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ABSTRACT
We report on the testing of the centrosymmetry parameter (CSP), an indicator of deviation from
centrosymmetry of a source brightness distribution. This indicator is derived from the spectral
distribution of the triple product measured over three baselines of an optical interferometer.
Numerical simulations using parametric toy-models (separated or transiting binary, one-spot
model), generated with the SPIDAST software, are applied to the VLTI /AMBER facility in the K
band (2.2 μm). The simulations show that, in case of centrosymmetry, the CSP parameter is in
agreement with the usual phase of the spectral mean of the triple product (called GCP, global
closure phase). To justify the preferential use of CSP rather than GCP, we show situations with
asymmetric geometries for which GCP diagnoses centrosymmetry, while CSP does not. Using
realistic Roche lobe-filling binary and hydrodynamic convective models, we show that CSP
can also be used as an indicator for geometric similarity between physical and toy-models.
Thus, dealing with real data, the toy-model parameters can be fitted on the measured CSP
values, in order to assess the input-parameter values of the most suitable complex physical
model that will be used to interpret the data.

Key words: methods: data analysis – techniques: interferometric – stars: atmospheres –
binaries: close – supergiants.

1 IN T RO D U C T I O N

With the advent of interferometry, most celestial sources can no
longer be considered as point sources. Instead, asymmetries in their
light distribution appear at various spatial scales. Let us mention
the following astrophysical environments where deviations from
centrosymmetry occur in the brightness distribution (e.g. Berger
et al. 2012).

(i) most of stars (more than 50 per cent in the solar neighbour-
hood) form in binary or multiple systems, due to fragmentation of
protostellar molecular clouds;

(ii) most planetary nebulae (more than 80 per cent) are non-
spherical, because of binarity, stellar winds, and magnetic fields;

� E-mail: pierre.cruzalebes@oca.eu
†Deceased 2014 May 17.

(iii) circumstellar dust shells produced by mass-loss show a
clumpy distribution; accretion discs in binary systems are twisted
or warped;

(iv) stellar activity and convection produce inhomogeneous
stellar surface structures, with spots, faculae, granules, and
supergranules.

If not based on direct imaging, the detection of surface brightness
asymmetries (SBAs) usually relies on the so-called triple product,
involving complex visibilities from interferometric observations us-
ing three simultaneous apertures. To measure SBA with a single
indicator, Ragland et al. (2006) and Tatebe et al. (2006) used the
triple product to define the so-called global closure phase (GCP;
it is called ‘global’ because it involves integrals over the spectral
band [λmin, λmax]). The use of this kind of global indicator is es-
sential if we want to search for asymmetries through archive data
dealing with sample of objects observed with limited uv-coverage,
thus allowing no reliable image reconstruction.

When searching for SBA at the surface of asymptotic giant branch
(AGB) stars, Cruzalèbes et al. (2013a) (Paper I; their table 3 and
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Measuring deviation from centrosymmetry 3551

fig. 14) showed that the GCP parameter sometimes leads to ‘false
negatives’, i.e. values close to zero (as usual for centrosymmet-
ric distributions) despite indications that the star exhibits SBAs
(see the values obtained for TX Psc and W Ori). To avoid such
false negatives, a more robust parameter has been introduced in
Paper I, the so-called centrosymmetry parameter (CSP) dedicated
to the detection of source brightness asymmetries using spectro-
interferometric data (in the present case, VLTI/AMBER data in the
K band at 2.2 μm).

The aim of this paper is to show how CSP behaves on well-
controlled situations depicted by simple models like binary systems
or stellar surfaces covered by a single (dark or bright) spot, be-
fore applying this parameter to diagnose SBA on AGB stars in a
forthcoming paper. Our present study will thus confront CSP with
GCP in such simple situations, and at the same time, show how
one-spot models differ from binary models when probed by such
parameters. In both situations (binary stars and spots), CSP and
GCP have been computed for more realistic models as well, namely
a tidally deformed Roche lobe filling star (generated following the
method described in Siopis & Sadowski 2012 and in Paladini et al.
2014) including limb- and gravity-darkening, and a hydrodynam-
ical model of the surface convection of a red supergiant (RSG)
star (Freytag et al. 2012). Moreover, we investigate the properties
of the simple (geometric toy) models approximating these realistic
models as judged from the similar values for their CSP (or GCP)
parameters. We stress for instance that a tidally deformed star (the
only visible component of a binary system) may be represented by
a one-spot model with the spot located close to the limb of the star.
Thus, when a simple-model fit to spectro-interferometric data leads
to such a situation, it hints at the presence of a tidally deformed
star.

The paper is organized as follows. In Section 2, we recall the def-
inition of the triple product. In Section 3, we present the motivation
for using CSP and the way this indicator has been built. In Section 4,
we present the morphological toy-models used to show, on simu-
lated data, the ability of CSP to measure asymmetries that are not
detected by GCP. In Section 6, we present CSP values obtained on a
Roche lobe-filling binary model. In Section 7, we present CSP val-
ues obtained with a hydrodynamic convective model. In Section 8,
are given concluding comments on the potential of using CSP in
various contexts, that will be the subject of a forthcoming paper.

The results and graphical outputs presented in the paper have
been obtained using the modular software suite SPIDAST,1 created to
calibrate spectro-interferometric measurements, particularly those
obtained with VLTI/AMBER, and to interpret them by using chro-
matic models (Cruzalèbes, Spang & Sacuto 2008; Cruzalèbes et al.
2010, 2013b). The simulations are done for the VLTI sub-array
(VISA) configuration, with the AMBER medium-resolution spec-
tral mode in the K band (MR–K): spectral resolution R = 1500; cen-
tral wavelength λc = 2.3 μm; and full wavelength range [2.126 μm–
2.474 μm].

