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Combustion, flow and spray dynamics for aerospace propulsion

Large-Eddy Simulation of combustion instabilities in a variable-length
combustor
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This article presents a simulation of a model rocket combustor with continuously variable

acoustic properties thanks to a variable-length injector tube. Fully compressible Large-Eddy

Simulations are conducted using the AVBP code. An original flame stabilization mechanism

is uncovered where the recirculation of hot gases in the corner recirculation zone creates a

triple flame structure. An unstable operating point is then chosen to investigate the mech-

anism of the instability. The simulations are compared to experimental results in terms

of frequency and mode structure. Two-dimensional axi-symmetric computations are com-

pared to full 3D simulations in order to assess the validity of the axi-symmetry assumption

for the prediction of mean and unsteady features of this flow. Despite the inaccuracies in-

herent to the 2D description of a turbulent flow, for this configuration and the particular

operating point investigated, the axi-symmetric simulation qualitatively reproduces some

features of the instability.

r é s u m é

Cet article présente la simulation d’un injecteur expérimental de type moteur-fusée dont

les propriétés acoustiques peuvent varier continûment grâce à un tube d’injection de

longueur variable. Des simulations aux grandes échelles (LES) sont réalisées à l’aide du

code AVBP. Un mécanisme de stabilisation de la flamme original montrant le rôle im-

portant de la recirculation de gaz chauds en entrée de chambre est observé. Un point

de fonctionnement instable est ensuite choisi pour étudier le mécanisme de l’instabi-

lité. Les simulations numériques sont comparées aux mesures du banc d’essai en termes

de fréquence de l’instabilité et de structure du mode instable. Une simulation 2D axi-

symétrique est comparée à une simulation 3D avec pour objectif de tester l’hypothèse

de symétrie pour la prédiction de l’écoulement moyen et instationnaire de cette confi-

guration. Bien que la description en 2D d’un coulement turbulent soit une simplification

importante, pour cette configuration et dans le cas du point de fonctionnement choisi,
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le calcul axi-symétrique reproduit qualitativement certaines caractéristiques de l’instabi-

lité.

1. Introduction

Most high-performance propulsion systems exhibit high-amplitude pressure oscillations at some stage in their design

process. Unsteady heat release from combustion can couple with acoustic eigenmodes of the combustion chamber: this

phenomenon is called combustion instability [1–3]. These instabilities can lead to important stresses and heat fluxes on

the chamber walls and injectors, sometimes even resulting in the destruction of the engine [4,5]. Combustion instabilities

are very difficult to predict because of the wide range of physical phenomena involved (acoustics, turbulence, chemical

reactions, etc.) and they are often discovered at an advanced phase of the conception program.

A trial-and-error methodology with incremental modifications of the engine is usually necessary to recover stability but

the associated cost is prohibitive. Therefore, the prediction of combustion instabilities through numerical simulation is a

major issue. For gas turbine or aeronautic propellers, several studies have already been conducted [6–12] but for rocket

engines the number of unsteady simulations is smaller [13–18]. This could be explained by the extreme thermodynamic

conditions in rocket engines and the wide range of length scales: the characteristic length of the injector is a fraction of a

millimeter while the flame length can be several dozens of centimeters.

In terms of numerical framework, the best way to study combustion instabilities and all the phenomena involved would

be compressible Direct Numerical Simulation (DNS) with the full resolution of the Navier–Stokes equations. However, this

method is inapplicable because of the prohibitive number of mesh points necessary to resolve the complex geometry and

the high Reynolds-number flow of a rocket combustion chamber. Large-Eddy Simulation (LES) is a good candidate to study

these instabilities and it has been used successfully in the field of gas turbines [19–22] for example to capture one mode of

instability. What is more difficult to do is to predict transition from stable to unstable flow which is the ultimate objective

in many practical cases: it is unclear today whether LES can predict stability limits. Moreover, the cost of full 3D LES for

multiple operating points remains high. For geometries which are axi-symmetric, the question of performing only 2D axi-

symmetric LES to explore stability maps much more rapidly becomes interesting. The objective of this paper is to explore

this point with a model rocket engine by performing both 2D axi-symmetric and full 3D LES and comparing results to

experimental data. The CVRC setup operated at Purdue University [23] is axi-symmetric and exhibits very strong unstable

modes. This system works at high pressure and has a variable injector duct length which allows to explore stability limits

in a continuous manner. The experimental setup and operating point are described in Section 2. The numerical method is

then presented in Section 3 together with the computational domain and boundary conditions. Finally, the results of the

numerical simulations are presented in Section 4.

