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a b s t r a c t

In this paper, we report on the developed and used of finite element methods, have been developed and

used for sheet forming simulations since the 1970s, and have immensely contributed to ensure the suc-

cess of concurrent design in the manufacturing process of sheets metal. During the forming operation, the

Gurson–Tvergaard–Needleman (GTN) model was often employed to evaluate the ductile damage and

fracture phenomena. GTN represents one of the most widely used ductile damage model. In this inves-

tigation, many experimental tests and finite element model computation are performed to predict the

damage evolution in notched tensile specimen of sheet metal using the GTN model. The parameters in

the GTN model are calibrated using an Artificial Neural Networks system and the results of the tensile

test. In the experimental part, we used an optical measurement instruments in two phases: firstly during

the tensile test, a digital image correlation method is applied to determinate the full-field displacements

in the specimen surface. Secondly a profile projector is employed to evaluate the localization of deforma-

tion (formation of shear band) just before the specimen’s fracture. In the validation parts of this investi-

gation, the experimental results of hydroforming part and Erichsen test are compared with their

numerical finite element model taking into account the GTN model. A good correlation was observed

between the two approaches.

1. Introduction

Recently, virtual tools, such as numerical simulation using finite

element methods (FEMs), is a useful tool to optimize the sheet me-

tal forming process (hydro-forming, deep drawing, thermoforming,

etc.) and to reduce the cost of final products. For the engineering

community, an accurate estimation of the material parameters

for constitutive models is often indispensable. The numerical sim-

ulation, taking into account damage in constitutive behavior of

metallic materials, is necessary to develop a virtual model for var-

ious engineering problems involved in forming processes (necking,

macroscopic cracks, fracture, etc.).

In recent decades, the attention of many researchers has been

focused on understanding and modeling the basic mechanisms of

ductile failure in metal forming process, Mediavilla et al. [1] devel-

oped a model to describe the complete evolution, from the initia-

tion of damage to crack propagation during forming processes.

Among many authors, Brünig and Ricci [2] and Badreddine et al.

[3] proposed respectively an anisotropic and isotropic damage

model to predict the instability phenomena appear in the different

mechanical loading states during metal forming. Also the impor-

tance of the coupling between the damage and plasticity in numer-

ical simulation has proved by Guo et al. [4]. In same context, Lin

et al. [5] proposed an improvement in the Gurson model in order

to will allow investigating in future other mechanical structures

made up of ductile porous media. The pioneering work elaborated

by Kachanov in 1958 [6], started the subject that is now known as

Continuum Damage Mechanics (CDM).

From industrial point of view, the results obtained in this field

are now very helpful in the preliminary design stage, particularly

are widely used to avoid the failure during the forming process.

Accordingly, many authors proposed constitutive equations of duc-

tile damage. The most widely used approaches are based on the

Gurson type modeling of ductile damage [7]. Inter alia, Tvergaard

study the localization of deformation using Gurson model [8], the

influence of voids on shear band instability [9] and the analysis

of ductile failure by the voids evolution up to coalescence [10].

Experimental methods do not provide a complete stress analy-

sis solution without additional processing of the data and/or

assumptions about the structural system [11]. Also, it is obvious

that in metal forming process, the results of numerical simulation

depend strongly on the ability of the used constitutive equations to

describe the physical phenomena accurately but the parameters

values of the behavior law are also very important. For that, it is

recommended to use a good technique in the evaluation of mate-
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rial properties. Generally the parameter fits are processed by opti-

mization methods. Exceptionally, the inverse methods offer a pow-

erful tool for the identification of the parameters of the behavior

law and the material properties of metals. The Principle of inverse

identification method, that identifies a set of material parameters

in a constitutive model, describes the complicated stress–strain re-

sponses by minimizing the difference between the test results and

the results of the corresponding numerical simulation using an ad-

vanced optimization technique, but the inverse methods require

prohibitive computing time because they usually use finite ele-

ment computation coupled with an optimization procedure.

