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ABSTRACT

The objective of this paper is to investigate techniques for learning
Fully Connected Network (FCN) models in a lifting based image
coding scheme. More precisely, based on a 2D non separable lifting
structure composed of three FCN-based prediction stages followed
by an FCN-based update one, we first propose to resort to an `p
loss function, with p ∈ {1, 2}, to learn the three FCN prediction
models. While the latter are separately learned in the first approach,
a novel joint learning approach is then developed by minimizing a
weighted `p loss function related to the global prediction error. Ex-
perimental results, carried out on the standard Challenge Learned
Image Compression (CLIC) dataset, show the benefits of the pro-
posed techniques in terms of rate-distortion performance.

Index Terms— Lifting schemes, adaptive wavelets, image cod-
ing, neural networks, optimization, joint learning.

1. INTRODUCTION

Lifting Schemes (LS) [1], known also as the second generation
wavelets, were found to be efficient for coding different kinds of
visual data such as still images [2], stereo images [3], video [4, 5],
etc. For instance, they have been adopted by the JPEG2000 image
coding standard [6]. A 1D LS based decomposition consists in
using a prediction filter and an update one to generate the detail
and approximation coefficients, respectively. By applying such 1D
decomposition to the rows and then to the columns of an image
(or inversely), one approximation subband and three detail sub-
bands oriented horizontally, vertically and diagonally are obtained.
Note that a 2D decomposition with three prediction filters and an
update one can also be used to generate similarly the wavelet sub-
bands [7, 8].
The performance of these lifting based coding schemes depends on
the involved prediction and update filters. For this reason, many
research works have been developed to design optimal filters and
make the lifting schemes well adapted to the image to be encoded.
Concerning the prediction filters, they are often optimized by mini-
mizing the variance of the detail coefficients [2]. Moreover, instead
of minimizing an `2 criterion, an `1-based minimization technique
has been introduced in [9] to produce sparse wavelet representation.
Furthermore, the minimization of the entropy of the detail coeffi-
cients has also been investigated in [10, 11]. Regarding the update
filter, two main optimization techniques have been developed. The
first one aims at minimizing the reconstruction error while setting
the detail coefficients to zero at the synthesis stage [2, 12]. While

this approach results in a complex linear system of equations, the
second one consists in minimizing the difference between the ap-
proximation coefficients and the output of an ideal low-pass filter
applied to the image [13].
In order to take advantage of the neural networks in providing ac-
curate nonlinear approximation, a Convolutional Neural Network
(CNN) based LS for image coding has been introduced in [14].
More precisely, the prediction step is performed using a CNN while
the update one is simply replaced by an average operation. More
recently, a fully nonlinear transform, where both prediction and up-
date stages are performed using Fully Connected Networks (FCN),
has been introduced in [15]. In addition to these neural network
based lifting schemes, deep learning based image compression tech-
niques have also attracted a lot of attention in the last years. To
this end, different neural network architectures have been developed
to perform the analysis and synthesis stages while using standard
quantization and entropy coding schemes [16, 17, 18, 19, 20]. These
methods, known as end-to-end compression methods, mainly differ
in the chosen neural network model or the employed loss function
which is often optimized in an end-to-end manner.
In this paper, we propose to further investigate neural networks for
the design of lifting based coding schemes. More precisely, based on
a recent work where a 2D non separable lifting scheme is developed
using three FCN-based prediction stages followed by an FCN-based
update one [15], we propose here a novel algorithm to learn the FCN
prediction models. To this end, we will first focus on the minimiza-
tion of an `p criterion (with p ∈]0,+∞[) instead of the common `2
one as performed in [15]. Moreover, unlike [15] where the involved
FCN models are separately learned, the main contribution of this
work is to jointly learn the FCN prediction models by minimizing a
weighted `p criterion related to the global prediction error.
The remainder of this paper is organized as follows. In Section 2, we
recall the recent FCN-based lifting scheme. The proposed learning
approaches of the different FCN models are described in Section 3.
Finally, experimental results are shown in Section 4 and some con-
clusions are drawn in Section 5.

2. FULLY CONNECTED NETWORK BASED LIFTING
SCHEME

2.1. FCN based lifting architecture

While 1D LS has been used in the JPEG2000 image compression
standard, 2D Non Separable LS (NSLS) are found to be more effi-
cient to cope with the different characteristics of edges of the input



images to be encoded. A typical NSLS is composed of three pre-
diction stages followed by an update one. Instead of using linear
operators as it is often the case in conventional LS, it has been re-
cently proposed to perform the prediction and update stages using
FCN models. The resulting FCN based lifting architecture is shown
in Fig. 1.
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Fig. 1. FCN-based lifting architecture.

