using the weights Θ
(o,`−1)
j and deduce the optimal

weights of the output layer w
(o,`)
j,k using Eq. (18).

(b) Update the parameters Θ
(o,`)
j according to (20).

Â Set Θ
(o)
j = Θ

(o,`max)
j

In practice, a mini-batch approach is implemented where
the batch size (i.e. number of training samples used to
compute the gradient and update the parameters of the model)
corresponds to the number of pixels to be predicted for each
input image xj,k.

Direct optimization technique
A potential drawback of the previous adaptive learning
strategy is computational complexity since it alternates
between the computation of w

(o)
j,k and the update of Θ

(o)
j . In

order to alleviate this drawback and avoid the iterative process
applied to each image of the training dataset, we resort to a
one-pass optimization technique that allows a direct update
of the weights Θ

(o)
j . This technique aims at finding the

vector of parameters Θ
(o)
j without explicitly computing the

weights w
(o)
j,k for each image, as performed in Step Á(a) of

the alternating optimization algorithm. For this purpose, we
propose to re-write the loss function of our dynamical FCNN

model to make it only depending on the vector Θ
(o)
j .

More precisely, the cost function used in the standard FCNN
model can be expressed as follows:

L̃(Θ(o)
j ) =

∑
k

Mj,k∑
m=1

Nj,k∑
n=1

(
xi,j,k(m,n)

−
(
w

(o)
j,k(Θ

(o)
j )
)>

y
(o)
j,k(m,n;Θ

(o)
j )
)2
. (21)

Since our main idea is to make the weights w
(o)
j,k adaptive to

the input image xj,k, we propose to integrate in the above
cost function the analytical expression of the optimal weights
given by Eq. (18). To this end, and in order to show the
dependence of the latter weights with respect to the parameter
to be optimized Θ

(o)
j , let us first rewrite the solution as

w
(o)
j,k(Θ

(o)
j ) =

(
Γj,k(Θ

(o)
j )
)−1

cj,k(Θ
(o)
j ) (22)

where

Γj,k(Θ
(o)
j ) =

Mj,k∑
m=1

Nj,k∑
n=1

y
(o)
j,k(m,n;Θ

(o)
j )y

(o)
j,k(m,n;Θ

(o)
j )>

(23)

cj,k(Θ
(o)
j ) =

Mj,k∑
m=1

Nj,k∑
n=1

xi,j,k(m,n)y
(o)
j,k(m,n;Θ

(o)
j ). (24)

By inserting (22) in (21), and after some calculations, the final
expression of the cost function is given by

L̃(Θ(o)
j ) =

∑
k

Mj,k∑
m=1

Nj,k∑
n=1

(
xi,j,k(m,n)

)2
−
(
cj,k(Θ

(o)
j )
)>(

Γj,k(Θ
(o)
j )
)−1

cj,k(Θ
(o)
j ). (25)

As the optimization algorithm requires the computation of the
gradient of the loss function with respect to the weights Θ

(o)
j ,

the last criterion can be again simplified as follows:

L̃(Θ(o)
j ) = −

∑
k

(
cj,k(Θ

(o)
j )
)>(

Γj,k(Θ
(o)
j )
)−1

cj,k(Θ
(o)
j ).

(26)

Therefore, one can see that the resulting loss function depends
explicitly on the vector of parameters Θ

(o)
j .

Once the cost function is defined, the weights Θ
(o)
j are

optimized by applying a mini-batch gradient descent
algorithm on the training data. It should be noted here that,
for the classical as well as the dynamical FCNN-based
prediction and update stages, we have used the entire image
xj,k as an input of the neural network.

Test phase: Validation of the adaptive FCN models
on the test images
For a given subband o, once the adaptive training process
is achieved and the optimal learned parameters Θ

(o)
j are

obtained, the dynamical FCNN models is applied to the test
images by following the test phase procedure described in
the transfer learning approach. For instance, for the different
pixels to be predicted xi,j,k(m,n) of each test image, the



8

vector of parameters Θ
(o)
j is first used to generate y

(o)
j,k(m,n)

(i.e. the neuron output values of the last hidden layer) from
the input reference vectors x̃

(o)
j,k(m,n). Then, the optimal

weights w
(o)
j,k of the output layer, adaptive to the input image,

are deduced based on Eq. (18). Finally, the predicted values
x̂i,j,k(m,n) are computed using Eq. (19). The difference
between the original pixels xi,j,k(m,n) and the predicted
ones x̂i,j,k(m,n) constitutes the wavelet coefficient set in
subband o.

D. Discussion

To conclude this section, we study the behavior of the
two proposed optimization techniques to build the dynamical
FCNN model. As stated in subsection IV-C, one advantage of
the direct optimization technique compared to the alternating
one is that it leads to a lower computational complexity.
Indeed, the training phase with the direct optimization tech-
nique is three times faster than that with the alternating
optimization technique. For example, for the CLIC dataset
described at the beginning of Section V, by using the spatial
supports of the prediction filters shown in Fig. 7, the training
phase of the first dynamical FCNN model, conducted on
an NVIDIA Tesla V100 32 Gb GPU, takes about 14 hours
(resp. 45 hours) with the direct (resp. alternating) optimization
technique. Note that, for the remaining subbands as well as
at the next resolution levels, this training time is significantly
reduced. Fig. 6 illustrates the variations of the loss function
with respect to the number of epochs for both optimization
techniques using random and FCNN initializations. Note here
that the FCNN initialization step corresponds to the case where
the weight parameters Θ

(o)
j , used in the first iteration of the

MBGD algorithm, are set to those obtained with the classical
FCNN model. For the alternating optimization technique, the
number of iterations used in each epoch was set to 1 (i.e.
`max = 1). From these plots, two main observations can be
made. First, for each optimization technique, it can be noticed
that the final MSE values obtained with both FCNN and
random initializations are close. This shows the robustness of
our algorithms with respect to the initialization step. Secondly,
it can be observed that both alternating and direct optimization
techniques converge to close MSE values. This observation
suggests that both optimization algorithms are expected to
yield similar compression performance. Note that these curves
are obtained with the validation images of the standard CLIC
dataset that will be described in Section V.