In order to resolve the problem of computing time in inverse

identification process, this investigation presents a new ANNGTN

Approach based on the Artificial Neural Network Method for the

identification of GTN model parameters. A Design of Experience

(DOE) method is used to select the suitable and the correct training

base.

The remainder of this paper is structured as follows: the first

paragraph will explain the principle of GTN ductile damage mainly

the origin and the physical aspect that describe the micro-growth

nucleation and mechanical effects of damage in ductile metals. The

GTN model is also presented as it is one of the most widely em-

ployed models to evaluate the ductile damage and fracture. The

second section gives an experimental investigation based on ten-

sile test with notched specimen to determinate the evolution of

the damage process in a ductile metal related to the macroscopic

loading evolution using Digital Image Correlation (DIC). As used

in this article, the term digital image correlation refers to the class

of non-contacting methods that acquire images of an object, store

images in digital form, and perform image analysis to extract full-

field shape and deformation measurements in the specimen sur-

face. After the fracture of specimen, the fracture topographies are

analyzed by SEM in order to prove the use of GTN model. The third

section is devoted to the identification programming procedure of

ANNGTNmodel and the benefits of this technique in terms of com-

puting time and reliable results. In the next section we will present

two case studies: the hydroforming (bulge test) and the Erichsen

test. Finally, conclusions are drawn in section five.

2. Modeling of ductile damage

2.1. Physical aspect of ductile damage

Damage phenomena of materials are generally investigated by

means of a damage model, which can represent variations of

material properties and processes of material failure due to dam-

age initiation, growth, propagation and crack nucleation within

the material [12]. Especially, in sheet metal forming industry, the

localized necking failure is recognized as important limitation on

metal formability. Two stages diffuse and local necking visually

precedes the failure of ductile metals. The last one represents the

result of damage evolution cited previously (Fig. 1). This phenom-

enon reacts inside material called ductile damage. During the anal-

ysis of the defect present in the forming process, especially the

progress of failure in materials, many physical observation and

micromechanical analysis have led to the development of a num-

ber of phenomenological or micro mechanical ductile fracture cri-

teria [13,14] for the prediction of the rupture of metals in service.

Principally, the damage criteria are classified into two approaches

(i) uncoupled: which neglect the effects of damage on the yield

surface of materials, and (ii) coupled: which incorporate damage

accumulation into the constitutive equations.

2.2. GTN ductile damage model

The main purpose of the present work is to use ductile damage

model to predict a sheet metal failure. In 1977, Gurson [15] devel-

oped a constitutive model to describe the micro-growth nucleation

Nomenclature

ANNGTN Artificial Neural Networks model of GTN
TMSE training mean square error
X term of input
Ft training function
P pressure
H dome height
E Young’s modulus (MPa)
m Poisson’s ratio
n hardening coefficient
K strength coefficient
e equivalent true strain
e0 pre-strain
/ plastic potential
f void volume fraction
fc critical volume fraction
ff void volume fraction

f⁄ modified void volume fraction
fc critical volume fraction
f �u ultimate value of f⁄

ep
kk

plastic hydrostatic strain
en mean effective plastic strain
Sn standard deviation
fn nucleation micro-void volume fraction
(q1, q2, q3) fitting parameters
VM volume of the material without defects
V volume of material
rm hydrostatic stress (MPa)
ry yield stress of matrix material (MPa)
r von Mises equivalent stress (MPa)
v ðx; yÞ u ðx; yÞ homogenous displacement field for one pattern
a1, b1, a2, b2 elongation terms
a3 and b3 shearing terms

Fig. 1. Physical aspect of ductile damage (a): A reconstructed 3D image acquired

during the loading process representing inner pore [13], (b): damage evolution in

the necked region.