2 TH E N E E D F O R TH E T R I P L E P RO D U C T

2.1 The visibility function

Because of the large astronomical distances involved, observing
stellar structures at arcsecond and sub-arcsecond resolution in the

1 acronym of SPectro-Interferometric Data Analysis Software Tool

optical range needs imaging facilities like telescopes with large
diameters (today up to 8–10 m). To reach milliarcsecond resolu-
tion, optical long-baseline interferometers are needed (up to many
hundreds of metres in baseline length). Interferometers do not pro-
vide direct images. They measure the mutual degree of coherence
(called the visibility function, and denoted Vij) of the incident light
collected by individual telescopes, at positions denoted i and j. Ac-
cording to the van Cittert–Zernike theorem, the complex visibility
Vij, measured by an interferometer for the observation wavelength
λ, is linked to the spatial extension of the object, via the Fourier
Transform (denoted Ôλ) of the monochromatic object brightness
distribution Oλ, as given by

Vij (λ) = Ôλ

(
f ij

)
Ôλ (0)

=
∫ +∞

−∞
∫ +∞

−∞ Oλ (x, y) e−2iπ (ux+vy) dx dy∫ +∞
−∞

∫ +∞
−∞ Oλ (x, y) dx dy

,

(1)

where f ij = bij /λ is the spatial frequency (bij is the baseline vec-
tor), and (u, v) are the Cartesian coordinates of f ij . Since the
denominator in the right-hand part of this equation is the flux for
the wavelength λ, the Fourier spectrum Ôλ can be understood as the
flux multiplied by the visibility, hence its denomination of ‘coher-
ent’ or ‘correlated’ flux. When working with interferometers under
real conditions, the object visibility must be multiplied by the instru-
mental response, estimated thanks to the observation of reference
stars (called calibrators), under the same (hopefully) instrumental
and atmospheric conditions.

The Fourier Transform of a centrosymmetric brightness distri-
bution is real, i.e. has a null imaginary part. In practice, atmo-
spheric turbulence adds random phase shifts αi−αj to the phase
of the measured visibilities at the frequency fi j , so that the mea-
sured visibility Vij is multiplied by the phasor exp (i(αi − αj)).
Thus, centrosymmetric objects observed through the terrestrial at-
mosphere show complex Fourier spectra, with non-null imaginary
parts.

2.2 The triple product

To automatically remove the contribution of the spurious and ran-
dom phases, we use the triple product T123 of the complex visi-
bilities V12, V23, and V31, defined over closed triangles of spatial
frequencies f12, f23, and f13 = f12 + f23, according to

T123 (λ) = V12 (λ) V23 (λ) V �
13 (λ)

= Ôλ ( f12) Ôλ ( f23) Ô�
λ ( f13)

Ô3
λ (0)

, (2)

where Ô�
λ denotes the complex conjugate of Ôλ. The triple product

naturally cancels the spurious phases caused by atmospheric turbu-
lence, so that, for example, if Oλ is a centrosymmetric distribution,
T123 is real whatever the atmospheric phase shifts.

If the centrosymmetric source is off-axis, the phase of its Fourier
spectrum ϕ varies linearly with the spatial frequency, so that
ϕ( f13) = ϕ( f12) + ϕ( f23) and, subsequently, also here the imag-
inary part of T123 (denoted �123) is equal to zero. Let us mention
that if the source is unresolved (whatever its intrinsic morphology),
we also find �123 = 0, since V is equal to unity, at all spatial fre-
quencies. To avoid this ambiguity, we consider, in our study, only
stellar objects with resolved diameters. Thus, with our targets, a
non-zero value of �123 is an unambiguous indication that the object
brightness distribution deviates from centrosymmetry.
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3 IN D I C ATO R S F O R D E PA RT U R E F RO M
CE NTRO SYMMETRY

3.1 The usual indicator: the global closure phase (GCP)

Our first approach to process our interferometric data provided by
AMBER has been similar to the one described in Ragland et al.
(2006) and Tatebe et al. (2006). To measure the degree of departure
from centrosymmetry of the brightness distributions of their targets,
respectively, observed with the IOTA and the ISI facilities, these
authors use the closure phase �cl, estimated as the phase of the triple
product measured through a standard H-band filter (λc = 1.65 μm,
�λ = 0.3 μm), or a narrowband one (λc = 1.64 μm, �λ = 0.1 μm),
and defined as

�cl = atan

( �123 (λc)

�123 (λc)

)
, (3)

where �123 denotes the real part of T123.
Since the measurement of the triple product is performed over

the whole spectral range given by the filter (as if there were a unique
spectral channel), defined by the lower and upper boundaries λ1 and
λ2, respectively (T123(λc) = ∫ λ2

λ1
T123(λ) dλ /�λ), we calculate �cl

using the GCP, defined as

GCP = atan

( ∫ λ2
λ1

�123 (λ) dλ∫ λ2
λ1

�123 (λ) dλ

)

= asin

⎛
⎜⎜⎝

[∫ λ2
λ1

�123 (λ)
]

× sgn
(∫ λ2

λ1
�123 (λ) dλ

)
√[∫ λ2

λ1
�123 (λ) dλ

]2
+

[∫ λ2
λ1

�123 (λ) dλ
]2

⎞
⎟⎟⎠ ,

(4)

where sgn stands for the sign function.
The visibilities are measured over a finite spectral band, thus

leading to a unique value of GCP. When this value significantly
departs from zero degree (taking into account the uncertainty), the
degree of asymmetry of the brightness distribution is measured
(over the considered aperture triplet), otherwise centrosymmetry
is the resulting conclusion. Note that information from possible
variation over the spectral band is then ignored.