E. Transmission cost of the adaptive weights

While the proposed dynamical FCNN model has the advan-
tage to take into account the input image, it should be noted
that the adaptive weights w

(o)
j,k obtained at each resolution

level j and orientation o of each image need to be sent to
the decoder to perform the inverse transform. This will result
in a transmission overhead Ow (in bpp) given by

Ow =
32× n(H) × (4J)

M ×N
(27)

0 50 100 150 200 250 300

Epochs

34

36

38

40

42

44

46

M
S

E

Random initialization

FCNN initialization

0 50 100 150 200 250 300

Epochs

34

36

38

40

42

44

46

M
S

E

Random initialization

FCNN initialization

(a): Alternating optimization (b): Direct optimization

Fig. 6. Evolution of the loss function with respect to the number of epochs for
alternating and direct optimization techniques based on FCNN and random
initializations.

where n(H) represents the number of neurons in the last hidden
layer, J is the number of resolution levels and, M and N
are respectively the width and the height of the input image.
For example, for an image of size 600 × 600 decomposed
over J = 3 resolution levels, and using an FCNN model with
H = 4 hidden layers of dimensions 128 × 64 × 32 × 16,
the transmission cost of the weight coefficients is equal to
0.017 bpp. In our simulations, we have used a half-precision
format for the weights of the last layer, which further reduces
the transmission cost to 0.0085 bpp. We have checked that
using half-precision format of these adaptive weights has no
detrimental impact on the final compression results.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed FCNN-based LS
and compare it to state-of-the-art methods. In this respect,
after describing the experimental settings, we will compare
various lifting scheme-based wavelet representations in terms
of compression performance. Then, the merits of our approach
in the context of lossless as well as lossy compression will be
illustrated.

A. Experimental settings

Our simulations are performed on various image datasets.
More precisely, the CLIC image dataset1 has been chosen for
training. The latter, built in the context of a workshop related
to the Challenge on Learned Image Compression (CLIC 2018),
is composed of 585 images with different sizes. For the test
phase, three image datasets have been used. The first one
consists of 40 crop images, of size 512 × 512, taken from
different images of the test CLIC dataset. The second and
third ones are taken from the Tecnick sampling dataset2 [45],
[46]. Indeed, the second dataset is composed of 30 images
of size 600 × 600 whereas the third one contains 35 larger
images with size 1200 × 1200. Note that these two datasets
will be denoted by Tecnick-R1 and Tecnick-R2, respectively.
It is worth pointing out that our proposed methods have been
designed for grayscale images. Thus, the color CLIC and

1http://www.compression.cc/2018/challenge/
2https://testimages.org/



9

Tecnick-R2 images are converted to grayscale before applying
our methods as well as its competitors. Note that coding the
luminance component is generally more challenging than the
chrominance ones.
Moreover, the static as well as the dynamic FCNN archi-
tectures are implemented using H = 4 hidden layers with
128×64×32×16 neurons. In the training, the loss functions
are evaluated without considering the rounding operator (as
written in Eqs. (13), (20) and (21)). The Parametric Rectified
Linear Unit (PReLU) has been employed as an activation
function. ADAM algorithm is used with a learning rate equal
to 10−3 while applying a decay of 10−4, exponential decay
rates for the first and second moment estimates which are
respectively equal to 0.9 and 0.999, and ε = 10−7 to prevent
any division by zero. These implementations were carried out
by using Keras with TensorFlow backend on an NVIDIA
Tesla V100 32 Gb GPU. Finally, regarding the dynamical
FCNN architecture, and after showing the impact of the
initialization in Fig. 6, the alternating and direct optimization
techniques have employed the pre-trained FCNN model in the
initialization step. Note that the source code of our methods
is available on github3.

B. Comparison methods

Let us recall that lifting scheme-based wavelet transforms
are often designated by (L, L̃) where L and L̃ indicate the
number of vanishing moments of the analysis and synthesis
high pass filters, respectively [7], [19]. In our experiments,
we have considered the NSLS(4,2) transform. Note that the
supports of the different 2D prediction and update filters of
the retained NSLS are shown in Fig. 7.

(b)(a)

(c) (d)

x0,j(m,n)

x1,j(m,n)

x2,j(m,n)

x3,j(m,n)

x
(HH)
j+1 (m,n)

x
(HL)
j+1 (m,n)

x
(LH)
j+1 (m,n)

Fig. 7. Spatial supports of the prediction and update filters used to generate:
(a) the diagonal detail coefficients x

(HH)
j+1 , (b) the vertical detail coefficients

x
(LH)
j+1 , (c) the horizontal detail coefficients x(HH)

j+1 , and (d) the approximation
coefficients xj+1. Note that for every step, the pixels to be predicted and
updated are highlighted in black.

Once the spatial supports of the different prediction and update
filters are defined, the different proposed methods described in
Sections III and IV are tested. The latter will be denoted by

• FCNN-LS: It represents the first proposed FCNN-based
lifting scheme design method described in Section III.

3https://github.com/TassnimDardouri/FCNN LS

• D1-FCNN-LS: It corresponds to the first version of
the dynamical FCNN model based on the alternating
optimization technique described in Section IV-C.

