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a b s t r a c t

In the field of applied superconductivity, there is a growing need to better understand heat transfers in

superconducting accelerator magnets. Depending on the engineering point of view looked at, either 0-D,

1-D, 2D or 3Dmodeling may be needed. Because of the size of these magnets, alone or coupled together, it

is yet, impossible to study this numerically for computational reasons alone without simplification in the

description of the geometry and the physics. The main idea of this study is to consider the interior of a

superconducting accelerator magnet as a porous medium and to apply methods used in the field of por-

ous media physics to obtain the equations that model heat transfers of a superconducting accelerator

magnet in different configurations (steady-state, beam losses, quench, etc.) with minimal compromises

to the physics and geometry. Since the interior of a superconducting magnet is made of coils, collars

and yoke filled with liquid helium, creating channels that interconnect the helium inside the magnet,

an upscaling method provides models that describe heat transfer at the magnet scale and are suitable

for numerical studies. This paper presents concisely the method and an example of application for super-

conducting accelerator magnet cooled by superfluid helium in the steady-state regime in considering the

thermal point of view.

1. Introduction

CERN, with the support from the European community and the

international high energy particle accelerator community, cur-

rently researches and develops next generation (very) high field

magnets based on Nb3Sn and/or HTS superconductors, necessary

for the LHC collimation upgrades and HL-LHC (High Luminosity

LHC). These magnets will be at the forefront of technology and

shall operate in a thermally very challenging environment where

they will be subject to high doses of high-energy particle-showers.

Analysis of steady state and transient heat flow and temperature

and pressure distributions in these new magnet designs are a nec-

essary ingredient for the success of these R&D efforts. These mag-

nets will function either in sub-cooled, pressurized superfluid

helium, in supercritical helium or in saturated normal helium.

Due to the size of these magnets, it is yet, impossible to study this

directly numerically for computational reasons alone with reason-

able computing time and without simplification in the description

of the geometry and the physics, especially if we consider several

coupled magnets. For that reason a mathematical description, suit-

able for numerical modeling, which preserves as much as possible

the geometrical information and the physics, is needed. In this

framework, the development, and later-on application, of a generic

method to numerically simulate the behavior of aforementioned

complex systems is required.

In thefield of porousmedia, it is also often impossible to simulate

directly all the physical phenomena that arise in the microstructure

and researchers currently use upscaling methods to model the

physical behavior of porous media in some average sense. These

techniques (method of volume averaging [1], homogenization [2]

for instance) consider the physical problem at the pore scale and ap-

plymathematical techniques to derive the equations thatmodel the

porous medium behavior at the porous media scale, for some Rep-

resentative Elementary Volume (REV). The main idea of this study

is to consider the interior of a superconducting magnet as a porous

medium and to apply the method of volume averaging in order to

get the equations thatmodel the behavior of themagnet at themag-

net scale; i.e. suitable for numerical simulation. Since the interior of

a superconducting accelerator magnet is made of coils, collars and

yoke filled with liquid helium creating channels that interconnect

the helium inside themagnet, themagnet can be seen as a particular
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porous medium. This method can be applied to any type of system

of equations which implies that this method can be used for mag-

nets cooled by pressurized superfluid helium, supercritical helium

or saturatednormal helium.Weapply here themethod to supercon-

ducting accelerator magnet cooled by superfluid helium on the

thermal point of view in the steady-state regime and we present

the first results in considering a simplified structure of these

magnets.

2. The method of volume averaging

2.1. Principle

The method of volume averaging (see [3] for a review and [1]

for a textbook introduction) is a technique that can be used to de-

rive continuum equations for multiphase systems. The equations

valid in a particular phase can be spatially smoothed in order to ob-

tain a set of equations valid everywhere. For example, if we con-

sider the process of transient heat transfer in porous media, of

interest are the temperature of the fluid and the temperature of

the solid at a given point in space and time in the porous medium

depending on boundary conditions, the initial condition and every

physical phenomenon that needs to be taken into account concern-

ing the problem as a whole. The direct analysis of this problem, in

terms of equations valid at the pore scale, is not possible in general

because of the complex structure of a porous medium and, even

with the computational power available nowadays, it is usually

impossible to simulate directly all the physical processes that arise

in a porous medium. Instead of considering the equations and

boundary conditions valid at the pore scale, we can use this infor-

mation to derive local volume averaged equations that are valid

everywhere, cheaper on a numerical point of view and giving all

the necessary information for engineering purpose.