For each input image x, let xj denote the approximation subband
at resolution level j (where x0 = x). Thus, each input signal
xj(m,n) is first split into four polyphase components designated
by x0,j(m,n) = xj(2m, 2n), x1,j(m,n) = xj(2m, 2n + 1),
x2,j(m,n) = xj(2m+1, 2n), and x3,j(m,n) = xj(2m+1, 2n+
1). Then, the conventional prediction filters used in classical LS are
replaced by the FCN models denoted here by f (HH)

j , f (LH)
j , f (HL)

j .

The latter allow to produce the diagonal detail coefficients x(HH)
j+1 ,

the vertical ones x(LH)
j+1 and the horizontal ones x(HL)

j+1 given by

∀ o ∈ {HH,LH,HL},

x
(o)
j+1(m,n) = xi,j(m,n)− x̂i,j(m,n)

= xi,j(m,n)− f (o)
j (x̃

(o)
j (m,n)) (1)

where xi,j(m,n) (with i ∈ {1, 2, 3}) is the polyphase component
to be predicted, x̃

(o)
j (m,n) is the input reference vector contain-

ing the samples used to generate the detail coefficients x(o)j+1 and

x̂i,j(m,n) = f
(o)
j (x̃

(o)
j (m,n)) is the predicted value. Therefore,

x̂i,j(m,n) can be seen as the output of an FCN model applied to
the reference vector x̃

(o)
j (m,n). More precisely, the latter will be

associated to the input layer of the FCN model. Then, H hidden
layers are used. Note that the neuron responses are computed based
on a linear combination with bias followed by a nonlinear activation
function. Finally, an output layer with a single neuron is employed
to produce the predicted value x̂i,j(m,n) using only a linear com-
bination of the neuron values of the previous layer (i.e last hidden
layer).
After these three FCN-based prediction stages, an FCN model f (LL)

j

is employed in the update stage to generate the approximation coef-
ficients xj+1:

xj+1(m,n) = x0,j(m,n) + t̂j(m,n)

= x0,j(m,n) + f
(LL)
j (x̃j+1(m,n)) (2)

where x̃j+1(m,n) is the input reference vector containing the detail
coefficients used to generate the approximation coefficients. Simi-

larly to the FCN-based prediction stage, x̃j+1(m,n) will be associ-
ated with the input layer of the FCN-based update stage. Then, H
hidden layers followed by an output layer with a single neuron are
applied to produce t̂j(m,n), which allows us to deduce the approx-
imation coefficients.

2.2. Learning of the FCN-based prediction models

Let Θ
(o)
j , with o ∈ {HH,LH,HL}, denote the weight parame-

ters associated to the FCN model f (o)
j . For a given detail subband

with orientation o, the weight vector Θ
(o)
j is learned through sev-

eral forward and backward propagation passes while minimizing a
given loss function. In [15], each FCN-based prediction model is
trained by minimizing the Mean Square Error (MSE) between the
target pixels xi,j(m,n) and the predicted ones x̂i,j(m,n). The cor-
responding loss function is given by

L2(Θ
(o)
j ) =

1

MjNj

Mj∑
m=1

Nj∑
n=1

(
xi,j(m,n)− x̂i,j(m,n)

)2 (3)

where Mj and Nj correspond to the dimensions of the image xj
divided by 2. Note thatMj×Nj represents also the number of sam-
ples (i.e., mini-batch size) used during each iteration of the training
phase. Thus, a Mini-Batch Gradient Descent (MBGD) algorithm is
used to optimize the above loss function [21]. After the convergence
of the algorithm, the optimal weights Θ

(o)
j are obtained and finally

applied to the test images to generate the predicted pixels x̂i,j(m,n)

and deduce the detail coefficients x(o)j+1. It is important to emphasize
here that the above learning process is separately applied to each
prediction step of the wavelet decomposition.