3.2 The use of the spectral information

Our data (visibilities) are obtained point-wise over the observed
spectral band, with a large number of individual spectral channels
(more than 500 with AMBER MR–K). This situation invites to
explore the spectral behaviour of GCP, resulting in as many GCP
values as the number of spectral channels. This enables to track
possible morphological variations especially when spectral lines
are present in the observed spectral band (as it is frequently the case
with cool stars).

To get a single indicator for asymmetry, a first possible approach
is to integrate over the spectral band the monochromatic closure
phases computed from monochromatic triple products. But this
approach might result in a completely false indication of asymmetry
even with centrosymmetric brightness distributions (e.g. when a
π-shift of the closure phase occurs within the observed spectral
band, caused by the zero-crossing of the visibility function).

A second possible approach is to use the imaginary part of
monochromatic triple products. While working on real data (Pa-
per I), it appeared in some cases that the imaginary part was not
remaining close to zero over the whole spectral band, but presented

a slope (see e.g., TX Psc and W Ori in fig. 13 of Paper I). This
indicates that the brightness distribution truly deviates from cen-
trosymmetry. However, the conclusion obtained by using GCP was
‘centrosymmetry’ (see again the position of TX Psc and W Ori in
fig. 14 of Paper I).

In the remainder of the paper, we call ‘false negatives’ these
specific situations of missed asymmetry detection.

3.3 The centrosymmetry parameter (CSP)

Since the use of GCP as an estimator of deviation from centrosym-
metry suffers from false negatives and from numerical instabilities
when the integrals over λ of �123 or �123 are close to 0, we proposed
to use another estimator, that we called CSP (Paper I). CSP is based
on the same T123 measurements used to compute GCP, as defined
in equation (4). The absolute value of �123 is now used in the nu-
merator, the modulus of T123 in the denominator, and the arcsine
function to get an angle:

CSP = asin

( ∫ λ2
λ1

|�123 (λ)| dλ∫ λ2
λ1

|T123 (λ)| dλ

)

= asin

( ∫ λ2
λ1

|�123 (λ)| dλ∫ λ2
λ1

√
[�123 (λ)]2 + [�123 (λ)]2 dλ

)
. (5)

Unlike the situation prevailing for GCP, a CSP value close to zero
always corresponds to a centrosymmetric brightness distribution,
without any possibilities for false negatives (again, W Ori from ta-
ble 3 of Paper I has GCP = 1.◦35 ± 0.◦79 but CSP = 10.◦58 ± 0.◦46).
Conversely, a CSP value clearly departing from zero degree (consid-
ering the uncertainty) indicates a brightness distribution deviating
from centrosymmetry, whatever the cause of asymmetry. We stress
that, in that respect, there is no noticeable difference between CSP
and GCP. The main difference between both indicators comes from
the ability of CSP to detect asymmetries for the situations in which
GCP fails.

Even though the definitions of CSP and GCP look similar, there is
no algebraic expression linking them, unless one adopts the (unre-
alistic) hypothesis that �123 and �123 are wavelength-independent.
In that case, one would have CSP = |�cl|, where �cl is defined in
equation (3).

Let us mention that the definition of CSP is inspired by the works
of Kovesi (1997) and Wu, Yang & Feng (2005), who proposed to
use the absolute value of an odd-symmetric filter output to quantify
the asymmetry of a signal. Filtering the signal with even-symmetric
(cosine) and odd-symmetric (sine) pairs of wavelets of scale n, the
authors obtain pairs of responses en and on, that can be thought as
the real and imaginary parts of a complex valued component for
each scale n. To quantify the level of asymmetry of their signal,
they basically compute the parameter:

asym =
∑

n [|on| − |en|]∑
n

√
o2

n + e2
n

, (6)

which can take values between −1 and +1.
Considering the triple product T123(λ) as the response of the

object brightness distribution O(λ) given by the instrument for each
wavelength λ, the level of asymmetry of O can be quantified in
a similar way, using �123(λ) and �123(λ) instead of en and on,
respectively, so that

asym123 =
∫ λ2

λ1
[|�123 (λ)| − |�123 (λ)|] dλ∫ λ2

λ1
|T123 (λ)| dλ

. (7)
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If the object brightness distribution is centrosymmetric for each
wavelength, �123 is null whatever λ, and asym123 = −1 (minimum
asymmetry = maximum symmetry). Since the brightness distribu-
tions of stellar photospheres deviate only weakly from centrosym-
metry, asym123 is dominated by the values of �123 and deviates little
from the minimum value. To recover a sensitivity to asymmetries,
�123 must be removed from the numerator of equation (7), lead-
ing to the CSP definition given in equation (5), using the arcsine
function to get a final equivalent angle.

At this point, the extra diagnosis power offered by CSP over
GCP may not be very apparent, since both quantities are based
on the imaginary part of the triple product. To demonstrate the
advantage of CSP, we used toy-models with known asymmetries and
evaluated the corresponding CSP and GCP values. This is done in
Section 4.1 for the binary model, and in Section 4.2 for the one-spot
model.