mechanical effects of damage in ductile metals, extended in 1984

by Tvergaard and Needleman [16] who incorporated some addi-

tional parameters (q1, q2, q3). The yield function describing the

plastic constitutive model is represented as follows:

uðr;rm; f Þ ¼
r2

r2
y

þ 2f �q1 cosh
3

2
q2

rm

ry

� �

ÿ ð1þ q3ðf �Þ2Þ ¼ 0 ð1Þ

where q1, q2 and q3 are a fitting parameters used to calibrate the

model prediction of periodic arrays of spherical and cylindrical

voids, with q3 = (q1)
2, rm hydrostatic stress, ry yield stress of matrix

material, r: von Mises equivalent stress, and f is the void volume

fraction which is equal to 1ÿ VM

V
.

f⁄ represent the modified void volume fraction which is given as

follows:

f � ¼
f if f 6 fc

fc þ f �uÿfc
ffÿfc

ðf ÿ fcÞ if f > fc

(

ð2Þ

where f �u represent the ultimate value of f⁄ which is defined as the

stress carrying capacity vanishes, ff represent the void volume

fraction corresponding to failure, and fc is the critical volume frac-

tion where rapid coalescence occurs.

The instantaneous rate of growth of the void fraction depends

both on nucleation of new voids and growth of pre-existing voids,

it is given by:

df ¼ ð1ÿ f Þ � ðdepkkÞ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

growth

þ ad�ep
|ffl{zffl}

nucleation

ð3Þ

where epkk is the plastic hydrostatic strain and a defined as follows:

a ¼ fN

SN �
ffiffiffiffiffiffiffi

2p
p � exp ÿ1

2
� ep ÿ eN

SN

� �2
" #

ð4Þ

where Sn the standard deviation, en the mean effective plastic strain

of nucleation and fn the nucleation micro-void volume fraction

represent.

3. Experimental setup

3.1. Full-field optical measuring methods

DIC is an application based on the comparison of two images ac-

quired at different states during the deformation. Two subsets are

chosen respectively from the reference and the next image used for

the computation. The algorithm of correlation used to detect the

local displacements of the pixels by comparing the two subsets,

is as follows [17,18]. In practice, a single value is not a unique sig-

nature of a point, hence neighboring pixels are used. The matching

of images taken by only one camera, at different time, on an object

which becomes deformed is called temporal matching or tracking.

From its principle, the correlation technique can be used correctly

only with objects having a surface with a sufficiently random

texture.

Two CCD (Coupled Charge Device) cameras were used to take

digital images with a 1280 by 1024 pixels definition. These images

are then analyzed by the Aramis software developed by the GOM

Fig. 2. Relative location of sub-images of the deformed and the undeformed

patterns on the surface.

(a) (b)

Fig. 3. (a) Experimental setup of uni-axial tensile test, (b) extracted results from tensile test with notched specimen.



society. This one gives a measure of the displacements and strain

fields on the surface of an object within a precision of 200 lm/m.

Aramis software is able to match correspondent points of an image

by grey level analysis, if the surface of the specimen is covered

with a black and white mapping, which forms a random grey-level.

A gray level coded on 8 or 12 bits corresponds to each pixel of the

CCD sensor. A succession of several pixels lying on the same line

forms a grey level sequence. The fundamental principle lies in

the fact that the distribution does not vary during the deformation

of the object. It is therefore sufficient to follow this distribution of

grey levels during their displacement to obtain the displacements

of the corresponding point. This is made possible by the use of cor-

relation domains which are n � n pixel gathering zones.

In the DIC method, the relation between the deformed image

and the undeformed one is illustrated in Fig. 2. If we call G the cen-

tral point of the subset in the initial configuration and G� the cor-

responding central point of the subset in the deformed

configuration, the relationship between the coordinates of these

two points can be expressed by:

x� ¼ xþ uðx; yÞ
y� ¼ yþ vðx; yÞ ð5Þ

Fig. 4. (a) Tensile test of bi-entailed plate specimen, (b) evolution of the damage process in a ductile metal related to the macroscopic loading evolution.