2.3. Learning of the FCN-based update model

Once the three FCN prediction models are learned and the three de-
tail subbands of the training images are produced, the FCN update
model will be trained. The main difference with the previous FCN-
based prediction learning stage is the choice of the loss function.
In this respect, we have retained a standard criterion which aims at
minimizing the quadratic error between the approximation subband
and the decimated version of the output of an ideal low-pass filter
applied to the input signal xj . Let us recall that this error is defined
as follows:

ej(m,n) = yj+1(m,n)− xj+1(m,n)

= yj+1(m,n)− x0,j(m,n)− f (LL)
j (x̃j+1(m,n)) (4)

where yj+1(m,n) = (h̃ ∗ xj)(2m, 2n) and h̃ is the impulse re-
sponse of the ideal rectangular low-pass filter.
According to (4), the optimization of the FCN-based update model
becomes similar to that of an FCN-based prediction task and aims
at predicting the target signal tj(m,n) = yj+1(m,n)− x0,j(m,n)
from the input reference vector x̃j+1(m,n). Therefore, similarly to
(3), the FCN-based update model will be trained by minimizing the
MSE between tj(m,n) and t̂j(m,n).

3. FROM INDEPENDENT TO JOINT LEARNING OF THE
FCN BASED PREDICTION MODELS

While the learning of the FCN-based update model is kept un-
changed, we investigate now two techniques for learning the three
FCN-based prediction models.



3.1. `p loss function based independent learning approach

In the considered FCN-based NSLS, as shown by (3), each FCN-
based prediction model is learned by minimizing the energy (i.e `2-
norm) of its corresponding wavelet detail coefficients. Generally,
wavelet coefficient statistics can be efficiently exploited to further
improve the image compression performance [9, 22]. To this end,
the Generalized Gaussian Distribution (GGD) can be used to model
the resulting wavelet coefficients x(o)j+1 [23]. The latter are viewed

as realizations of a random variableX(o)
j+1 whose probability density

function g(o)j+1 is given by

∀ξ ∈ R, g(o)j+1(ξ;α
(o)
j+1, β

(o)
j+1) =

β
(o)
j+1

2α
(o)
j+1Γ( 1

β
(o)
j+1

)
e
−
(

|ξ|

α
(o)
j+1

)β(o)
j+1

where Γ is the Gamma function, α(o)
j+1 ∈]0,+∞[ is the scale param-

eter, and β(o)
j+1 ∈]0,+∞[ is the shape parameter of the GGD. In the

particular case when β(o)
j+1 = 2 (resp. β(o)

j+1 = 1), the GGD becomes
the Gaussian distribution (resp. the Laplacian one).
Using a uniform scalar quantization scheme, the discrete entropy of
the resulting quantized source can be approximated at high bitrate
by the differential entropy h of the variable X(o)

j+1 [24]. The latter is
approximatively equal to

h(X
(o)
j+1) ≈ 1

MjNj ln(2)(α
(o)
j+1)β

(o)
j+1

Mj∑
m=1

Nj∑
n=1

∣∣∣x(o)j+1(m,n)
∣∣∣β(o)
j+1

+ log2

(2α
(o)
j+1Γ( 1

β
(o)
j+1

)

β
(o)
j+1

)
. (5)

The above equation shows that the `
β
(o)
j+1

-norm of the detail coef-

ficients can be seen as a good approximation of their entropy that
should be minimized. Based on this observation, an analysis of the
wavelet coefficients distribution has been conducted for a large set
of images taken from the standard CLIC dataset. The latter will be
described in Section 4. It has been noticed that the shape parameters
of the detail subbands β(o)

j+1 range from 0.15 to 1.75 and their mean
values are between 0.6 and 0.7. As a result, instead of only mini-
mizing the `2-norm of the detail coefficients as performed in [15],
we propose here to consider an `p criterion. For example, using an
`1 loss function allows us to increase the sparsity of the wavelet co-
efficients to be encoded. Therefore, the three FCN-based prediction
models can be independently trained by minimizing the following
loss function:

Lp(Θ(o)
j ) =

1

MjNj

Mj∑
m=1

Nj∑
n=1

∣∣∣xi,j(m,n)− x̂i,j(m,n)
∣∣∣p (6)

where p ∈]0,+∞[. This loss function (6) is optimized using the
MBGD algorithm and following the strategy described in Sec. 2.2.