2. Experimental setup

2.1. Description

The burner studied in this paper was designed and operated at Purdue University (Indiana, USA) [23–25]. The system

is called Continuously Variable Resonance Chamber (CVRC) because the length of the oxidizer injector can be varied con-

tinuously, allowing for a detailed investigation of the coupling between the acoustics and combustion in the chamber. The

CVRC, presented in Fig. 1, is an axi-symmetric burner with a 15-inch long (38.1 cm) combustion chamber closed by a

choked nozzle. The reactants are fed into the chamber by a coaxial injector: oxidizer at the center and fuel at the periphery.

For a continuous tuning of the acoustic response of the CVRC, the oxidizer-post length (Lop) can vary from Lop = 3.5 in.

(8.89 cm) to Lop = 7.5 in. (19.05 cm), with respect to the inlet of the combustion chamber. The inlet of the oxidizer post

is also choked so that the acoustic boundary conditions are well defined. Six pressure transducers are installed along the

burner to measure high-frequency pressure fluctuations: the first one is located 3 in upstream of the injector face, and the

remaining sensors are placed in the combustion chamber at 0.5, 1.5, 2.5, 3.5 and 14.5 in downstream of the injector face.

These locations are respectively called P1 to P6 in the remainder of the paper.

2.2. Operating point

The fuel is pure gaseous methane injected at a rate of ṁ f = 0.0272 kg s−1 and temperature T f = 300 K. The oxidizer

is a mixture of 90% hydrogen peroxide and 10% water (per mass unit), which is fully decomposed: this is equivalent to

42% oxygen and 58% water. The oxidizer is injected in the chamber at Tox = 1030 K (both water and oxygen are in gaseous

phase) and ṁox = 0.3180 kg s−1 . Consequently, the global equivalence ratio is φ = 0.813.

Accounting for all the species in the GRI-Mech 3.0 mechanism (52 species), the adiabatic burnt-gases temperature at

equilibrium is T ad
b

= 2512 K. Since the total flow rate going through the choked nozzle is known (ṁ = ṁox + ṁfuel =
0.3452 kg s−1) assuming the chamber temperature, Tc , is equal to the adiabatic burnt-gases temperature at equilibrium

T ad
b
, the chamber pressure Pc can be determined using:
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Fig. 1. Experimental setup installed at Purdue University: the CVRC [25]. Figure courtesy of Pr. W. Anderson, Purdue University.

Table 1

Operating point.

Experiment LES

Heat losses Unknown 0

Combustion efficiency Unknown 1

Chamber static temperature Tc ≈ 1904 K 2512 K

Chamber static pressure Pc 1.34 MPa 1.54 MPa

ṁ =
cdAP0√

rT0

γ
1
2

(

2

γ + 1

)

γ +1
2(γ −1)

(1)

The stagnation pressure and temperature, respectively P0 and T0 are given by:

P0 = Pc

(

1+
γ − 1

2
M2

)

γ
γ −1

; T0 = Tc

(

1+
γ − 1

2
M2

)

(2)

where M is the Mach number of the burnt gases in the chamber, A the area of the choked nozzle, γ the ratio of heat capac-

ities, r the perfect gas constant and cd the discharge coefficient. Using cd = 1, Tc = T ad
b
, γ = 1.182 and r = 389.2 (computed

from the burnt-gases composition), one predicts a theoretical mean chamber pressure P th
c = 1.543 MPa. The mean pressure

actually measured in the experiment is P
xp
c = 1.34 MPa, which implies that heat losses or incomplete combustion lead to a

lower burnt-gases temperature: Tc < T ad
b
. Using Eq. (1) backwards in order to obtain Pc = P

xp
c , yields T

xp
c = 1904 K. Because

the simulations presented in Section 4 show that the combustion is complete (there is no unburnt fuel exiting the nozzle),

this reduced temperature is attributed to thermal losses at the combustor walls. This approximate evaluation corresponds

to a total heat loss at the walls equal to 25% of the available power (Table 3). Because the present work does not include

heat losses, in the LES, the burnt-gases temperature is T ad
b

and the chamber pressure is 1.54 MPa (Table 1). The resulting

increase in the speed of sound yields a small shift of the unstable mode frequency, as discussed in Section 4.3.