• D2-FCNN-LS: It corresponds to the second version of the
dynamical FCNN model based on the direct optimization
technique described in Section IV-C. Note that for both
dynamical FCNN models, the overhead cost for trans-
mitting the adaptive weights to the decoder is taken into
account in our simulations.

• H-FCNN: It is a hybrid coding method which aims at
selecting for each test image the best model between the
classical and dynamical ones. In this case, an overhead
of only one bit per image, indicating the coding mode,
needs to be transmitted to the decoder to reconstruct the
image. Note that this extra bit per image is negligible.

Our proposed nonlinear transforms will be firstly compared to
the following conventional linear transforms:
• OPT-LS: This is the optimized linear transform

NSLS(4,2) where the prediction and update operators
are obtained by using the state-of-the-art optimization
methods described in Section II.

• JPEG2000: It represents the JPEG2000 compression stan-
dard which employs the 5/3 and 9/7 transforms for the
lossless and lossy compression modes, respectively.

Moreover, the proposed methods are also compared to recent
neural networks-based compression methods. The latter are
designated by
• Toderici [22]: In this method, Toderici et al. use an

architecture where the encoder and decoder are based on
a Recurrent Neural Network (RNN).

• Ballé 2017 [23]: This method, developed by Ballé et al.,
is an end-to-end optimized image compression scheme
based on nonlinear transform composed of three suc-
cessive stages of convolution linear filter and nonlinear
activation functions.

• Ballé 2018 [26]: It is based on a variational autoencoder
that incorporates a hyperprior to capture the spatial de-
pendencies of the latent representation.

• CNN-LS [36]: This method employs a neural networks-
based update-predict lifting structure where the update
step is a mean filter and the prediction one is performed
using a CNN.

These methods, as well as most of the previous works, are
only suitable for lossy compression. For this reason, the above
learning based compression methods will be only considered
for comparison in terms of Rate-Distortion (R-D) performance.
However, since the CNN-LS [36] is based on lifting scheme, it
can be slightly modified to be applicable in the context of loss-
less compression. In this respect, we have reversed the order
of the operations by performing a CNN-based prediction first,
then applying an update step to generate the approximation
coefficients from the previously computed detail signal.
Lossless and lossy compression implementation
The resulting wavelet-based representations (i.e. the classical
linear ones as well as the learned FCNN and CNN based
ones) are produced using three resolution levels and encoded
with the JPEG2000 codec while selecting the appropriate



10

compression mode. The latter is used while disabling the
wavelet transform module of JPEG2000 based on 5/3 and
9/7 transforms, for the lossless and lossy compression modes,
respectively.
For instance, in the case of lossless compression, the integer
wavelet coefficients of the test images are firstly produced
(using the rounding operator as described in Section III). Then,
the JPEG2000 encoding module is only used as an entropy
coder to generate the bitstream and evaluate the final bitrate.
Regarding the lossy compression mode, the non-integer
wavelet coefficients of the test images are firstly produced
using (12) and (16). Then, the JPEG2000 encoding module
is employed for quantization and entropy coding. In this
respect, for each given target bitrate, the wavelet subbands are
partionned into blocks (called codeblocks) of size 64×64 and
a rate-distortion optimization is performed by the encoder to
find the optimal quantization steps and the embedded bitstream
for each codeblock.

C. Performance metrics

The performance of the proposed methods has been eval-
uated in the context of lossless as well as lossy compression
modes using different metrics. In this respect, the compactness
of the different wavelet representations is firstly measured in
terms of energy of the detail coefficients. The latter allows us
to identify the best methods in terms of prediction accuracy
and sparsity of the wavelet representation. To this end, for
each wavelet representation, the energy of the detail wavelet
subbands x

(o)
j has been computed. Since x

(o)
j represents a

prediction error (as defined in Eq. (12)), this energy can be
seen as a MSE evaluated over the different prediction steps as
follows:

MSE =

J∑
j=1

∑
o∈{HL,LH,HH}

Mj∑
m=1

Nj∑
n=1

(x
(o)
j (m,n))2

4j ×Mj ×Nj
(28)

where x(o)j is the detail subband, of size Mj×Nj , at resolution
level j and orientation o.
In addition, the entropy of all the wavelet coefficients is also
employed as another measure of compression. It is defined as
follows:

H =

J∑
j=1

∑
o∈{HL,LH,HH}

1

4j
H(o)
j +

1

4J
H(LL)
J (29)

where H(o)
j is the entropy of the wavelet subband x

(o)
j at

resolution level j and orientation o.
While the lossless compression performance is simply eval-
uated in terms of bitrate, the lossy compression results are
generally reported in terms of Rate-Distortion (R-D). In order
to quantify this distortion, four metrics have been used. They
correspond to Peak Signal-to-Noise Ratio (PSNR), Structural
SIMilarity (SSIM), Multi-Scale Structural SIMilarity (MS-
SSIM), and Perceptual Image-Error Assessment through Pair-
wise Preference (PieAPP) metrics [47]. The latter was found
to be better-correlated with human opinion compared to the
existing image quality assessment methods [47]. Finally, to

further compare R-D curves in terms of bitrate saving and
quality gain, the Bjøntegaard metric [48] has also been used.