3.2. Weighted `p loss function based joint learning approach

Up to now, each FCN-based prediction model has been separately
trained by minimizing the `p-norm of its corresponding detail sub-
band x(o)j+1. While such loss function seems to be appropriate for

learning the first-FCN-based prediction model Θ
(HH)
j , it may be

suboptimal for learning the second and third ones (Θ(LH)
j and

Θ
(HL)
j ). Indeed, according to the lifting architecture shown in

Fig. 1, it can be seen that the output of the first FCN-based pre-
diction model, and more specifically the diagonal detail subband
x
(HH)
j+1 , is used as a reference signal during the second and and third

FCN-based prediction models to generate the vertical and horizontal
detail coefficients, respectively. Therefore, it becomes more inter-
esting to learn the first FCN based prediction model by minimizing
a global loss function defined on the three resulting detail signals.
More precisely, the vector of parameters Θ

(HH)
j will be learned

by minimizing the sum of a weighted `p criterion, yielding the
following loss function:

Lw`p(Θ
(HH)
j ) =∑

o∈{HH,LH,HL}

1(
α̃
(o)
j+1

)p ∑
m,n

∣∣∣x(o)j+1(m,n)
∣∣∣p (7)

where

α̃
(o)
j+1 =

1

K

K∑
k=1

( p

MjNj

Mj∑
m=1

Nj∑
n=1

|x̃(o,k)j+1 (m,n)|p
)1/p

, (8)

K is the number of training images, and x̃(o,k)j+1 is the detail subband
of the k-th training image obtained using the independent `p-based
learned FCN model. To learn the three FCN prediction models (per
resolution level), two learning approaches can be employed.
First, since the learning of the first FCN model depends on the learn-
ing of the two other FCN prediction models and vice-versa, we can
resort to a joint learning approach that alternates between the update
of the Θ

(HH)
j and that of Θ

(LH)
j as well as Θ

(HL)
j . In this respect,

the training phase will consist in applying an iterative algorithm,
composed of two main steps, to each image of the training dataset.
Starting from a given initialization of Θ

(HH)
j , Θ

(LH)
j and Θ

(HL)
j ,

the first step aims to update Θ
(HH)
j by minimizing the weighted

loss function Lw`p(Θ
(HH)
j ) using the MBGD algorithm. In the sec-

ond step, and after computing the detail coefficients x(HH)
j+1 using

the obtained Θ
(HH)
j , we update simultaneously Θ

(LH)
j and Θ

(HL)
j

by minimizing the loss functions Lp(Θ(LH)
j ) and Lp(Θ(HL)

j ) us-
ing the MBGD algorithm, respectively. This iterative algorithm is
applied to each image of the training dataset for many epochs until
its convergence.
While the above iterative approach results in a high computational
time, the second one consists of directly learning the three FCN
prediction models. More precisely, the three sets of weight param-
eters can be grouped within a single vector of parameters Θj =

(Θ
(HH)
j ,Θ

(LH)
j ,Θ

(HL)
j )> which is directly learned by minimizing

the Lw`p(Θj) using the MBGD algorithm. It should be noted here
that the two aforementioned learning approaches have been tested
and resulted in similar coding performance.

4. EXPERIMENTAL RESULTS

Our simulations are carried out using the standard CLIC dataset1.
More precisely, 585 images with different sizes are used for train-
ing the neural network models. In the test phase, 40 crop images
of size 512 × 512 are selected from the test CLIC dataset. Since