Fig. 5. Scanning electron microscope (SEM) views of fracture in tensile specimen (spherical inclusion observations).



where u(x, y) and v(x, y) represent the homogenous displacement

field for one pattern (whole set of pixels).

In the Aramis software the displacement field is considered

homogeneous and bilinear with respect to x and y:

uðx; yÞ ¼ a1 � xþ a2 � yþ a3 � x � yþ a4

vðx; yÞ ¼ b1 � xþ b2 � yþ b3 � x � yþ b4

�

ð6Þ

where a4 and b4 represent the terms of the rigid body motion, a1, b1,

a2 and b2 represent the elongation terms and a3 and b3 are the

shearing terms.

3.2. Tensile test with notched specimen

In the first part of the present investigation, a large experimen-

tal work has been done. Several low rate tensile tests were carried

out in the laboratory on an INSTRON tensile test machine at a

strain rate of 10ÿ3 sÿ1. In general, these studies involve the use of

notched tensile specimens and measuring of the displacements

and loads. The necked or notched regions contain large gradients

of stress and strain which locates the voids growth. The notched

specimens [19] were obtained using a laser cutting process from

stainless steel sheet with uniform thickness 1 mm. A digital image

correlation method was used to measure the displacement fields at

the surface of the specimens during the tensile tests. Fig. 3 illus-

trates the specimen and the equipments used during this tensile

test, the part (b) of this figure show the extracted parameters for

use in the identification process (Dx, Dy). Fig. 4 shows the displace-

ment-load curve, sequences of the progress of strain distribution

until failure at different load levels obtained by Aramis software

were we observed the localization of deformation and explain

the voids growth up to fracture. The deformations in the specimen

surface remains homogeneous until that the material damage be-

comes significant during the tension process, and the stress is a

monotonic increasing function of the strain.

3.3. Fracture analysis by SEM observations

The onset of ductile fracture is initiated by void formation

around non-metallic inclusions and second-phase particles in me-

tal matrix that is subjected to plastic strain under the influence of

external loading. Observations of the damage nucleation mecha-

nisms have been carried out through in sit tensile tests at room

temperature. Fig. 5 shows an example of SEM photograph of the

fracture surface at failure. The spherical shape of the second phase

particles and non-metallic inclusions present in the stainless steel

can be considered the major reason for ductile fracture initiation.

Several damage models were developed to describe this complex

micro-mechanism in the sheet metal used in the forming process.

4. Artificial Neural Networks (ANN)

4.1. Artificial Neural Networks applications

The Artificial Neural Networks are today applied in many

mechanical manufacturing processes [20,21]. Their ability to give

effective results in the shortest time and their easy handling are

very noticeable. The main objectives of ANN are to develop meth-

ods and models from experiment and examples for solving prob-

lems, usually solved by the conventional techniques such as the

analytical algorithm and the programming software that enhance

the intellectual activity of humans, for example: prediction, image

recognition, classification, etc.

4.2. Artificial Neural Networks model of GTN damage (ANNGTN)

A better choice of neural network structure is a very important

factor to ensure accurate results, the choice of function and learn-

ing algorithm, the choice of number of hidden layers and the neu-

rons in each hidden layer are all factors that directly affect network

performance [22].

For ANNmodel, we will use multilayer neural networks (MLNN)

trained with a back-propagation supervised algorithm and com-

posed by three layers: the input layer, the hidden layer and the

output layer.

For a ANN composed by N neurons which the first layer noted

C1, C2. . ., CN and N weights noted w(1), w(2), . . . , w(N), the term of in-

put X can be determined by the following equation:

X ¼
X

wðiÞ � CðiÞ þ b ð7Þ

The back-propagation consists in optimization of the connec-

tion weights of the network which were initialized by going up

layer by layer, of the output layer towards the input layer in order

to minimize the TMSE (Training Mean Square Error) given by Eq.