2.2. Volume averaging

The upscaling problem is illustrated in Fig. 1 which represents a

porous medium made of a solid phase, r, filled with a fluid phase,

b. The pore-scale characteristic length is lb while the scale of the

entire domain is L. To obtain a macro-scale description every point

in space is associated with an averaging volume V of dimension r0
as illustrated in Fig. 1. We consider a quantity cb associated with

the b-phase and we define in a classical manner two spatial aver-

ages, the superficial average defined by:

hcbi ¼
1

V

Z

Vb

cbdV ð1Þ

and the intrinsic average defined by:

hcbbi ¼
1

Vb

Z

Vb

cbdV ð2Þ

where Vb represents the volume of the b-phase contained within

the averaging volume. These two averages are related by:

cb ¼ ebhcbi
b ð3Þ

where eb is the b-phase volume fraction (equal to the porosity or the

volume fraction of the void space if only one phase saturates the

pore space), i.e.:

eb ¼
Vb

V
ð4Þ

The assumption of scale separation is classically expressed by the

length-scale constraints:

lb � r0 � L ð5Þ

where r0 is the characteristic length-scale of V considered as a REV

of the porous medium under consideration. Several simplifications

made in the upscaling process use the length-scale constraints ex-

pressed by Eq. (5).

To apply the method of volume averaging, the physical problem

(system of equations, boundary conditions) must be written at the

pore scale and spatial smoothing is applied to this system of equa-

tions, i.e. we apply the spatial averaging represented by Eq. (1) to

the equations and the variables are decomposed as:

Cb ¼ Cb þ ~cb ð6Þ

where Cb is the intrinsic average variable and ~cb is the pore-scale spa-

tial deviation variable. Once this is done, we obtain the averaged

equations expressed in terms of the intrinsic averaged variables

and the spatial deviation variables. These averaged equations are

not in a closed form because they have terms involving pore-scale

deviations. In order to obtain fully macroscopic expressions of the

different balance equations, we need to find a relation between the

pore-scale deviations and the averaged variables. This requires

Fig. 1. Macroscopic region of a porous medium and averaging volume collar laminations.



writing governing equations for the pore-scale deviations. These

equations are simply the original pore-scale equations in which

deviations have been injected. Simplifications are made using the

previously obtained average equations. Then we obtain what is

called the closure problem [4–9] and, depending on the type of

closure problem, we can express the deviations as functions of the

averaged variables. Spatial periodicity is most often used for solving

the closure problem. In this case, the periodicity determines the size

of a Unit Cell (UC). The REV extends over several unit cells. The

closure problem permits computing effective parameters, like the

permeability inDarcy’s law. The last step is to come back to our prob-

lem by inserting the expression of the deviations in the averaged

equations to obtain the closed form of the macroscopic equations,

for instance, Darcy’s law for the pore-scale Stokes problem [9].

3. Method of volume averaging applied to heat transfer

problems for superconducting accelerator magnets

3.1. Superconducting magnets

In the particle accelerator context we are going to explore, the

coils are maintained mechanically by metallic collars as can be

seen in Fig. 2. These collars are laminations with a thickness of a

few millimetres and typically hundreds of micrometres spaced.

Around the collars is an iron yoke which serves to increase the

magnetic field strength and to limit stray fields. The yoke is also

made up of laminations with a thickness of a few millimetres

(not necessary the same as that of the collars) and typically of

the order of hundreds of micrometres spaced. The very low tem-

peratures needed to have the coil in its superconducting state are

achieved by using liquid helium as coolant. This helium fills all

the voids left by the mechanical structure, in particular the space

between collar and yoke laminations, and the space around the in-

ner annulus or beam tube.

3.2. Identification of the r and b phases

All the mechanical parts of the magnet constitute the r-phase.
For the purpose of this paper we limit ourselves to the coils, the

collars and the yoke and do not consider any finer construction de-

tails. Their relevance will have to be checked by direct numerical

simulations.