4 C O M P U T I N G C H RO M AT I C MO D E L S

With the usual definition of the Fourier Transform in Cartesian
coordinates, the Fourier Transform Ôλ of the object brightness dis-
tribution Oλ introduced in equation (1), is

Ôλ (u, v) =
∫ +∞

−∞

∫ +∞

−∞
Oλ (x, y) e−2iπ (ux+vy) dx dy, (8)

where x and y are coordinates on the sky, while u and v (acting
as parameters in the integral) are the components of the vectorial
frequency b/λ, where b describes the baseline (including its orien-
tation) of the interferometer. Because the basic model involves cir-
cular geometry, such a distribution is more conveniently expressed
with polar coordinates r and θ with, as usual, x = r cos θ and
y = r sin θ and we can write

Ôλ (u, v) =
∫ +π

−π

∫ +∞

0
Oλ (r, θ) e−2iπr (u cos θ+v sin θ ) r dr dθ. (9)

If the object brightness distribution is circularly symmetric (e.g.,
a limb-darkened disc), we find the expression of the Hankel

transform:

Ôλ (u, v) = 2π

∫ +∞

0
Oλ (r) J0

(
2πrφ

√
u2 + v2

)
r dr, (10)

where J0 is the Bessel function of the first kind of the order of zero.
Thus, the Fourier spectrum at wavelength λ of a single central star
of diameter φ, emitting radiation as a blackbody of temperature T,
is

Ôλ (u, v) = πφ2

4
Bλ (T )

2J1

(
πφ

√
u2 + v2

)
πφ

√
u2 + v2

, (11)

where Bλ(T) = 2 hc2/λ5/[exp (hc/λkBT) − 1] is the Planck’s for-
mula (h, c, and kB being: the Planck constant, the speed of light, and
the Boltzmann constant, respectively), and J1 is the Bessel function
of the first kind of the order of 1. We recognize in the right-hand
part of equation (11) the product of the flux (πφ2/4)Bλ(T ) by the
visibility 2J1(πφ

√
u2 + v2)/(πφ

√
u2 + v2), as emphasized after

equation (1).

4.1 The binary model

Let us consider the binary model, containing a central primary
source of diameter φ1, and a shifted secondary source of diameter
φ2, located at the angular distance ε2 from the primary, with a
position angle (PA) θ2. The diagram at left of Fig. 1 shows the
general geometry used to compute the polar Fourier Transform for
the binary model. The points C1 and C2 are the centres of the primary
and secondary components, respectively, θ2 being the PA of C2. The
small disc contained in the disc of the primary source represents
the secondary source. Its Fourier Transform is computed by the
integration of the polar coordinates r and θ , respectively, when
moving the point M radially from P− to P+, along the directions
lying between the limiting angles θ− and θ+, given by the tangential
points P0 − and P0 +. Thus, our composite source comprises three
components: the primary disc (index 1), the secondary (index 2)
shifted by an amount ε2, and the part of the primary disc occulted
by the secondary (index 1–2) shifted by the same amount.

Figure 1. General geometry used for each model. Left-hand diagram: binary model (eclipse situation); right-hand diagram: one-spot model.
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Omitting the λ index in Ô to simplify the notation, the Fourier
Transform of the binary brightness distribution is

Ô (u, v) = Ô1 (u, v) + [
Ô2 (u, v) − Ô1−2 (u, v)

]
β (u, v) , (12)

where β is the complex factor resulting from the common shift by
ε2 along the direction θ2:

β (u, v) = e−2iπε2(u cos θ2+v sin θ2). (13)

The third term is introduced in order to take into account the eclipse
situation (discs 1 and 2 overlapping). If the discs do not overlap, i.e.
for ε2 > (φ1 + φ2)/2, this term is null.

For the simulations shown in the present study with composite
models, we consider the primary source as a limb-darkened disc of
outer angular diameter φ1 and temperature T1, and the secondary as
a uniform-disc blackbody of diameter φ2 and temperature T2.

When the secondary is seen within the disc of the primary (eclipse
situation), i.e. for ε2 < (φ1 + φ2)/2, we must use a definite integral,
with specific boundaries, as for example for Ô1−2:

Ô1−2 (u, v) =
∫ θ+

θ−

∫ r+

r−
O1 (r, θ) e−2iπr (u cos θ+v sin θ ) r dr dθ. (14)

According to the geometry, the boundaries θ± and r± are derived
from the following conditions.

(i) For θ , the limiting directions are tangent to the circle, hence
immediately

θ± = θ2 ± arcsin

(
φ2

2ε2

)
. (15)

If the secondary source masks the centre of the primary disc, i.e.
for ε2 ≤ φ2/2, we use θ± = θ2 ± π/2.

(ii) For r, the distance between the running point M and the centre
C2 must be less than or equal to the radius φ2/2 which gives (using

Pythagora’s theorem)

(r cos θ − ε2 cos θ2)2 + (r sin θ − ε2 sin θ2)2 ≤
(

φ2

2

)2

. (16)

The boundaries for r are the roots of this quadratic equation, and
we have

r± = ε2 cos (θ − θ2) ± φ2

2

√
1 −

(
2ε2

φ2

)2

sin2 (θ − θ2). (17)

For a binary model, with two separated (non-overlapping) uni-
form discs, the composite visibility is given by

Vλ (u, v) = γ
2J1

(
πφ1

√
u2 + v2

)
πφ1

√
u2 + v2

+ (1 − γ )
2J1

(
πφ2

√
u2 + v2

)
πφ2

√
u2 + v2

β (u, v) , (18)

where β is given by equation (13), and the coefficient γ by

γ = φ2
1Bλ (T1)

φ2
1Bλ (T1) + φ2

2Bλ (T2)
, (19)

which is the ratio of the flux of the central primary component to
the total flux of the source.