(8) calculated in the output S, see Eq. (9). The Training Means

Square Error is given as:

TMSE ¼ 1

2

Xp

i¼p

Xk

k¼1

ðSik ÿ oikÞ2 ð8Þ

where Sik is the desired output (numerical value), Oik the output of

the current model, p represents the total number of layers and ‘‘k’’ is

the output nodes number.

S ¼ Ft � X ð9Þ

X represents the input of a second layer that will be the balanced

sum of the output values of the preceding neuron with a term of

bias b (Eq. (7)).

Ft ¼
1

1þ eÿX
ð10Þ

The back-propagation algorithm used to adapt the neural net-

work by comparing the result calculated on the basis of the inputs

provided, and the response expected output. Thus, the network

will change until it finds the right outputs [21,23].

The back propagation algorithm consists the following nine

steps:

� Step 1: Choice of the training rate l and the moment coefficient

a
l: Training rate, it is a constant ranging between 0 and 1

which fixes the training speed of the network.

a: Moment coefficient, generally takes a value ranging

between 0.1 and 1; it makes it possible to accelerate the con-

vergence of the algorithm.

� Step 2: Randomly initialization of the weights w(i).

� Step 3: Choice of the inputs sample and propagation of the cal-

culation through the network.

� Step 4: Calculation of the outputs for all the neurons leaving the

inputs layer towards the outputs layer.

� Step 5: Measure TMSE by difference between real output and

desired output.

� Step 6: Algorithm stop: if calculated TMSE is lower than a

threshold value of beforehand definite convergence, or if the

iteration time is high.

� Step 7: Calculation of the contribution of one neuron to the error

starting from the output and determination of the weight mod-

ification sign.

� Step 8: Correction of the neurons weights in order to decrease

the error.



� Step 9: Repetition of calculation from step 3.

5. Identification of GTN parameters

5.1. Numerical modeling of notched tensile test

The proposed procedure of the damage law parameters require

to develop a finite element model for the notched tensile test.

Fig. 6a illustrates the geometric model of specimen developed

according to the dimensions mentioned in mm [19]. Fig. 6b shows

the meshed specimen with 3D hexahedral elements and the

boundary conditions (BCs) of this model. This numerical simula-

tion, takes into account the ductile damage of sheet metal by using

GTN model.

5.2. Design of Experiment (DOE) methodology for ANNGTN

Classically, to develop a reliable ANN application, it is recom-

mended to have a good training data selection. The design of

experimental (DOE) methodology used in many research works.

Particularly, Ledoux et al. [24] used this technique in the optimiza-

tion of parameters forming process. In this investigation, the de-

sign of experimental method allows the study of sensibility of

the numerical response according to GTN parameter’s variation.

In this identification process of ductile damage parameters, we

use a factorial design in order to decrease the number of numerical

simulations. For each variable, two levels are used, the low and the

high parameter value to represent the limits of variations (Table 1).

The material parameter’s constitutive of GTNmodel are {ff, f0, fN, eN,
SN}.

5.3. ANNGTN identification strategy and results

In the work published by Abbassi et al. [25,26], an inverse iden-

tificationmethod was developed for the determination of the hard-

ening low parameter’s using bulge test. In this identification

process, first a coarse research is carried out by the Monte Carlo

Algorithm which was refined in second step by Levenberg–Marqu-

ardt Algorithm. The extracted results were used in this identifica-

tion procedure of the damage parameters.

For the reason of the diversity of the method proposed in liter-

ature for identification of the GTN model parameters, Benseddiq

and Imad [28] develop a global analysis of the data which gives

numerous values of GTN parameters from the literature, a large

variability of this parameter for a considered material was ob-

served. According to this analysis [28] we can subdivide the

parameters in two principal’s families:

(i) Constitutive parameters (q1, q2, and q3). The constitutive

parameter q1 varies from 1.1 to 1.5 for manymaterials. How-

ever, this parameter is often fixed q1 to 1.5 and q2 to 1.