The liquid helium coolant filling all the voids constitutes the b-

phase. Depending on the type of cooling, the helium can be in dif-

ferent thermodynamic states: pressurized superfluid helium,

supercritical helium or saturated normal helium. The thermody-

namic state of the helium has a direct impact on the method of

volume averaging since the governing equations are different. In

general we will consider one thermodynamic state at a time.

Situations with change of thermodynamic state, induced by high

heat discharge when a magnet transits from the superconducting

to the normal conducting state, can in principle be dealt with once

the equations for the various thermodynamic states are known.

3.3. Unit cell identifications

The length scale constraint Eq. (5) plays a key role in the meth-

od of volume averaging and expresses the constraint of separation

of scale.

An accelerator magnet is typically several meters long, there-

fore L is in the order of 10 m.

The space between laminations (collars and yoke) is of the order

of hundreds of micrometers, therefore lb is of the order of 0.1 mm.

The laminations provide the spatial periodicity needed for solv-

ing the closure problems. The sum of the lamination thicknesses

and spacing defines the unit cell lengths. The REV must contain

roughly at least 10 unit cells to be representative of the porous

medium. If we consider laminations over a length of r0 = 0.1 m,

we have more than ten unit cells, whether it concerns the collars

or the yoke, and the length scale constraint Eq. (5) is valid in this

case. Note, however, that the laminations of the collars and of

the yoke do not have the same thickness and, therefore, they do

not have the same periodicity. The collars and the yoke thus give

rise to two different porous media which need to be coupled via,

for instance, for instance, specific boundary conditions. The coils

could in principle be treated as a third porous medium as well,

but this will not be discussed in this paper.

Concerning radial transfers, the diameter of superconducting

magnets we are interested in is of the order of 0.6 m. This is to

be compared to the lamination thickness, about a few millimeters.

As a consequence the macroscale fields (temperature, pressure) are

almost linear with respect to the size of the UC. Therefore the yoke

or the collar UC will be of a stratified type, i.e. periodic in the axial

direction due to periodicity of laminations (collars and yoke), and

invariant by translation in the radial direction since a radial trans-

lation does not changed the problem to be solved.

We see at once here the interest in using a porous-medium-

like-description. Let us consider the 10 m long magnet with con-

stant boundary conditions along the axis. The 10 m long pore-scale

3D problem may be transformed into a still 3D problem for a sec-

tion, the size of about a few laminations. With the same invariance

of the boundary conditions along the axis the porous medium scale

description is transformed into a 2D cross-section. The need for a

3D porous medium scale description will only arise when the

boundary conditions become heterogeneous along the axis, or,

for instance, heat source terms in the equations become heteroge-

neous. In that case, the 3D problem is still easier to solve numeri-

cally since the pore-scale characteristic length description is not

Collar laminations

coils

yoke laminations

Fig. 2. Simplified model of a typical superconducting accelerator magnet (quadrupole).



necessary and we consider macro-scale equations. The required

mesh-size will only depend on the characteristic length-scale of

the boundary conditions or source term heterogeneity.

4. Example of magnet cooled by superfluid helium

4.1. Volume averaging method applied to He II

The volume averaging method has been applied for the study of

heat transfer in porous media saturated with superfluid helium

where the two-fluid model has been considered for the micro-

scopic equations [10]. It concerns the transport of heat via the he-

lium through a porous medium only, excluding heat transfer

between the solid and the superfluid. The method was applied con-

sidering the equations in the Landau regime. For the steady state

the following set of macroscopic equations was obtained:

Continuity equation

r: qn Tb
� �

Vn þ qs Tb
� �

Vs

� �

¼ 0 ð7Þ

Momentum equation for the superfluid component

0 ¼
qs Tb
� �

s Tb
� �

s
rTb ÿ

qs Tb
� �

q Tb
� �

1

s
rPb þ qs Tb

� �

g ð8Þ

Momentum equation for the normal component

0 ¼ ÿ
qs Tb
� �

s Tb
� �

s
rTb ÿ 1ÿ

qs Tb
� �

q Tb
� �

s

0

@

1

ArPb ÿ
g Tb
� �

K
Vn

þ qn Tb
� �

g ð9Þ

Entropy equation

r: ebq Tb
� �

s Tb
� �

Vn

� �

¼ 0 ð10Þ

The structure of the macro-scale equations involves two ‘‘effec-

tive parameters’’, s and K, that depend only on the geometry of the

porous medium. K is the permeability, the same that appears in

Darcy’s law for a classical fluid and s represents a tortuosity

parameter.