2.3. Stability

The experimental stability map (amplitude of pressure fluctuations versus Lop) is presented in Fig. 2 for a number of

runs where the oxidizer-post is either translated forward (Lop increases), backward or kept constant during the whole test.

Three different behaviors of the system can be distinguished:

(i) Stable regions for Lop < 3.75 in (9.5 cm) and Lop > 7.1 in (18 cm).

(ii) An unstable range for 3.75 < Lop < 6.3 in (9.5 to 16 cm).

(iii) A zone of hysteresis for 6.3 < Lop < 7.1 in (16 to 18 cm).

Because one the objectives of the present work is to compare 2D axi-symmetric and 3D computations to compute an

unstable operating point, the simulations are conducted for Lop = 4.75 in (∼ 12 cm). This value of Lop is also chosen to

minimize potential hysteresis effects in the instability as all tests show strong pressure fluctuations under these conditions.
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Fig. 2. Stability map of the CVRC combustor (experimental results [25]). Power spectral density of the pressure fluctuation at the frequency of the instability

measured by probe P2 (x = 3.81 cm). : forward translation of the oxidizer post, : backward translation and : fixed oxidizer-post length.

Figure courtesy of Pr. W. Anderson, Purdue University.

Table 2

Burnt-gases properties in thermodynamic conditions of the CVRC.

Eq. ratio z Scheme T ad
b

[K] YCH4
YO2

YCO2
YCO YH2O YN2

1 zst = 0.095 Gri-Mech 2661 < 10−4 2.49 × 10−2 2.22 × 10−1 2.45 × 10−2 7.12× 10−1 0

2-step 2781 < 10−4 2.25 × 10−2 1.99 × 10−1 3.94 × 10−2 7.39× 10−1 0

0.813 zxp = 0.079 Gri-Mech 2512 < 10−4 7.50 × 10−2 2.06 × 10−1 6.17 × 10−3 6.99× 10−1 0

2-step 2586 < 10−4 7.81 × 10−2 2.02 × 10−1 8.62 × 10−3 7.11× 10−1 0

3. Numerical method

3.1. Solver and models

The simulations are carried out with the AVBP code developed at CERFACS [6,7,26] that solves the compressible Navier–

Stokes equations on unstructured grids. The numerical scheme is the second-order in space and time Lax–Wendroff formula-

tion [27]. Turbulence is modeled using the classical Smagorinsky model [28]. The flame/turbulence interaction is accounted

for by the Dynamically Thickened Flame (DTF) model [29]. In this approach, the flame is artificially thickened to be resolved

on the LES mesh and subgrid reaction rate is recovered through an efficiency function [30].

The CH4/O2 kinetics are modeled using a reduced two-step mechanism (BFER [31]) that accounts for six species (CH4 ,

O2 , CO2 , CO, H2O and N2) and two reactions:

CH4 + 3
2
O2 −→ CO+ 2H2O

CO+ 1
2
O2 ←→ CO2 (3)

The first equation is irreversible while the second one is reversible and leads to an equilibrium between CO and CO2 in the

burnt gases. This scheme was developed for CH4/air flame and used here without modification.

A common shortcoming of two-step mechanisms is that burning rates are over-predicted for rich mixtures. Following

the procedure presented in [31], the present scheme uses a pre-exponential constant of the first reaction that is a function

of the local equivalence ratio so as to recover accurate burning rates in rich mixtures. This scheme was validated for the

thermodynamic conditions of the CVRC versus the Gri-Mech 3.0 mechanism. First, equilibrium states were compared to

ensure that no important species would be neglected. Table 2 presents the burnt-gases properties for both schemes at
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Fig. 3. Detailed view of the two meshes.

the stoichiometric mixture fraction zst = 0.095 as well as the average mixture fraction of the experimental operating point

zxp = 0.079 (calculated from the mass flow rates ṁ f and ṁox). Even though it is expected that the combustion regime is a

diffusion flame, the premixed laminar flame speeds at stoichiometry are compared: sL = 1.59 ms−1 for Gri-Mech 3.0 and

sL = 1.52 ms−1 for the present two-step scheme. It was also checked that auto-ignition times for Gri-Mech like for the

2-step scheme are much larger than the residence time in the chamber. This is consistent with the fact that under the

conditions of the CVRC experiment, combustion is not controlled by auto-ignition. Overall, these calculations validate the

approximations implied by the use of the reduced scheme.