D. Results and discussion

Compactness of wavelet representations
The first round of our experiments has been focused on the
evaluation of the compactness of the wavelet representations
produced by the aforementioned wavelet-based methods. Ta-
bles I and II illustrate the average MSE and entropy values
computed over all the test images of both the CLIC and
Tecnick-R1 datasets. In terms of energy of the detail wavelet
subbands, it can be firstly observed that FCNN-based LS im-
proves the prediction accuracy with respect to the conventional
optimized LS. Further improvements are obtained by resorting
to the proposed dynamical FCNN architectures. Moreover, in
terms of entropy, the proposed FCNN-LS achieves an average
gain of about 0.1-0.15 bits per pixel (bpp) compared to the
conventional optimized LS. This gain reaches 0.2 bpp with the
dynamical FCNN versions. It is important to note here that the
two proposed alternating and direct optimization techniques
lead to a similar performance in terms of prediction accuracy
as well as entropy of the resulting wavelet coefficients. Their
MSE and entropy values are also equal to those obtained with
the hybrid approach. This shows that the dynamical FCNN-
LS outperforms the static FCNN-LS for all images of both
datasets. Finally, our FCNN-based methods also outperform
the recent state-of-the-art CNN-based lifting scheme architec-
ture in terms of prediction accuracy as well as entropy of the
resulting wavelet representation. This may be explained by the
fact that CNN-based LS employs a separable structure and is
trained by using the reconstruction error as a loss function,
which makes it more appropriate for lossy compression as we
will show later.
While Tables I and II provide the average gain between the
different methods, Figures 8 and 9 illustrate the entropy values
of the different images of CLIC and Tecnick-R1 datasets,
respectively. These plots show the maximum gain achieved
by the proposed methods compared to the conventional ones.
For instance, it can be seen that the proposed FCNN-LS leads
to a gain of about 0.5 bpp compared to JPEG2000. Moreover,
the adaptive FCNN model results in an additional entropy gain
that reaches 0.15 bpp.
Lossless compression performance
The second round of our experiments has been devoted to the
evaluation of the compression performance of the proposed
approaches. In addition to the aforementioned comparison
methods, we have also included the HEVC-based lossless
coding scheme (using the HEVC Test Model (HM) version
HM-16.2) [49], [50] as well as a recent learning based lossless
compression method [40]. The latter, designated by Residual
Coding (RC), consists in transforming the input image into a
lossy reconstruction version and a residual one. Thus, in the
context of lossless compression, Table III provides the average
bitrates obtained with the CLIC, Tecnick-R1 and Tecnick-
R2 image datasets. While the conventional optimized lifting
scheme shows similar performance to the JPEG2000 compres-
sion standard, an improvement is achieved by the proposed



11

FCNN-LS design method. The average gain becomes around
0.1-0.14 bpp by resorting to the dynamical FCNN models.
Moreover, as mentioned in the previous energy compaction
study, one can notice that the two proposed alternating and
direct optimization techniques yield similar performance in
terms of bitrates. Based on the results of these approaches, one
can still conclude that the dynamical FCNN-LS outperforms
the static FCNN-LS for all images of both datasets. Finally,
it can be again observed that the state-of-the-art CNN-based
method [36] has a lower performance in the context of lossless
compression whereas the residual based coding method [40]
results in similar performance compared to the proposed
dynamical FCNN based LS. While this recent method [40] is
devoted to lossless compression, our FCNN based LS presents
the advantage of being applicable to both lossless and lossy
compression.
Lossy compression performance: objective evaluation
Regarding the lossy compression mode, an objective evalu-
ation is firstly performed in terms of R-D results. Fig. 10
illustrates the average results for the three image datasets
using PieAPP, SSIM, MS-SSIM and PSNR metrics. According
to these plots, different observations can be made. First,
JPEG2000 often leads to better PSNR and MS-SSIM values
than the different deep learning based image compression
methods. However, the SSIM plots show that our proposed
static and dynamical FCNN-based methods as well as the
hybrid one lead to better results compared to JPEG2000
and the different neural networks-based compression methods,
especially at low bitrates. It is worth pointing out that, in
a recent study on the quality assessment of deep learning
based compressed images [51], it has been shown that simple
pixel-based metrics, such as PSNR, are much less accurate
to judge the visual quality of decoded images obtained with
the emerging deep learning based image compression methods.
Based on a careful visual inspection of the quality of the recon-
structed images at different bitrates, we have also observed that
the proposed FCNN-based approaches yield better subjective
results. For this reason, we proposed to quantify the R-D
results using a sophisticated perceptual metric (PieAPP) [47].
Note that lower PieAPP values indicate better visual quality.
Thus, the PieAPP plots show that neural networks-based
compression methods often outperform JPEG2000. Moreover,
the proposed FCNN-based approaches often lead to the best
compression performance. Fig. 11 illustrates the R-D curves
for some images of the CLIC and Tecnick-R2 datasets. We
further study the coding performance of the proposed methods
for test images with different resolutions and various textures.
Fig. 12 illustrates the gain of the hybrid FCNN-LS with respect
to the static version for each image of the CLIC and Tecnick-
R2 datasets. These plots demonstrate again the interest of the
proposed dynamic FCNN-based compression method.
In addition, Tables IV and V show the relative gains of the
proposed H-FCNN-LS method compared to CNN-LS [36] and
JPEG2000 methods, respectively. The results are provided for
low and middle bitrates corresponding respectively to the bi-
trates {0.07, 0.1, 0.15, 0.2} and {0.2, 0.25, 0.3, 0.4} bpp. Note
that a negative value in terms of bitrate saving (resp. PieAPP
difference) indicates a decrease of bitrate (resp. PieAPP) for