4.2. Extension of the method to magnets

The above is not sufficient to accurately describe the heat flow

in a superconducting magnet because of the solid–liquid heat

transfer. The heat is mainly produced in the solid (coils, collars

and the yoke) and this heat is driven to a heat sink via the super-

fluid helium. This means that there is heat transfer from the solid

to the liquid. Therefore, we have, at the solid surface, the well-

known relation in superfluid helium:

q ¼ qsTvn ð11Þ

Then the heat flux flowing through the wall generates momen-

tum of vn at the surface and this changes the spatial smoothing ap-

plied to the normal component momentum equation. In [10], the

classical no-slip boundary condition for vn is considered. If vn is

not zero at the surface of the solid, this is likely to change the clo-

sure problem and this case is currently under development. Fur-

thermore, if we have a heat flux at the wall, we would have to

consider the Kapitza resistance which implies a discontinuity of

temperature at the solid surface. How much? This discontinuity

of temperature will be evaluated in the following by direct numer-

ical simulations. Another point that needs to be addressed for solv-

ing heat transfer problems in magnet is the extension of the

macroscopic model given by Eqs. (7)–(10) to the Gorter–Mellink

regime. For that simulations with a superfluid code, based on the

two-fluid model, are necessary, but this is beyond the scope of

the present paper.

4.3. Preliminary heat transfer macro-scale model including the solid

phase

As mentioned in the previous sections, there are still pending

problems to obtain a full transport model for superfluid helium

in a porous structure. In this section we adopt a simplified point

of view, i.e. the use of a superfluid heat diffusion model to derive

a simplified macro-scale model that takes into account transport

through/from the solid phase.

Starting with the heat diffusion model [11] we have:

qCp

@ðTÞ

@t
þ qCpv:rðTÞ ¼ r:

1

f ðTÞ
rT

� �1=3

þ q
vol ð12Þ

This equation takes into account the convective term so, to

solve this equation, we need to know the velocity and, for that,

we need to solve the two fluid model of He II. For the moment,

let us consider that the resulting Péclet number is small and we

only consider the diffusive part in the equation. Furthermore, sev-

eral authors used a trick to bring this equation to the following

classical heat diffusion equation [12–14]:

qCp
@ðTÞ

@t
¼ r:

1

f Tð Þ: rTj j2

 !1=3

rT

2

4

3

5þ q
vol ð13Þ

In which we have an effective thermal conductivity given by

keff ¼
1

f Tð Þ: rTj j2

 !1=3

:

At this point, we have returned to a classical (aside from the

specific keff nonlinearity) porous medium heat transfer problem.

It must be noticed that the following is valid for normal liquid he-

lium. The only thing that should be looked at more precisely is that

He I must be taken to be compressible in order to take into account

of the convection in the magnet. To see what can be done for He I,

the interested reader should refer to the results summarized below

and look at the work done by Quintard and Whitaker for slightly

compressible fluids where they consider a state equation for the

density [15,16].

We briefly summarize below the development of the macro-

scale model for the simplified heat transfer problem:

ðqcpÞb
@Tb

@t
¼ r � ðkbrTbÞ; in the b-phase ð14Þ

B:C:1 Tb ¼ Tr; at Abr ð15Þ

B:C:2 nbr � kbrTb ¼ nbr � krrTr þX; at Abr ð16Þ

ðqcpÞr
@Tb

@t
¼ r � ðkrrtrÞ þUr; in the r-phase ð17Þ

where X and Ur are respectively homogeneous and heterogeneous

source terms that we have to consider for the case of superconduc-

ting magnets. In this development, we do not consider an interfacial

heat transfer resistance (on the basis of direct numerical simulation

results presented later in this paper). We refer the reader to Gobbé

et al. (1998) [17] for the introduction of interfacial thermal barriers

in the framework of the volume averaging technique.