3.2. Computational domain and boundary conditions

With the advent of massively parallel computers and codes that scale on thousands of processors, three-dimensional (3D)

simulations of turbulent combustion in complex geometries are now quite common in the research community. The AVBP

solver is particularly attune for such computations [21,32,33]. However, because the background idea of the use of numerical

simulations is to provide a quick and relatively inexpensive evaluation of the stability of a given configuration, we opted for

a different approach: it was decided to compare the accuracy of a 3D computation using significant resources and a ‘light’

axi-symmetric computation feasible on lost-cost computer clusters. This study is performed for a single unstable operating

point. The typical shortcoming of axi-symmetric computations is that turbulence being essentially a 3D phenomenon, the

2D assumption may yield incorrect vortex dynamics and the symmetry condition that imposes zero turbulent fluxes on the

axis is inadequate. The consequences of these approximations will be addressed in Section 4.

Axi-symmetric computations were performed on a relatively fine mesh using 7 × 105 cells while three-dimensional

computations use a mesh of 14 × 106 cells (Fig. 3). Because of the variety of length scales in the geometry (oxidizer tube

diameter is 4 cm whereas fuel injector thickness is 0.4 mm) unstructured meshes are required. Cell sizes were chosen to

ensure a correct resolution of the dynamic of the flow in the mixing zone and of the chemical and heat transfer of the flame

downstream the injector. The computational time for 1 ms of physical time (that is more than one cycle of the instability)

is 5 CPU hours on 32 processors of the SGI Altix ICE 8200 of CINES (Intel Quad-Core E5472) for the axi-symmetric mesh

and 2 CPU hours on 512 processors of the same machine for the 3D mesh (6.4 times more expensive). The computational

domain starts slightly downstream of the choked inlet of the oxidizer post and ends after the exit nozzle, which allows for

well defined acoustic boundary conditions. Fuel is injected through an annular slit corresponding to the experiment but the

tubes feeding the slit are not included. The boundary conditions are prescribed using the NSCBC technique [34]: mass flow

rate and temperature are imposed at the oxidizer (ṁox = 0.32 kg s−1 and Tox = 1030 K) and fuel (ṁ f = 0.027 kg s−1 and

T f = 300 K) inlets while nothing needs to be imposed at the supersonic outlet. Walls are treated as no-slip and adiabatic.

4. Results and discussion

This section is devoted to the comparison of the 2D axi-symmetric and 3D computations as well as the validation

against available experimental data. Mean flow fields are compared in Section 4.1 and the flame-stabilization and dynamics

are presented in Section 4.2. Finally Section 4.3 presents the analysis of the acoustic mode of this operating point in terms

of structure and mechanism of the instability.

4.1. Mean flow field

Once a permanent regime has been reached in both computations, the flow is averaged to compute the mean prop-

erties. For both simulations, the averaging time is 18 ms, which corresponds to more than 25 cycles of the instability

(cf. Section 4.3) and about 10 flow-through times of the chamber. The axial velocity field is presented in Fig. 4 where the

upper and lower parts show respectively the 2D and 3D simulation. The black iso-contour is the zero axial velocity, which

highlights the recirculation zones. The flow fields are quite different: first, the axi-symmetric simulation presents a longer

corner-recirculation zone but it also maintains a larger axial velocity close to the axis. These differences are not due to the
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Fig. 4. Average field of axial velocity in a longitudinal cut of the CVRC with u = 0 iso-line highlighting the recirculation zones. Top: 2D axi-symmetric,

bottom: 3D.

Fig. 5. Average temperature field with T = 2000 K iso-line to highlight the mean position of the turbulent flame brush. Top: 2D axi-symmetric, bottom: 3D.

Fig. 6. Instantaneous field of heat release rate (Wm−3). Black iso-line: stoichiometric mixture fraction (z = zst ); white iso-line: temperature T = 2000 K. Top:

2D axi-symmetric, bottom: 3D.

grid resolution as a significant effort was done to resolve the recirculation zones (Fig. 3). Even though the no-slip boundary

is clearly a rough condition that could be replaced by an adequate wall-law model, the 3D simulation with larger cells at

the wall does a better job in the second half of the chamber. The mean temperature field is plotted in Fig. 5 together with

a black iso-contour at T = 2000 K in order to represent the mean position of the turbulent flame brush. There is a striking

difference between the two simulations as the flame length is over-estimated by a factor of three in the 2D computation.