the same PieAPP (resp. bitrate). Thus, it can be observed
that our proposed method outperforms the reference methods
in terms of bitrate saving and quality of reconstruction. For
instance, the gain is much more significant at low bitrate where
it reaches 94% and 35% in terms of bitrate saving compared to
JPEG2000 and CNN-LS [36], respectively. It should be noted
here that the improvement achieved by the proposed FCNN-
LS compared to the recent CNN-LS is mainly due to the
main differences between these two approaches summarized
in Section I.
Lossy compression performance: subjective evaluation
The proposed dynamical FCNN model is compared to the
recent CNN-based LS method as well as the JPEG2000
compression standard in terms of visual reconstruction quality.
Figures 13-15 illustrate some reconstructed images of the
CLIC and Tecnick-R2 datasets at different bitrates. It can
be clearly noticed that the proposed dynamical FCNN-based
compression method leads to better perceptual quality yielding
reconstructed images with sharp edges.
Ablation study
The impact of some parameters on the coding performance of
the proposed FCNN-LS has been also studied. After setting the
number of resolution levels to three (i.e. J = 3), the influence
of the number of hidden layers H is first analyzed while con-
sidering four configurations of the FCNN models. The latter
corresponds to one hidden layer of size 64, two hidden layers
of size 128×16, four hidden layers of size 128×64×32×16
and six hidden layers of size 128× 64× 64× 64× 32× 16.
Note that the resulting number of parameters, corresponding
to these four configurations, is equal to 36876, 60492, 167244
and 268620, respectively. As expected, Fig. 16 shows that
increasing the number of layers generally improves the R-
D results. However, it can be noticed that using four or six
hidden layers yields similar R-D performance. For this reason,
we have chosen an FCNN with four hidden layers in our
experiments.
Moreover, we have also studied the impact of the number
of resolution levels J used to generate the FCNN-LS based
representation (with H = 4). With the retained four hidden
layers configuration, the FCNN-LS based decomposition re-
quires 55748×J parameters. Fig. 17 illustrates the R-D results
using different resolution levels. It can be seen that increasing
the number of levels improves the R-D results. In terms of
performance improvements, it appears enough to use three
resolution levels as we did in our experiments.
Complexity
Finally, we propose to compare our FCNN-LS and the recent
CNN-LS [36] in terms of number of parameters and execution
time. Indeed, using a multiresolution representation over three
resolution levels, the number of parameters involved in the
architecture of the FCNN-LS (resp. CNN-LS) is equal to
167244 (resp. 97489). This difference is mainly due to the fact
that the CNN-LS uses a single model for both the horizontal
and vertical decomposition of the image. This model is also
kept fixed across the different resolution levels. In contrast,
our FCNN-LS generates a model for each wavelet subband
which will result in 4× J FCNN models.
Regarding the execution time, using an Intel Xeon(R) pro-



12

cessor (4 GHz) and a Python implementation, the encod-
ing/decoding time of the FCNN-LS (resp. CNN-LS) is equal to
2.2/0.8 (resp. 1.1/0.7) seconds for an image of size 600×600.
Note that the encoding/decoding time of the FCNN-LS based
decomposition becomes 8.5/3.2 seconds for an image of size
1200×1200. This runtime is reduced to 0.3/0.08 seconds when
the code is executed on an NVIDIA Tesla V100 32Gb GPU.
All these results confirm the benefits of the proposed FCNN-
based models for adaptive lifting-based coding schemes.

VI. CONCLUSION AND PERSPECTIVES

New FCNN-based models for the design of adaptive
wavelet-based image coding methods are proposed in this
paper. While the first model aims to perform the prediction
and update lifting stages using a static FCNN architecture,
the second one is based on a dynamical architecture that
takes into account the characteristics of the input image. Two
adaptive learning approaches, based on alternating and direct
optimization techniques, have been developed and studied.
Experimental results have shown the excellent performance of
the proposed approaches in the context of lossless and lossy
compression. These results suggest that incorporating neural
networks in LS might lead to a third generation of wavelets
for compression purposes. In future work, an extension of
the proposed FCNN-based models to more sophisticated LS
(in particular vector lifting scheme [52]) could be envisaged,
to deal with color images. Moreover, end-to-end learning
approaches will be investigated. Indeed, while our FCNN
models are trained using a loss function depending only on
the wavelet coefficients (i.e. the analysis transform), resorting
to a rate-distortion loss function taking into account the coding
module as well as the synthesis transform could lead to
improved results.

TABLE I
ENERGY COMPACTION PERFORMANCE OF WAVELET REPRESENTATIONS OF

THE CLIC IMAGE DATASET.

Method MSE entropy
(in bpp)

JPEG2000 (5/3) 188.60 4.41
OPT-LS 149.38 4.36

CNN-LS [36] 292.38 4.89
FCNN-LS 133.17 4.23

D1-FCNN-LS 113.58 4.16
D2-FCNN-LS 113.52 4.16
H-FCNN-LS 113.52 4.16

TABLE II
ENERGY COMPACTION PERFORMANCE OF WAVELET REPRESENTATIONS OF

THE TECNICK-R1 IMAGE DATASET.

Method MSE entropy
(in bpp)

JPEG2000 (5/3) 100.24 3.90
OPT-LS 78.73 3.86

CNN-LS [36] 153.91 4.40
FCNN-LS 76.27 3.77

D1-FCNN-LS 62.03 3.72
D2-FCNN-LS 62.36 3.72
H-FCNN-LS 62.36 3.72

TABLE III
LOSSLESS COMPRESSION PERFORMANCE: AVERAGE BIRATES (IN BPP),

USING JPEG2000 ENTROPY ENCODER, FOR THE DIFFERENT IMAGE
DATASETS.