This problem has been examined by several authors and the

two cases of local equilibrium, i.e. hTbi
b ¼ hTri

r ¼ hTi and

non-equilibrium were considered. The former case leads to the

following one-equation model [18–20]:



hqiCp

@hTi

@t
¼ r � ðK� �rhTiÞ þ avhXibr þ erhrhUri

r ð18Þ

where aV is the specific area and Xbr is the area averaged value of

the heterogeneous thermal source. The heat capacity per unit vol-

ume is given by:

hqiCp ¼ eb qcp
ÿ �

b
þ er qcp

ÿ �

r
ð19Þ

The effective thermal diffusion tensor K⁄ is obtained explicitly

from the closure problem [3].

In many situations, the assumption of local thermal equilibrium

is not valid and non-equilibriummodels have been proposed in the

form of two-equation models. The interested reader is referred to

[3,18,20–23] for much more detail.

The choice between the two types of models depends on several

geometrical and physical characteristics. In this paper, we evaluate

the validity of the one-equation model by using direct numerical

simulations over simple domains involving a small number of unit

cells.

4.4. Direct numerical simulations (DNSs) to explore the validity of the

local equilibrium assumption

A numerical code has been implemented using the software

Comsol Multiphysics in a steady-state situation. A standard heat

diffusion equation like Eq. (17) is considered for the solid and for

the superfluid helium, using in this case the effective thermal con-

ductivity keff ¼
1

f ðTÞ:jrTj2

� �1=3

. The function taken for f(T) comes from

the fit done by Kashani et al. [13]. In order to study a heat transfer

problem as close as possible to the case of a superconducting accel-

erator magnet, we consider the geometry illustrated in Fig. 3: the

domain is made of two flat plates of thickness e with a 0.2 mm

space filled with superfluid helium. These two flat plates represent

either the collars or yoke lamination. At the top, we consider a

fixed temperature (Theatsink) in order to represent the heat sink.

Lines (a), (b) and (c) are to simplify the interpretation of Figs. 4

and 5. For the considered geometry, two types of simulations have

been carried out: the first simulation assumes that there is a vol-

ume heat source (Ur) in the solid. The second simulation assumes

that the heat source is a surface heat flux (X) applied at the bot-

tom, a flux originating from heat generated in the coil and in the

beam-pipe and flowing through the solid and helium towards the

heat sink, i.e. a cooling pipe.

For both simulations, we consider two types of boundary condi-

tions at the solid/He II surface: first we assume continuity of the

temperature and that the heat flux is expressed by Eq. (15) and

(16). The other boundary condition used is the Kapitza resistance,

expressed by q = hkDTs where hK is the Kapitza conductance and

DTs the temperature difference between the solid and the liquid

at the boundary [11]. The values of the different parameters used

in the simulations are summarized in Table 1. Typical values aris-

ing in heat transfer situations in superconducting magnets [24,25]

were taken for (X) and (Ur).

Fig. 4 presents the difference in temperature along lines (a) (in

the solid) and (b) (in the liquid) with and without Kapitza resis-

tance. In the liquid (along line (b)), the difference in temperature

with regards to the heat sink temperature is null so the Kapitza

resistance does not change the temperature. In the solid (along line

(a)), there is a difference in temperature of 0.6 mK which is to be

compared to the maximum temperature difference (Tmax–Theatsink)

between the solid and the heat sink and this corresponds to a dif-

ference of 9%.

Fig. 5 presents the difference in temperature along line (c) with

and without Kapitza resistance. It is observed that the Kapitza

(c)

(b)(a)

Fig. 3. Simple domain representative of heat transfer between two plates.

Fig. 4. Difference in temperature (T–Theatsink) along line (a) and (b) with and without

Kapitza resistance for the volume heat source (Ur).

Fig. 5. Difference in temperature (T–Theatsink) along the line (c) with and without

Kapitza resistance for the volume heat source (Ur).

Table 1

Values of the parameters used in the simulations.

Parameters Value Unit

ksolid (thermal conductivity of the solid) 109 W/m K

hk 5000 W/m2 K

X 1000 W/m2

Ur 2000 W/m3

e 1.5 � 10ÿ3 m



resistance induced a discontinuity of temperature at the solid/fluid

interface of 0.6 mK which corresponds also to a difference of 9%

with regards to the maximum temperature difference between

the solid and the heat sink.