This feature is typical of axi-symmetric computations where the boundary condition on the axis imposes zero turbulent

fluctuations. The flapping movement of the flame on the axis is impossible resulting in a longer average flame. This elon-

gated flame could be the origin of the distorted axial velocity field. The 3D computation also has a lower mean temperature

in the corner recirculation zones that is attributed to a wider flapping motion of the flame (cf. Section 4.2).

4.2. Flame stabilization and dynamics

For the analysis of the stabilization of the flame in the combustion chamber, an instantaneous longitudinal cut of the

heat-release rate is presented in Fig. 6. Two iso-lines are superimposed: temperature T = 2000 K (in white) as a delimitation

between fresh and burnt gases and mixture fraction z = zst (in black) to highlight the regions where the fuel and oxidizer

are in stoichiometric proportions. In both simulations, the stoichiometric iso-line (black lines) starts at the fuel injector and

continues into the chamber while the temperature iso-line (white lines) is anchored at the junction between the chamber

and the injector. Both fields are distorted by turbulent structures but the convolution is more intense in the 2D case,

which is typical of such simulations where the dynamics of the vorticity is massively affected by the 2D assumption. As

inferred from the mean fields (Fig. 5), the lack of turbulent fluctuations on the axis of the 2D computation affects the

dynamics of the flame front resulting in a much longer flame. In the 2D case, the mixture fraction and temperature iso-

contours are much closer but the structure of the reaction layer is similar in both computations: most of the reaction rate

is sitting on the temperature iso-contour and extremely intense heat release rate occurs where the two contours cross.

This peculiar flame structure can be seen as a special triple flame [35], produced by a triple layer: fuel, oxidizer and burnt

gases (Fig. 7(b)). It shows that chemistry is not sufficiently fast in the CVRC to stabilize the flame at the lips where fuel

is injected. Stabilization is produced by the burnt gases recirculating at the dump plane. Fig. 7 illustrates the mechanism

suggested by these results: oxidizer and fuel start mixing at the lips where methane is injected; no combustion exists in

this zone. Downstream, this mixture is heated by the recirculating hot gases and the flame reaches a maximum intensity

when the high temperature line crosses the stoichiometric line, creating a structure very similar to the BGS (Burnt Gas
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Fig. 7. Schematic representation of the flame stabilization and structure for the CVRC experiment and a BGS triple flame.

Fig. 8. - - - 3D, —— axi-symmetric.

Supported) triple flame computed by Jiménez and Cuenot [36]. This observation also explains why a very high resolution is

required to predict flame stabilization here: the mixing zone between fuel and oxidizer must be properly meshed but the

whole chamber must also be well resolved to capture the recirculation zones which are controlling the stabilization.

4.3. Analysis of the unstable acoustic mode

The experimental investigation of the operating point Lop = 4.75 in shows that a strong unstable acoustic mode occurs

at a frequency F xp = 1400 Hz with an amplitude (power spectral density at the frequency of the instability measured at

probe P2) between 1200 and 1500 kPa2 Hz−1 . We will now test the ability of the numerical simulations to recover these

characteristics. The temporal evolution of the pressure signal at probe P2 is plotted in Fig. 8(a). The signal seems mildly

non-linear and high-frequency harmonics are visible on top of the main unstable mode. The frequency of the fundamental

is F 2D = 1572 Hz for the 2D axi-symmetric computation and F 3D = 1510 Hz for the 3D case. The discrepancy between the

simulations and the experiment (F xp ≈ 1400 Hz) is caused by the different values of the mean pressure, resulting in a slight

shift of the speed of sound. In terms of amplitude, the root mean square (rms) of the 3D signal is twice as much as that of

the 2D computation. This difference will be explained later in this section with the analysis of the acoustic energy equation.