Method Bitrate Bitrate Bitrate
of CLIC of Tecnick-R1 of Tecnick-R2

JPEG2000 (5/3) 4.16 3.73 3.72
HEVC 4.09 3.63 4.03

OPT-LS 4.17 3.66 3.70
CNN-LS [36] 4.66 4.22 4.17

RC [40] 4.02 3.55 3.65
FCNN-LS 4.12 3.62 3.66

D1-FCNN-LS 4.05 3.57 3.63
D2-FCNN-LS 4.05 3.57 3.63
H-FCNN-LS 4.05 3.57 3.63

TABLE IV
BJØNTEGAARD METRIC: THE AVERAGE PIEAPP DIFFERENCES AND THE
BITRATE SAVING. THE GAIN OF “H-FCNN-LS” W.R.T “CNN-LS [36]”.

bitrate saving (in %) PieAPP difference
Datasets low middle low middle
CLIC -35.75 -21.67 -0.41 -0.22
Tecnick-R1 -34.79 -17.12 -0.37 -0.14
Tecnick-R2 -35.89 -17.73 -0.32 -0.11

TABLE V
BJØNTEGAARD METRIC: THE AVERAGE PIEAPP DIFFERENCES AND THE

BITRATE SAVING. THE GAIN OF “H-FCNN-LS” W.R.T “JPEG2000”.

bitrate saving (in %) PieAPP difference
Datasets low middle low middle
CLIC -94.26 -59.57 -1.36 -0.69
Tecnick-R1 -77.19 -45.14 -0.98 -0.42
Tecnick-R2 -78.30 -45.03 -0.86 -0.33

5 10 15 20 25 30 35 40

Image number

2.5

3

3.5

4

4.5

5

5.5

6

6.5

E
n

tr
o

p
y
 (

in
 b

p
p

)

JPEG2000

OPT-LS

CNN-LS [36]

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN

Fig. 8. Entropy values for the different images of the CLIC dataset.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Image number

2

2.5

3

3.5

4

4.5

5

5.5

6

E
n

tr
o

p
y
 (

in
 b

p
p

)

JPEG2000

OPT-LS

CNN-LS [36]

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN

Fig. 9. Entropy values for the different images of the Tecnick-R1 dataset.



13

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

1

1.5

2

2.5

3

3.5

4

P
ie

A
p
p

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

1

1.5

2

2.5

3

P
ie

A
p
p

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

1

1.5

2

2.5

3

P
ie

A
p
p

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.65

0.7

0.75

0.8

0.85

S
S

IM

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

S
S

IM

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

S
S

IM

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

M
S

-S
S

IM

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

M
S

-S
S

IM

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

M
S

-S
S

IM

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

22

24

26

28

30

32

34

P
S

N
R

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

24

26

28

30

32

34

36

38

P
S

N
R

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

24

26

28

30

32

34

36

38

P
S

N
R

JPEG2000

OPT-LS

FCNN-LS

D1-FCNN-LS

D2-FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

Fig. 10. Average R-D results of the CLIC (first column), Tecnick-R1 (second column) and Tecnick-R2 (third column) image datasets using PieAPP, SSIM,
MS-SSIM and PSNR metrics.



14

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

1.5

2

2.5

3

3.5

4

4.5

5

P
ie

A
p
p

JPEG2000

OPT-LS

FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

S
S

IM

JPEG2000

OPT-LS

FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
ie

A
p
p

JPEG2000

OPT-LS

FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

S
S

IM

JPEG2000

OPT-LS

FCNN-LS

H-FCNN-LS

CNN-LS [36]

Ballé 2017 [23]

Ballé 2018 [26]

Toderici [22]

Fig. 11. R-D results in terms of PieAPP and SSIM for image 39 (top) of
CLIC and image 19 (bottom) of Tecnick-R2.

0 10 20 30 40

Image number

-0.5

-0.4

-0.3

-0.2

-0.1

0

P
ie

A
p
p

0 10 20 30 40

Image number

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

S
S

IM

0 5 10 15 20 25 30 35

Image number

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

P
ie

A
p
p

0 5 10 15 20 25 30 35

Image number

0

0.005

0.01

0.015

0.02

0.025

0.03

S
S

IM

Fig. 12. The gain of the H-FCNN-LS with respect to the FCNN-LS in terms
of PieAPP and SSIM for each image of the CLIC (top) and Tecnick-R2
(bottom) datasets.

(a) (b): PSNR=22.13 dB
PieAPP=4.21

(c): PSNR=22.47 dB (d): PSNR=21.46 dB
PieAPP=2.81 PieAPP=2.26

Fig. 13. (a) Original test image taken from the CLIC dataset. Reconstructed
images at 0.25 bpp using: (b) JPEG2000, (c) CNN-LS [36], (d) D2-FCNN-
LS.

(a) (b): PSNR=27.73 dB
PieAPP=3.8

(c): PSNR=28.30 dB (d): PSNR=27.31 dB
PieAPP=3.1 PieAPP=1.86

Fig. 14. (a) Original test image taken from the CLIC dataset. Reconstructed
images at 0.1 bpp using: (b) JPEG2000, (c) CNN-LS [36], (d) D2-FCNN-LS.



15

(a) (b): PSNR=26.73 dB
PieAPP=3.16

(c): PSNR=26.86 dB (d): PSNR=25.83 dB
PieAPP=2.69 PieAPP=1.68

Fig. 15. (a) Original test image taken from the Tecnick-R2 dataset. Zoom on
the reconstructed images at 0.1 bpp using: (b) JPEG2000, (c) CNN-LS [36],
(d) D2-FCNN-LS.

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.6

0.8

1

1.2

1.4

1.6

P
ie

A
p
p

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.82

0.84

0.86

0.88

0.9

0.92

S
S

IM

Fig. 16. Effect of the number of hidden layers H on the R-D performance
of the FCNN-LS (with J = 3) for the Tecnick-R2 dataset.

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

1

1.5

2

2.5

3

P
ie

A
p
p

0.07 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bitrate (in bpp)

0.7

0.75

0.8

0.85

0.9

S
S

IM

Fig. 17. Effect of the number of resolution levels J on the R-D performance
of the FCNN-LS (with H = 4) for the Tecnick-R2 dataset.