Fig. 2 shows the (u, v)-distribution of the modulus of the visibility
(λ = 2.19 μm) for the single uniform disc with 6 -mas diameter
(left-hand panel), and the binary model (right-hand panel), with
parameters given in Table 1 (secondary-to-primary flux ratio equal
to 1:36).

The binarity causes oscillations in the modulus of the visibility,
as it is shown in the right-hand panel of Fig. 2. The amplitude of
oscillation increases with the secondary-to-primary flux ratio, and
the frequency of oscillation (in the (u, v)-plane) increases with the
primary to secondary distance.

Figure 2. Distribution of the modulus of the visibility in the (u, v)-plane. Left-hand panel: single-disc model. Right-hand panel: binary model.
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Table 1. Fiducial parameters of the binary and the one-spot
models.

Model T1 φ1 T2 φ2 ε2 θ2

(K) (mas) (K) (mas) (mas) (deg)

Binary 4000 6.0 4000 1.0 18 71
one-spot 3650 6.3 4000 3.0 1.9 71

Figs 3 and 4 present four panels (each containing four sub-
panels), and are organized as follows. On the left-hand side of
these figures (labels (a) and (c)) is shown what pertains to the linear
configuration (A0–D0–H0), while on the right-hand side (labels (b)
and (d)) is shown what pertains to the triangular configuration (A0–
D2–H0). This latter case will be examined later on in Section 5. In
both Figs 3 and 4, the top-panels (labels (a) and (b)) pertain to the
binary model while the bottom panels (labels (c) and (d)) pertain to
the one-spot model.

Fig. 3 refers to the spectral distribution of the triple product, and
in each panel are shown its real part, imaginary part, modulus and

phase distributed in the four sub-panels. In addition, each diagram
shows two traces: one for the binary model (thick line), the other for
the single uniform disc (thin dashed line). For the binary model, the
two components are aligned as parallel to the largest baseline (di-
rection A0-H0, 71◦ from north, clockwise), thus giving the maximal
spatial resolution.

Since the single disc is centrosymmetric, the imaginary part of
the triple product (top right sub-panels in panels (a) and (b)) is
uniformly null across the spectrum for this model (thin line). We
also notice that the triple product of the single-disc model is null
for a specific wavelength, equal to 2.29 μm. Because the first zero
of J1(x) is reached for x ≈ 3.83, the wavelength λ0 associated
with the first zero of the visibility function is given by the usual
relationship:

πφ
B

λ0
≈ 3.83, (20)

where B is the length of the baseline, and φ the angular diameter.
Then, it is straightforward to show that the null visibility of a 6-mas
uniform disc is only obtained with the 96-m baseline, for λ between

Figure 3. Spectral distributions of the triple product obtained with the linear A0–D0–H0 (left-hand panels) and triangular A0–D2–H0 (right-hand panels)
array configurations, for the binary model (top); for the one-spot model (bottom). Thick lines: composite model (central star + secondary component or spot);
thin lines: single central component model. Top left sub-panels: real part of the triple product. Top right sub-panels: imaginary part. Bottom left sub-panels:
modulus. Bottom right sub-panels: phase of the triple product (in degree). For each panel, the associated GCP and CSP values are, respectively: 105◦ and 38◦
(a); 78◦ and 35◦ (b); 31◦ and 31◦ (c); 21◦ and 21◦ (d).
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Figure 4. Variation of CSP (full thick line) and GCP (dashed thin line) obtained with the linear A0–D0–H0 (left-hand panels) and the triangular A0–D2–H0
(right-hand panels) configurations, versus the parameters of the binary model (top panels), and of the one-spot model (bottom panels).

2.126 and 2.474 μm. Indeed, equation (20) gives λ0 ≈ 0.76 μm for
the 32-m baseline, 1.53 μm for the 64-m baseline, and 2.29 μm for
the 96-m baseline.

To test the variation of CSP and GCP with the model parameters,
we refer to what we call the fiducial values, given in Table 1 and
used to produce Fig. 3.

Fig. 4 is dedicated to the behaviour of CSP and GCP versus
several parameters of the models, and is organized similarly to
Fig. 3, that is the panels on the left are for the linear configuration,
and the panels on the right are for the triangular one. The panels at
the top are for the binary model, and the panels at the bottom are
for the one-spot model. In each sub-panel, the thick solid line is for
CSP, and the thin dashed line is for GCP. For the panels at the top
(binary model), the sub-panels refer to the following parameters:
the diameter of the primary (top left), the diameter of the secondary
(top right), the angular separation (bottom left), and the PA (bottom
right). For the panels at the bottom (one-spot model), the sub-panels
refer to the following parameters: the temperature of the spot (top
left), the diameter of the spot (top right), the angular separation
(bottom left), and the PA (bottom right).