(ii) Material parameters. This family also can be classified in two

parts: the first part cover the initial material f0, and nucle-

ation parameters fn, Sn and en, the value en = 0.3 and

Sn = 0.1 have been used in several studies. The second part

describes the critical and final failure parameters (fc, and

ff). Tvergaard and Needleman [27] recommended that the

value of fc can be taken as 0.15. The final failure void volume

fraction ff is considered a parameter that may be experimen-

tally determined [28]. Originally, Tvergaard and Needleman

[27] proposed a value ff = 0.25.

Our Artificial Neural Networks model is developed under Mat-

Lab software. Firstly, the identification procedure of GTN ductile

damage parameters started by the training of ANN using the re-

sults (Dx, Dy) of many simulation of notched tensile test carried

out under ABAQUS software. The different combinations of the in-

put parameters of ductile damage model are based on the experi-

mental design presented in the previous section. Secondly, in the

generalization step, we introduced the experimental data obtained
Fig. 6. (a) Geometry and dimensions (mm) for the notched tensile test, (b)

numerical model of tensile test with notched specimen.

Table 1

ANNGTN training base developed using DOE methodology.

Experiment

number

OUTPUT data INPUT data

Factor: (parameter’s of GTN model)

ff fc en Sn fn

1 0.118 0.11 0.66 0.11 0.044 The point of the X and Y

displacements curve of

the specimen middle

point (results of

numerical simulation

using Abaqus software)

2 0.118 0.11 0.66 0.11 0.036

3 0.118 0.11 0.66 0.09 0.044

4 0.118 0.11 0.66 0.09 0.036

5 0.118 0.11 0.54 0.11 0.044

6 0.118 0.11 0.54 0.11 0.036

7 0.118 0.11 0.54 0.09 0.044

8 0.118 0.11 0.54 0.09 0.036

9 0.118 0.09 0.66 0.11 0.044

10 0.118 0.09 0.66 0.11 0.036

11 0.118 0.09 0.66 0.09 0.044

12 0.132 0.11 0.66 0.11 0.044

13 0.132 0.11 0.66 0.11 0.036

14 0.132 0.11 0.66 0.09 0.044

15 0.132 0.11 0.66 0.09 0.036

16 0.132 0.11 0.54 0.11 0.044

17 0.132 0.11 0.54 0.11 0.036

18 0.132 0.11 0.54 0.09 0.044

19 0.132 0.11 0.54 0.09 0.036

20 0.132 0.09 0.66 0.11 0.044

21 0.132 0.09 0.66 0.11 0.036

22 0.132 0.09 0.66 0.09 0.044



by using the digital image correlation in the notched tensile test in

order to identify the damage low parameters. Fig. 7 summarizes

the identification procedure and the ANN model structure. In the

input layer’s, there are two neurons that represent the elongation

of the specimen in the two directions (Dx, Dy). In the hidden layer,

we found 10 neurons. Finally in the output layer it has five neurons

and each one represent the GTN parameters.

It is recommended to choose an optimal structure of ANN in or-

der to obtain reliable results in the identification procedure. The

multi-layer neural network with three layers is the most fre-

quently used structure in ANN model. Generally used with a

sigmoid transfer function and a gradient descent method of train-

ing called the back-propagation training algorithm (Table 2). The

difference between the used structures principally appears in the

number of neurons in each layer, because this last one has a direct

relation with the number of parameters in the input and output

layer. For the hidden layer no specific formula fixed for the choice

of number of neurons, but it directly influenced by the nature of

the input data. For that it is difficult to have a uniform structure.

To provide the optimal structure of our ANN (Table 2), we started

by setting the inputs and outputs, training algorithm, the number

of hidden layers and the number of neurons in each hidden layer,

etc.

In order to validate the results obtained by our ANNGTN model

developed under Matlab, we prepared many test cases and com-

pared the obtained results with the results of the finite element

models. The comparison was presented in Fig. 8, for five testing

cases. The result obtained by the ANN approach is in good agree-

ment with the results obtained by the finite element model.