REFERENCES

[1] T. Guo, H. S. Mousavi, T. H. Vu, and V. Monga, “Deep wavelet
prediction for image super-resolution,” in IEEE Conference on Computer

Vision and Pattern Recognition Workshops, Honolulu, HI, USA, July
2017, pp. 104–113.

[2] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding
using wavelet transform,” IEEE Transactions on Image Processing,
vol. 1, no. 2, pp. 205–220, April 1992.

[3] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Transactions on Image Processing, vol. 9, no. 7, pp.
1158–1170, July 2000.

[4] B. Pesquet-Popescu and V. Bottreau, “Three-dimensional lifting schemes
for motion compensated video compression,” in IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 3, Salt
Lake City, UT, May 2001, pp. 1793–1796.

[5] M. Kaaniche, A. Benazza-Benyahia, B. Pesquet-Popescu, and J.-C.
Pesquet, “Vector lifting schemes for stereo image coding,” IEEE Trans-
actions on Image Processing, vol. 18, no. 11, pp. 2463–2475, 2009.

[6] Y. Xing, M. Kaaniche, B. Pesquet-Popescu, and F. Dufaux, “Adaptive
non separable vector lifting scheme for digital holographic data com-
pression,” Applied Optics, vol. 54, no. 1, pp. A98–A109, January 2015.

[7] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Wavelet
transforms that map integers to integers,” Applied and Computational
Harmonic Analysis, vol. 5, no. 3, pp. 332–369, 1998.

[8] J.-H. Jacobsen, A. W. M. Smeulders, and E. Oyallon, “i-RevNet:
Deep invertible networks,” in International Conference on Learning
Representations, Vancouver, Canada, May 2018, pp. 1–11.

[9] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,” Applied and Computational Harmonic Analysis,
vol. 3, no. 2, pp. 186–200, April 1996.

[10] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting steps,” Journal of Fourier Analysis and Applications, vol. 4, no. 3,
pp. 247–269, 1998.

[11] F. J. Hampson and J.-C. Pesquet, “M -band nonlinear subband decom-
positions with perfect reconstruction,” IEEE Transactions on Image
Processing, vol. 7, pp. 1547–1560, November 1998.

[12] J. Solé and P. Salembier, “Generalized lifting prediction optimization
applied to lossless image compression,” IEEE Signal Processing Letters,
vol. 14, no. 10, pp. 695–698, October 2007.

[13] Y. Liu and K. N. Ngan, “Weighted adaptive lifting-based wavelet
transform for image coding,” IEEE Transactions on Image Processing,
vol. 17, no. 4, pp. 500–511, April 2008.

[14] M. Kaaniche, J.-C. Pesquet, A. Benazza-Benyahia, and B. Pesquet-
Popescu, “Two-dimensional non separable adaptive lifting scheme for
still and stereo image coding,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, Dallas, Texas, USA, March
2010.

[15] A. Gouze, M. Antonini, M. Barlaud, and B. Macq, “Design of signal-
adapted multidimensional lifting schemes for lossy coding,” IEEE Trans-
actions on Image Processing, vol. 13, no. 12, pp. 1589–1603, December
2004.

[16] M. Kaaniche, B. Pesquet-Popescu, A. Benazza-Benyahia, and J.-C.
Pesquet, “Adaptive lifting scheme with sparse criteria for image coding,”
EURASIP Journal on Advances in Signal Processing: Special Issue on
New Image and Video Representations Based on Sparsity, vol. 2012,
no. 1, pp. 1–22, January 2012.

[17] A. Benazza-Benyahia, J.-C. Pesquet, J. Hattay, and H. Masmoudi,
“Block-based adaptive vector lifting schemes for multichannel image
coding,” EURASIP International Journal of Image and Video Process-
ing, vol. 2007, no. 1, p. 10 pages, January 2007.

[18] B. Pesquet-Popescu, Two-stage adaptive filter bank. first filling date
1999/07/27, official filling number 99401919.8, European patent number
EP1119911, 1999.

[19] M. Kaaniche, A. Benazza-Benyahia, B. Pesquet-Popescu, and J.-C.
Pesquet, “Non separable lifting scheme with adaptive update step for
still and stereo image coding,” Elsevier Signal Processing: Special
issue on Advances in Multirate Filter Bank Structures and Multiscale
Representations, vol. 91, no. 12, pp. 2767–2782, January 2011.

[20] W. Ding, F. Wu, X. Wu, S. Li, and H. Li, “Adaptive directional lifting-
based wavelet transform for image coding,” IEEE Transactions on Image
Processing, vol. 10, no. 2, pp. 416–427, February 2007.

[21] E. Martinez-Enriquez, J. Cid-Sueiro, F. D. de Mari a, and A. Ortega,
“Directional transforms for video coding based on lifting on graphs,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 28, no. 4, pp. 933–946, November 2016.

[22] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor,
and M. Covell, “Full resolution image compression with recurrent neural
networks,” in Computer Vision and Pattern Recognition, Las Vegas,
USA, June 2016, pp. 5306–5314.



16

[23] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image
compression,” in International Conference on Learning Representations,
Toulon, France, April 2017, pp. 1–27.

[24] O. Rippel and L. Bourdev, “Real-time adaptive image compression,”
in International Conference on Machine Learning, Sydney, Australia,
August 2017, pp. 1–9.

[25] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learning convolutional
networks for content-weighted image compression,” in Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
June 2018, pp. 3214–3223.

[26] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational
image compression with a scale hyperprior,” in International Conference
on Learning Representations, Vancouver, Canada, May 2018, pp. 1–47.