We notice the large amplitude of variation of GCP, between
−180◦ and 180◦, caused by the use of the four-quadrant inverse
tangent function (atan2 function), while CSP does not vary with so
large an amplitude. In addition, CSP takes only strictly positive val-
ues. The curves show that specific values of the model parameters
produce null GCP values (so leading to the erroneous conclusion of
centrosymmetry):

(i) one value of φ1 in the top left sub-panel,
(ii) two values of φ2 in the top right sub-panel,
(iii) four values of ε2 in the bottom left sub-panel, and
(iv) seven values of θ2 in the bottom right sub-panel,

while the other parameters are maintained at their fiducial values.
These 14 sets of parameter values are gathered in the top part of
Table 2, with the associated CSP values included in the last column
(remember that GCP = 0◦ for any set of Table 2), the second part
(bottom) being associated with the one-spot model (next section).
A null GCP value means that the spectral distribution of the triple
product shows an imaginary part with negative values compensat-
ing the positive values, and not that the model is centrosymmetric.
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Table 2. Parameter sets of the binary
model (top part) and of the one-spot model
(bottom part), providing null GCP values
with the linear configuration (A0–D0–H0).
The last column gives the associated CSP
values.

φ1 φ2 ε2 θ2 CSP
(mas) (mas) (mas) (deg) (deg)

6.00 1.00 18.00 161.0 0.0
6.00 1.00 18.00 14.8 18.5
6.00 1.00 18.00 36.4 20.7
6.00 1.00 18.00 105.6 20.7
6.00 1.00 18.00 127.3 18.5
6.00 1.00 18.00 145.3 5.2
6.00 1.00 18.00 176.7 5.2
6.00 1.00 4.87 71.0 5.2
6.00 1.00 10.00 71.0 18.5
6.00 1.00 14.81 71.0 20.7
6.00 1.00 19.78 71.0 21.5
6.00 5.98 18.00 71.0 59.4
6.00 8.02 18.00 71.0 28.0
1.27 1.00 18.00 71.0 31.4

T2 φ2 ε2 θ2 CSP
(K) (mas) (mas) (deg) (deg)

4000 3.00 2.63 71.0 4.1
9616 3.00 1.90 71.0 31.2

Although we could think that finding a null GCP value associ-
ated with a non-null CSP value is an extreme and rare case, we
must recall that, when dealing with real data which are subject to
measurement errors, each GCP value smaller than its uncertainty
can be incorrectly considered as indicator for centrosymmetry as
well, as shown in table 3 of Paper I for the two targets TX Psc and
W Ori, thus increasing the number of possible false detections of
negative asymmetry.

Let us also notice that the parameter set given in the first line of
Table 2, obtained with θ2 = 161◦, produces both a null GCP value
and a null CSP one. The explanation of this result is straightforward:
the orientation angle of the secondary has been chosen so that the
orientation of the couple (161◦ = 71◦ + 90◦, from north, clockwise)
is perpendicular to the linear array (oriented 71◦ from north, clock-
wise). Here, the interferometer cannot detect the binarity (and any
departure from centrosymmetry), since it has no spatial resolution
along the direction of the couple.

4.2 The one-spot model

To generate synthetic spectro-interferometric data for the one-spot
model, we use an approach to some extent similar to the one used
for the binary model. Namely, we consider three discs as compo-
nents: the central star (spectral radiance O1, diameter φ1), the spot
(radiance O2, diameter φ2) shifted by the amount ε2 lying on the
surface of the star, and the corresponding part of the star (same
radiance as the star and same diameter as the spot) replaced by
the spot. The expression of the composite Fourier spectrum is also
given by equation (12), where Ô1, Ô2, and Ô1−2 are the corre-
sponding, respective, Fourier spectra of these components. Here
again, the central source is assumed to be a limb-darkened disc of
temperature T1.

For the spot, we assume it is a disc emitting radiation as a black-
body with temperature T2. This disc is seen as projected on to the
plane perpendicular to the line of sight, and its apparent shape is
roughly an ellipse, all the more flattened as the spot comes close
to the stellar limb. Previous studies on RSGs demonstrated that
spots may be modelled well by uniform ellipses (Young et al. 2000;
Haubois et al. 2009; Baron et al. 2014). Fig. 1 shows the gen-
eral geometry, in the ‘standard case’, used to compute the Fourier
Transform of the composite brightness distribution. This standard
case means that the shift is larger than half the minor axis of the
ellipse (radial direction), and that the projected disc is not cut by
the stellar limb. The complementary situation is considered sepa-
rately later on. To take into account the shape of the projected spot,
we use an elliptic shape whose minor axis is equal to μφ2, where
μ =

√
1 − (2ε2/φ1)2 is the ratio minor to major axis, ε2 the angu-

lar distance between the centre of the stellar disc C1 and the centre
of the ellipse C2. Actually the shape of the projected spot is not a
perfect ellipse, but a faintly distorted one because the spot is lying
on a sphere and not on a plane. However, including this small dis-
tortion in the computation would be rather meaningless for several
reasons : (i) the one-spot model is in itself a coarse description of
the brightness distribution and the weak distortion is not critical in
this approach; (ii) the distortion is weak and is reasonably not likely
to have a substantial effect on the result; (iii) the purpose of the
modelled distribution is to examine the respective diagnosis from
GCP and CSP, when working on identical geometries, and this goal
is not corrupted by using such a weakly distorted elliptic shape.

The spatial spectrum (Fourier Transform) of the composite distri-
bution is computed by integration over the polar coordinates r and
θ , respectively, when moving the point M radially from Q− to Q+,
along the directions lying between the limiting angles θ− and θ+.
This is quite similar to the case of the binary model, and to calculate
for example Ô1−2, the Fourier spectrum of the elliptic portion of the
central brightness distribution at the spot location, we use the same
general double integral as the one used in equation (14), but here
the determination of the boundaries is not as straightforward as it is
for the binary model:

Ô1−2 (u, v) =
∫ θ+

θ−

∫ r+

r−
O1 (r, θ ) e−2iπr (u cos θ+v sin θ ) r dr dθ, (21)

where the expressions of the boundaries θ± and r± are given by
equations (A7) and (A8), respectively.