We consider the experimental data (Dx, Dy) as an input of the

ANNGTN model to obtain the Gurson model parameters in output.

Fig. 8. Comparison between prediction using ANN and the results of FEM of

different GTN coefficients.

Table 3

GTN identified parameters using ANN.

Parameters Element number

Void volume fraction for coalescence (fc) 0.11

Void volume fraction for element deletion (ff) 0.118

Volume fraction of nucleating particules (fn) 0.044

Mean nucleation strain (en) 0.57

Standard deviation of nucleation strain (Sn) 0.09

Table 2

Example of used structure for the ANN.

ANNGTN Abendroth et al.

[29]

Marouani et al.

[30]

Neurons in the input

layer

2 6 10

Number of hidden

layers

1 1 1

Neurons in the hidden

layer

10 50 14

Neurons in the output

layer

5 1 5

Training algorithm Back-

propagation

Back-

propagation

Back-

propagation

Activation function Sigmoïd Sigmoïd Sigmoïd

Training coefficient 0.001 – –

Fig. 7. Damage parameters identification procedure using ANN and experimental data.



Table 3 presents the identification results of the damage parame-

ters of the stainless steel 304. Using SEM image analysis, Chhibber

et al. [31] demonstrated that for the SS304 the final volume frac-

tion ff is less compared with the others steels, whereas the percent-

age change in void volume fraction values from initial void volume

fraction to final void volume fraction it’ is height. This corroborates

with the very high ductility of SS 304 austenitic stainless steel of-

ten used in metal forming. The big advantage of this method is to

minimize the computing time in the classical inverse identification

process of the GTN model parameters.

5.4. Comparison between numerical and experimental results in tensile

test

During the experimental tensile test of the notched specimen

the loading of specimen was stopped immediately after the obser-

vation of strain localization. In the second step, the middle centre

of specimen was digitalised in order to show the appearance of

the shearing band using high precision optical profile projector,

Fig. 9b shows the results of the scanning. A huge reduction of

thickness in the local zone of the specimen (57 lm) was observed.

Also in Fig. 9a, the results of numerical simulation of this test are

present. Qualitatively, a same mechanism of necking initiation is

presented in numerical and experimental results. This observation

demonstrate the ability of finite element modelling taking into ac-

count the ductile damage of material to predict the physical phe-

nomenon faithfully.

6. Applications

6.1. Elliptical bulge test

In order to evaluate the results of GTN identification, several

experimental bulge tests were developed. During this test, a circu-

lar blank is clamped at its external boundary between a die and

blank holder by a drawbeads and a linearly increasing hydraulic

pressure is applied on the bottom surface of the blank. The dis-

placement of the dome is measured continuously. An elliptical

die was used, the dimensions of major and minor axis was respec-

tively 110 mm and 74 mm. The sheet with a uniform thickness

1 mm is meshed using thin shell elements with reduced integra-

tion of type S4R and the matrix is considered as rigid body meshed

with rigid elements of type R3D4. The identified damage parame-

ters were used in the simulation of the elliptical bulge test and the

experimental and numerical results were compared. Fig. 10a and b

respectively show the numerical failure prediction and the exper-

Fig. 9. Localisation of deformation: (a) numerical prediction of band formation using GTN model, (b) experimental digitalisation of middle centre of specimen just before

fracture.



imental fracture. A good qualitatively correlation between the

numerical and experimental results is observed. Also Fig. 11 shows

the numerical and the experimental curves evolution of dome po-

sition during the bulge test according to the pressure load. The

experimental curves Exp_Ellip_90, Exp_Ellip_45 and Exp_Ellip_0

respectively represent the evolution of dome position according

to the internal pressure of the elliptical bulge test with the major

axes of die oriented 90°, 45° and 0° with the rolling direction of

the sheet. A small difference between the two results is observed,

which is mainly due to the GTN model having isotropic nature.