The same type of simulations has been done for a surface heat

flux (X) and the same conclusion arises: the difference in temper-

ature with and without Kapitza resistance is 0.8% different com-

pared to the maximum temperature difference between the solid

and the heat sink.

It must be reminded here that we consider at this point a stea-

dy-state situation. At any given position in the porous medium the

temperatures of the solid and the liquid have become equal, and,

since the conductivity is much larger in He II, the contribution of

the solid to the heat flux is small. This conclusion might be wrong

in the early stages of a transient problem since heat is generated in

the solid phase and must be transferred to the liquid. This latter

process being mainly determined by the heat transfer resistance

through the solid phase, the characteristic time for such a process

Fig. 6. Two dimensional view of the field of temperature difference (T–Theatsink) and heat flux lines in a superconducting magnet with one heat exchanger.

Fig. 7. Two dimensional view of the field of temperature difference (T–Theatsink) and heat flux lines in a superconducting magnet with two heat exchangers.



may be estimated as l2(qCp)r/kr = 20 ls for aluminum collars and

1.5 ms for iron yoke which is to be compared to the characteristic

time of the source term variations.

Another point that is clarified with these simulations is the path

of theheat flux: in all simulations considereduntil now, theheat flux

has been calculated in the solid and in the liquid. Each time, more

than 99.5% of the heat flows through the liquid to the heat sink. This

means that, for the steady state situations under consideration, the

role of the solid is negligible compared to the role of the liquid.

Following the previous simulations, we can consider that the

difference in temperature between the liquid and the solid is the

same with less than 9% error, the Kapitza resistance does not really

influence heat transfer and the heat is brought to the heat exchan-

ger via the liquid. All of these results confirm that the one equation

model proposed by the literature for local thermal equilibrium (Eq.

(18)) is adequate for the problem under consideration.

4.5. Application to MQXC magnet design (magnet considered for LHC

upgrade)

If we look at a 2D view of a superconducting magnet, the ther-

mal diffusion tensor is reduced in our case to a diagonal matrix

with (eb � keff) for coefficient where eb is the porosity of the liquid.

Since the porosity of the aluminum collars is 6% and 2% for the

yoke, we have to consider, at least, two porous media. These two

porous media are connected, technologically speaking, through a

thin layer of He II. How should we couple the temperature and

fluxes between the two domains? Do we need to add explicitly a

thin fluid layer? We carried out simulations with and without this

liquid layer. The results of our simulations show that the model

can be simplified to a classical coupling between the two porous

domains by assuming continuity of macro-scale temperature and

fluxes.

Taking into account all the results presented before, we present

in Figs. 6 and 7 a two dimensional view of the temperature field in

a superconducting accelerator magnet. We consider a volume heat

source that takes place in the aluminum collars. For the case pre-

sented in Fig. 6, we have considered one heat exchanger and two

in Fig. 7. We can see in Fig. 6 that the flux lines have a big node be-

low the vacuum tube or beam tube (empty disk in the middle),

which is not the case with two heat exchangers. The other point

that is very important is the fact that we have one order of magni-

tude on the maximum temperature differences between the two

cases, which gives a first idea of the impact of considering one or

two heat exchangers.

5. Conclusion

In this paper, we introduce the method of volume averaging in

order to study heat transfer in superconducting accelerator mag-

nets. For this goal, we considered the interior of this type of magnet

as a porous medium and we identified the different length-scales

that allow us to apply the method in order to obtain the macro-

scale equations suitable for numerical simulations. As a starting

point, we apply this method to the heat diffusion model of super-

fluid helium in steady-state and use direct numerical simulations

to show that a one equation model for local thermal equilibrium

is valid under the case of consideration. This permits us to calculate

the temperature field in a section of a magnet and to see the influ-

ence of considering one or two heat exchangers. This model is a

preliminary model and it does not take into account the convection

in a magnet. To extend this model, we must apply the method of

volume averaging to superfluid helium with heat exchange

between the solid and the liquid and use direct numerical simula-

tions to see, for instance, if we can consider local equilibrium or

non-local equilibrium between the solid and the liquid, especially

for transient phenomenon.
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