Then the space-averaged heat release rate versus time is presented in Fig. 8(b). Unlike the pressure signal, the heat release

response is non-linear, which is to be expected for finite amplitude combustion instabilities. The harmonic content of the 2D

simulation is wider than that of the 3D case, which may be related to the overall higher small-scale wrinkling of the flame

surface shown in Fig. 6. The spatial structure of the unstable mode (Fig. 9) was obtained by performing a power spectral

density analysis of the whole field at the frequency of the instability. The longitudinal variation of the modulus and phase of

the pressure fluctuations are plotted in Figs. 9(a) and 9(b), respectively. It appears that in the combustion chamber (x > 0),

the instability has a half-wave mode shape, while in the oxidizer tube, the pressure fluctuations are mainly propagative.

Both simulations predict nearly identical structures, with a minor deviation in the modulus around the junction between

the injector and the chamber.
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Fig. 9. Structure of the acoustic field, ×: 3D, ◦: 2D axi-symmetric.

Table 3

Time-averaged value of the Rayleigh source term, R , of acoustic

energy and burner power output, Pb , for both simulations.

Simulation R [W] Pb [W]

2D axi 3.08 · 103 1.37 · 106
3D 8.23 · 103 1.34 · 106

Fig. 10. Time-averaged field of local Rayleigh term, r. Top: 2D axi-symmetric, bottom: 3D.

The mean acoustic energy Ea over a cycle of the instability is defined as:

Ea =
1

τ

t+τ
∫

t

∫

V

1

2

(

ρu′2 +
p′2

ρc2

)

dv dt (4)

where u′ , p′ , and ρ are respectively the acoustic velocity, the pressure fluctuation and the mean density, c is the speed

of sound and τ is the period of one unstable cycle. A conservation equation for the acoustic energy may then be derived

[20,37]:

∂Ea

∂t
= R − F (5)

where the Rayleigh source term, R , and the flux of acoustic energy through the boundaries, F , are defined by:

R =
1

τ

t+τ
∫

t

∫

V

γ − 1

γ p
p′ω̇′ dv dt and F =

1

τ

t+τ
∫

t

∫

Σ

p′u′.ndσ dt (6)

where V is the volume of the domain and Σ its boundary; ω̇′ is the fluctuation of heat release rate and n the outward

normal of Σ .

The source term of acoustic energy due to the unsteady combustion, R , is then compared to the mean power output,

Pb , of the burner. The values reported in Table 3 indicate that the Rayleigh term is much larger in the 3D case, as expected

from the amplitude of the pressure fluctuations presented in Fig. 8(a).

The value of the global Rayleigh term, R , is a measure of the overall contribution of the flame to the acoustic energy. In

order to assess the impact of the various portions of the flame, a local time-averaged Rayleigh term, r, is defined as:

r =
1

τ

t+τ
∫

t

γ − 1

γ p
p′ω̇′ dt (7)
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A longitudinal cut of r through the combustion chamber of the CVRC is presented in Fig. 10. Despite being similar in size

and shape, there are two major differences between the 2D and 3D simulations. First, in the 3D case, the Rayleigh term is

overwhelmingly positive while a significant zone of negative r is observed in the recirculation zone of the 2D computation.

Then, on the axis of the 2D computation, the lack of turbulent fluctuations drives r toward zero, which is not the case in 3D.

Finally, it seems that the longer tail of the flame seen in 2D (for x > 10 cm) does not contribute significantly to the acoustic

energy. This may explain why in term of prediction of the instability, the 2D computation yields results similar to the 3D

case.

5. Conclusion

An unstable operating point of a model rocket combustor with continuously variable acoustic properties is simulated

using both low-cost 2D axi-symmetric and detailed 3D calculations. The axi-symmetric simulation does not predict the

correct mean properties of the flow (velocity, the flame length, etc.) or the flapping movement of the flame due to the

boundary condition on the axis that imposes zero turbulent fluctuations. An unusual structure of the stabilization flame

is observed: the flame looks like a distorted triple flame with a strong rich premixed branch and a weak diffusion tail,

stabilized by the recirculation of burnt gases at the entrance of the combustion chamber. Nevertheless, both simulations

exhibit a combustion instability with virtually identical frequency and structure of the acoustic mode. The frequency of the

instability compares favorably with the experimental data. The contribution of the flame to acoustic energy is larger for the

3D geometry than for the 2D one, resulting in a larger amplitude of the pressure fluctuation (7.4 bars instead of 4.7 bars).

Despite the differences in the flow field, for this configuration and this operating point, the 2D axi-symmetric simulation

qualitatively reproduces some features of the instability.
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