[27] D. Minnen, J. Ballé, and G. Toderici, “Joint autoregressive and hierarchi-
cal priors for learned image compression,” in International Conference
on Neural Information Processing Systems, Montréal, Canada, Decem-
ber 2018, p. 10794–10803.

[28] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and V. G. Luc,
“Generative adversarial networks for extreme learned image compres-
sion,” in International Conference on Learning Representations, New
Orleans, Louisiana, USA, May 2019, pp. 1–31.

[29] M. A. Yilmaz and A. M. Tekalp, “Effect of architectures and training
methods on the performance of learned video frame prediction,” in In-
ternational Conference on Image Processing, Taipei, Taiwan, September
2019, pp. 1–5.

[30] I. Schiopu and A. Munteanu, “Macro-pixel prediction based on convolu-
tional neural networks for lossless compression of light field images,” in
International Conference on Image Processing, Athens, Greece, October
2018, pp. 445–449.

[31] J. Li, B. Li, J. Xu, R. Xiong, and W. Gao, “Fully connected network-
based intra prediction for image coding,” IEEE Transactions on Image
Processing, vol. 27, no. 7, pp. 3236–3247, July 2018.

[32] T. Dumas, A. Roumy, and C. Guillemot, “Context-adaptive neural
network-based prediction for image compression,” IEEE Transactions
on Image Processing, vol. 29, no. 1, pp. 679–693, August 2019.

[33] D. Liu, H. Ma, Z. Xiong, and F. Wu, “CNN-based DCT-like transform
for image compression,” in International Conference on Multimedia
Modeling, Bangkok, Thailand, February 2018, pp. 61–72.

[34] E. Ahanonu, M. Marcellin, and A. Bilgin, “Lossless image compression
using reversible integer wavelet transforms and convolutional neural
networks,” in Data Compression Conference, Snowbird, UT, USA,
March 2018, p. 1.

[35] P. Akyazi and T. Ebrahimi, “Learning-based image compression using
convolutional autoencoder and wavelet decomposition,” in Conference
on Computer Vision and Pattern Recognition Workshops, Long Beach,
CA, USA, June 2019, p. 5.

[36] H. Ma, D. Liu, R. Xiong, and F. Wu, “iWave: CNN-based wavelet-like
transform for image compression,” IEEE Transactions on Multimedia,
vol. 22, no. 7, pp. 1667–1679, July 2020.

[37] I. Schiopu and A. Munteanu, “Deep-learning based lossless image cod-
ing,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 30, no. 7, pp. 1829–1842, April 2019.

[38] ——, “A study of prediction methods based on machine learning
techniques for lossless image coding,” in International Conference on
Image Processing, Abu Dhabi, United Arab Emirates, October 2020, pp.
1–5.

[39] F. Mentzer, E. Agustsson, M. Tschannen, and R. Timofte, “Practical
full resolution learned lossless image compression,” in Conference on
Computer Vision and Pattern Recognition, Long Beach, California,
October 2019, pp. 1–14.

[40] F. Mentzer, L. V. Gool, and M. Tschannen, “Learning better lossless
compression using lossy compression,” in Conference on Computer
Vision and Pattern Recognition, Seattle, WA, USA, June 2020, pp. 6637–
6646.

[41] T. Dardouri, M. Kaaniche, A. Benazza-Benyahia, and J.-C. Pesquet,
“Optimized lifting scheme based on a dynamical fully connected net-
work for image coding,” in accepted in International Conference on
Image Processing, Abu Dhabi, United Arab Emirates, October 2020,
pp. 1–5.

[42] Y.-K. Sun, “A two-dimensional lifting scheme of integer wavelet trans-
form for lossless image compression,” in International Conference on
Image Processing, vol. 1, Singapore, October 2004, pp. 497–500.

[43] Y. Wang, X. Fan, C. Jia, D. Zhao, and W. Gao, “Neural network
based inter prediction for HEVC,” in IEEE International Conference
on Multimedia and Expo, San Diego, USA, July 2018, pp. 1–6.

[44] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representations, San
Siego, USA, May 2015, pp. 1–15.

[45] N. Asuni and A. Giachetti, “Test images: a large-scale archive for testing
visual devices and basic image processing algorithms,” in Eurographics
Italian Chapter Conference, Cagliari, Italy, September 2014, pp. 1–3.

[46] ——, “Test images: A large data archive for display and algorithm
testing,” Journal of Graphics Tools, vol. 17, no. 4, pp. 113–125, February
2015.

[47] E. Prashnani, H. Cai, Y. Mostofi, and P. Sen, “PieAPP: Perceptual image-
error assessment through pairwise preference,” in IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
June 2018, pp. 1–10.

[48] G. Bjøntegaard, “Calculation of average PSNR differences between RD
curves,” ITU SG16 VCEG-M33, Austin, TX, USA, Tech. Rep., 2001.

[49] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the high
efficiency video coding (hevc) standard,” vol. 22, p. 1649–1668, Dec
2012.

[50] F. Bossen, “Common hm test conditions and software reference configu-
rations,” JCT-VC document, JCTVC-G1100, San Jose, CA, USA, Tech.
Rep., 2012.

[51] G. Valenzise, A. Purica, V. Hulusic, and M. Cagnazzo, “Quality as-
sessment of deep-learning-based image compression,” in International
Workshop on Multimedia Signal Processing, Vancouver, Canada, August
2018, p. 1–6.

[52] O. Dhifallah, M. Kaaniche, and A. Benazza-Benyahia, “Efficient joint
multiscale decomposition for color stereo image coding,” in European
Signal and Image Processing Conference, Lisbon, Portugal, September
2014, pp. 1–5.