1http://www.compression.cc/2018/challenge/



the FCN-based NSLS architecture is developed for 2D images, the
CLIC images are converted to grayscale.
As an example of lifting structure, we have considered the NSLS(4,2)
transform [13] over three resolution levels. In this NSLS architec-
ture, each FCN model is implemented using 4 hidden layers with
128 × 64 × 32 × 16 neurons. The Parametric Rectified Linear
Unit (PReLU) has been employed as an activation function. For
the MBGD algorithm, the batch size corresponds to the number of
samples to be predicted in each input image xj . The learning rate
is set to 10−2 while applying a decay of 10−4 and 200 epochs have
been used for training our FCN prediction models. These implemen-
tations are performed using Keras and TensorFlow 2.4 on a NVIDIA
Tesla V100 32 GB GPU.
The proposed FCN-based lifting coding scheme will be firstly eval-
uated in the context of lossy compression. To this end, our methods
have been compared to the JPEG2000 compression standard as well
as to two recent neural network-based coding schemes. The first
one, denoted by “Ballé [18]”, is an end-to-end image compression
method composed of nonlinear analysis and synthesis transforms
learned using a rate-distortion loss function. The second one, more
related to our work, employs a neural network-based update-predict
lifting structure where the update step is a mean filter and the pre-
diction one is performed using a CNN. The latter is trained by
minimizing the MSE between the original image and the recon-
structed one. This method will be designated by “CNN-LS [14]”.
Our proposed approaches have been implemented using p ∈ {1, 2}.
The methods based on the `2, `1, weighted `2 and weighted `1
criteria are respectively denoted by “FCN-LS-L2”, “FCN-LS-L1”,
“FCN-LS-WL2” and “FCN-LS-WL1”. In order to take into account
the diversity of textures and contents in the test images, we have also
considered a hybrid coding method which selects the best model be-
tween the four FCN-based prediction models. Note that this method,
designated by “H-FCN-LS”, results in a negligible overhead (2 bits
per image) that needs to be sent to the decoder.
Fig. 2 illustrates the Rate-Distortion (R-D) results, obtained with all
the dataset images (Fig. 2(a)) and a given one (Fig. 2(b)), using the
Perceptual Image-Error Assessment through Pairwise Preference
(PieAPP) metric [25]. Let us recall that this metric was found to be
well correlated with human opinion scores. Note that lower PieAPP
values indicate better subjective image quality. Thus, it can be seen
that the FCN-based LS coding methods outperform the conventional
ones. Most importantly, the proposed joint learning approaches, and
more specifically the hybrid coding scheme, lead to better coding
performance compared to the independent learning approach. Fur-
thermore, Fig. 3 shows the interest of the proposed method in terms
of reconstruction quality.
Finally, our methods are evaluated in the context of lossless com-
pression using the entropy of the resulting wavelet representations.
Since the aforementioned methods as well as most of neural net-
works based coding schemes are suitable for lossy compression
except in a few recent works [26, 27], we will compare our proposed
methods to JPEG2000. Table 1 indicates that `1 and weighted `1
loss functions achieve a gain of about 0.07 bits per pixels (bpp)
compared to the `2 and weighted `2 ones, respectively.

5. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed a joint optimization approach for
learning FCN prediction models in a lifting based image coding
scheme. The main idea consists in jointly training three FCN models
by minimizing a weighted `p loss function with p ∈ {1, 2}. The ob-
tained results show the good performance of the proposed approach

in the context of lossy and lossless compression. In future work, a
more general `p loss function, where various p values are selected
for different wavelet subbands, will be investigated.
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Fig. 2. R-D results of the CLIC dataset using the PieAPP metric.
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Fig. 3. Original test image (a) and reconstructed ones at 0.1 bpp
using: (b) CNN-LS [14], (c) FCN-LS-L2 [15], (d) H-FCN-LS.

Table 1. Average entropy (in bpp) of wavelet coefficients.
Method JPEG FCN- FCN- FCN- FCN- H-FCN

2000 LS-L2 LS-L1 LS-WL2 LS-WL1 -LS
Entropy 4.41 4.23 4.17 4.23 4.16 4.15
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[18] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end op-
timized image compression,” in International Conference on
Learning Representations, Toulon, France, April 2017, pp. 1–
27.

[19] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang, “Learning con-
volutional networks for content-weighted image compression,”
in Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, June 2018, pp. 3214–3223.

[20] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and V. G.
Luc, “Generative adversarial networks for extreme learned im-
age compression,” in International Conference on Learning
Representations, New Orleans, Louisiana, USA, May 2019,
pp. 1–31.

[21] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” in International Conference on Learning Rep-
resentations, San Siego, USA, May 2015, pp. 1–15.

[22] S. M. LoPresto, K. Ramchandran, and M. T. Orchard, “Image
coding based on mixture modeling of wavelet coefficients and
a fast estimation quantization framework,” in Data Compres-
sion Conference, Snowbird, USA, March 1997, pp. 221–230.

[23] S. Mallat, “A theory for multiresolution signal decomposition,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 11, no. 7, pp. 674–693, July 1989.

[24] H. Gish and J. N. Pierce, “Asymptotically efficient quantizing,”
IEEE Transactions on Information Theory, vol. 14, no. 5, pp.
676–683, 1969.

[25] E. Prashnani, H. Cai, Y. Mostofi, and P. Sen, “PieAPP: Per-
ceptual image-error assessment through pairwise preference,”
in IEEE Conference on Computer Vision and Pattern Recogni-
tion, Salt Lake City, UT, USA, June 2018, pp. 1–10.

[26] I. Schiopu and A. Munteanu, “Deep-learning based lossless
image coding,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 30, no. 7, pp. 1829–1842, April 2019.

[27] I. Schiopu and A. Munteanu, “A study of prediction methods
based on machine learning techniques for lossless image cod-
ing,” in IEEE International Conference on Image Processing,
Abu Dhabi, United Arab Emirates, October 2020, pp. 1–5.