The thickness variation is used as an indicator of the risks

undergone in the part at the forming process. For these reasons,

it is recommended to evaluate the thickness variation during the

development of a manufacturing process. Gutscher [32] founds

that the behaviour law parameters has significant influence on

the height and thickness in the bulge test. In this context, the fringe

pattern projection was used in this investigation to measure the

deformed shape thickness. The basic principle behind the approach

is to project known patterns on the deformed part using a digital

projector. Two digital cameras are used to take images of the object

with the known projection patterns imposed on it. Usually multi-

ple projection patterns are used in a single measurement step to

enhance accuracy. The results of this measurement technique were

compared with the numerical results obtained by the FE model of

bulge test based of the ductile damage. Fig. 12 shows that the re-

sults of numerical simulation and experiment agree well. Overall,

despite all nonlinearities arising from the elasto-plastic behaviour

of the sheet metal, the comparison of the numerical results with

Fig. 12. Thickness variation in deformed parts, (a) numerical results, (b) experimental results.
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Fig. 11. Numerical and experimental comparison of dome position evolution

according to the pressure load.

Fig. 10. (a) Numerical prediction of void volume fraction, (b) experimental specimen after cracking for elliptical bulge test.



the experimental results of elliptical bulge test shows the robust-

ness of the numerical model.

6.2. Erichsen test

The geometry of the tools of Erichsen test (ISO 20482) [33] is

defined by a hemispherical punch of steel with the diameter of

20 mm, an active die with the diameter of 27 mm, a blank holder

with the diameter of 33 mm and a initial blank with a square shape

90 � 90 mm (Fig. 13a). The edge radius of die is 0.75 mm. The prin-

ciple of Erichsen test means to press the hemispherical punch into

the sheet until material fracture occurs, at which point the test is

stopped immediately and the depth of the bulge recorded. This

depth expressed in millimetres gives the Erichsen index (IE), in

our case, the experimental IE of stainless steel 304 is 13.02 mm

(Fig. 13d).

The finite element simulation model of Erichsen test consists of

forming rigid bodies which are punch, die, and blank holder in

addition to the blank as a deformable body. We used an elasto-

plastic constitutive law taking into account the damage mechanics

based on GTN model with the identified parameters. Fig. 13b and c

shows respectively the von Mises stress distribution in deformed

shape and the map of void volume fraction in the deformed shape.

We observe a circumferential rupture of the specimen appear in

same area in the experimental test and the numerical prediction.

In the numerical model the Erichsen index, IE = 12.83 mm. The

small differences may be caused by the numerical modeling of

the contact phenomena and the anisotropy of sheet.

7. Conclusions

In the present investigation, the Gurson–Tvergaard–Needleman

(GTN) model was employed to evaluate the ductile damage and

fracture phenomena. An identification procedure based on Artifi-

cial Neural Network is used to determine the material parameters

of GTN damage model. A back propagation training neural network

model was trained by using the finite element results of notched

tensile test with varying of the damage parameters. A better choice

of ANN structure and the concordance of the inputs allow to make

more efficient ANN model.

The optical metrology and especially the DIC method are rap-

idly gaining popularity in light of the wealth of available results

and the availability of commercial hardware and software.

Through these means of measurement we obtain the displace-

ments in all points on specimen surface and we compare closely

the experimental results of shear band formation and the thickness

variation in bulged part with the numerical results. The Identified

parameters used in the Finite element model of forming operation

(tensile, bulge and Erichsen tests), these results were in good

agreement with experimental ones. Following this comparison

we can summarize that our approach will be able to give a reliable

results and good efficiency for the identification of damage

parameters.

The proposed approach based on finite element coupled with

ANN can be used in order to contribute towards the sheet metal

characterization, but with a minimized computing time (CPU time)

compared with the classical inverse identification method. On the

other hand extension of this approach to the Gurson damage mod-

el coupled with anisotropic yield criterion will be also investigated.
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