In the standard case of an elliptic spot not truncated by the stellar
limb (i.e. ε2 ≤ (φ1 − μφ2)/2), the Fourier spectrum of the spot
brightness distribution Ô2 is (see, e.g. Berger & Segransan 2007;
Tatebe 2007):

Ô2 (u, v) = πμφ2
2

4
Bλ (T2)

2J1

(
π
√

(φ2u′)2 + (μφ2v′)2
)

π
√

(φ2u′)2 + (μφ2v′)2
β (u, v) ,

(22)

where u′ = u cos θ ′
2 + v sin θ ′

2 and v′ = −u sin θ ′
2 + v cos θ ′

2 are the
rotated (u,v) coordinates, with the rotation angle θ ′

2 = θ2 + π/2.
The non-standard case, occurring when the spot, close to the

stellar edge, is only partially visible, i.e. for (φ1 −μφ2)/2 <ε2 <φ1,
the Fourier spectrum Ô1−2 is given by

Ô1−2 (u, v) =
∫ θ+

θ−

∫ φ1/2

r−
O1 (r, θ) e−2iπr (u cos θ+v sin θ ) r dr dθ.

(23)

For a spot model, including a central blackbody and an untrun-
cated circular spot, the expression of the composite visibility is

MNRAS 443, 3550–3563 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/443/4/3550/1022761 by guest on 15 January 2022



3558 P. Cruzalèbes et al.

similar to equation (18):

Vλ (u, v) = γ
2J1

(
πφ1

√
u2 + v2

)
πφ1

√
u2 + v2

+ (1 − γ )
2J1

(
πφ2

√
u2 + v2

)
πφ2

√
u2 + v2

β (u, v) , (24)

where β is given by equation (13), and the coefficient γ is now
given by

γ = φ2
1Bλ (T1)

φ2
1Bλ (T1) + φ2

2 [Bλ (T2) − Bλ (T1)]
. (25)

If T2 = T1, the spot cannot be distinguished from the stellar surface
(γ = 1), and the composite visibility is equal to the visibility of the
central source only. If T2 > T1, the spot appears as an area brighter
than the stellar disc. If T2 < T1, it appears as a darker one.

Coming back to Fig. 3, dedicated to the spectral behaviour of the
triple product, the bottom panels (labels (c) and (d)) refer to the one-
spot model. We have on the left, the case of the linear configuration
while the case of the triangular configuration is on the right. In each
sub-panel are shown the real part (top left), the imaginary part (top
right), the modulus (bottom left), and the phase in degrees (bottom
right). Thick lines are for the one-spot model while thin lines are
for the single disc only.

The stellar disc has an outer diameter of 6.3 mas, with a radial in-
tensity given by the TURBOSPECTRUM+MARCS code, with Teff = 3650 K
(Alvarez & Plez 1998; Gustafsson et al. 2008; Plez 2012). The
spectral features seen in the right-hand part of the spectrum (from
2.26 μm) are caused by the CO molecule, present in the synthetic
stellar atmosphere. The spot is modelled by a 4000-K blackbody,
appearing as an ellipse of uniform brightness with 3-mas major
(tangential) diameter, shifted by 1.9 mas from the centre of the stel-
lar disc. The two components (stellar disc and spot) are aligned as
parallel to the largest baseline (direction A0-H0, 71◦ from north,
clockwise), thus giving the maximum spatial resolution. The top left
sub-panel shows the real part of the triple product; the top right sub-
panel: the imaginary part; the bottom left sub-panel: the modulus;
and the bottom right sub-panel: the phase of the triple product (in
degree). Let us notice that the imaginary part of the triple product
for the single disc model is uniformly null across the spectrum, and
that the triple product is null for λ ≈ 2.26 μm. Equation (20) gives
the angular diameter of the equivalent uniform disc, approximately
equal to 5.93 mas.

Back to Fig. 4, the bottom panels, dedicated to the one-spot
model, show the variation of CSP and GCP (respectively continuous
thick line and dashed thin line) versus four parameters related to
the spot and distributed on four sub-panels, while other parameters
are maintained at their fiducial values (given in Table 1). The four
parameters involved are the following: temperature of the spot (top
left), diameter of the spot (top right), angular shift (bottom left),
and PA (bottom right). Here again, the panels on the left refer to
the linear configuration, and the panels on the right refer to the
triangular one.

We notice the small variation of CSP and GCP with the spot
temperature. This situation is not surprising since both GCP and
CSP are built to be sensitive to geometrical asymmetries and not to
photometric differences.

Indeed when the temperature of the spot is modified, the geom-
etry is not, and hence the deviation from centrosymmetry either, so
that CSP (and neither GCP) is not changed. However, it might be
suspected that photometry has an effect on visibilities, which are

the basis for the calculation of CSP. Regarding this point, it must be
noted that the system spot+star can be thought as a virtual binary
system with a separation less than the radius of the principal com-
ponent (here the central star). A binary system induces oscillations
through the visibility curve, whose amplitude is even lower than
the fluxes of the components are different. Moreover, the period
of these oscillations increases when the separation decreases, and
when this latter is less than the radius of the principal component,
they significantly affect the visibility curve only beyond the second
lobe of the visibility curve. Our observations are limited in spatial
frequencies and the ones allowed by our baselines are to remain
within this second lobe. Therefore, faint amplitude and long period
of the oscillations do not disturb the visibilities in the range of the
available spatial frequencies. For these reasons, it is not surprising
that CSP is not sensitive to change to the spot temperature.

Through the sub-panels, we find two cases where GCP is null
(then leading to conclude to centrosymmetry), although the model
is obviously not centrosymmetric. These two sets of model param-
eters are gathered in the bottom part of Table 2, with the corre-
sponding CSP values given in the last column. Besides, from these
sub-panels, we see that GCP significantly deviates from CSP on
finite domains of values for the parameters T2, ε2, and θ2, and in
addition, we see that CSP is more stable than GCP. We also no-
tice the little differences between the linear-configuration and the
triangular-configuration cases. This is commented further in the
next section.

5 C H A N G I N G TH E A R R AY C O N F I G U R AT I O N

We now study the effect of changing the configuration of the
interferometric array (panels on the right in Figs 3 and 4). The
new array considered for the present simulations is the triangular
VISA-configuration A0–D2–H0, with the three baselines A0–D2
(B = 57.7 m, PA = 127◦), D2–H0 (B = 80 m, PA = 34◦), and A0–
H0 (B = 96.0 m, PA = 71◦). Polar angles are counted clockwise.

The diagrams for this new configuration appear on the right-hand
side of Figs 3 and 4. They are organized similarly to the panels on
the left-hand side. In Fig. 3, spectral distribution of triple product,
with binary model in panel at top right and one-spot model in
panel at bottom right (single disc in thin lines, composite models
in thick line). Sub-panels show real part, imaginary part, modulus,
and phase. In Fig. 4, variation of GCP and CSP (thin dashed line,
thick line) versus parameters of the models: binary model in panels
at top, one-spot model in panels at bottom. Sub-panels at top show
variations versus diameter of the primary, diameter of the secondary,
angular separation, and PA. Sub-panels at bottom show variations
versus spot parameters: temperature, diameter, angular shift, and
PA.

We notice that the amplitude of the triple product obtained with
the triangular configuration (right-hand panel of Fig. 3) is 25 per cent
to 30 per cent smaller than the amplitude obtained with the linear
one (left-hand panel of Fig. 3). This is easily explained, thanks to the
use of the shortest and intermediate baselines with longer lengths:
57.7 m against 32 m, and 80 m against 64 m, respectively. Despite
this, the curves shown in both panels of Fig. 3 look similar. We
explain this result, thanks to the use of the same longest baseline
(96 m) in both configurations, which fixes the location of the zero
crossing of the triple product in the spectrum: λ0 ≈ 2.29 μm for the
binary model; λ0 ≈ 2.26 μm for the one-spot model.

The panel at right of Fig. 4 shows the variation of CSP and GCP
versus the parameters of the binary and the one-spot model, using the
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Table 3. Parameter sets of the binary
model (top part) and of the one-spot model
(bottom part), providing null GCP values
with the triangular configuration (A0–D2–
H0). The last column gives the associated
CSP values.

φ1 φ2 ε2 θ2 CSP
(mas) (mas) (mas) (deg) (deg)

1.63 1.00 18.00 71.0 14.7
6.00 1.00 18.00 13.7 9.5
6.00 1.00 18.00 36.7 17.4
6.00 1.00 18.00 104.8 18.1
6.00 1.00 18.00 127.9 8.6
6.00 1.00 18.00 145.0 6.8
6.00 1.00 18.00 160.4 6.9
6.00 1.00 18.00 177.9 11.4
6.00 1.00 4.82 71.0 2.1
6.00 1.00 10.24 71.0 17.1
6.00 1.00 14.89 71.0 17.9
6.00 1.00 19.89 71.0 17.5
6.00 6.06 18.00 71.0 42.3
6.00 6.66 18.00 71.0 22.7

T2 φ2 ε2 θ2 CSP
(K) (mas) (mas) (deg) (deg)

4000 3.00 2.55 71.0 3.2
9480 3.00 1.90 71.0 30.6

triangular A0–D2–H0 configuration. Here again, the curves shown
in the left- and right-hand panels of Fig. 4 look similar. The 16 sets of
parameter values for the binary model, and the 2 sets of parameter
values for the one-spot model, corresponding to GCP = 0◦ and
CSP �= 0◦, are gathered in Table 3, with the corresponding CSP
values given in the last column. We notice slight differences between
the parameter values (and their associated CSP values) of Tables 2
and 3. In particular, the null CSP value associated with the null
GCP value, obtained for θ2 = 161◦ with the linear A0–D0–H0
configuration, no longer appears with the triangular A0–D2–H0
configuration. Indeed, for θ2 = 161◦, the calculation with A0–D2–
H0 gives CSP = 9.◦7 and GCP = 10.◦3 , thus not included in Table 3.

To explain this last result, we must not forget that the triple
product is the combination of three visibilities, obtained by the pro-
jection of the source brightness distribution on the three baselines:
for θ2 = 161◦, the binary is seen as a single star with the perpen-
dicular baseline A0–H0 (PA = 71◦), but not with the two other
baselines A0–D2 (PA = 127◦), and D2–H0 (PA = 34◦). Writing
TA0D2H0 as the triple product of the visibilities VA0D2, VD2H0, and
V �

A0H0, according to equation (2), its imaginary part is not null, equal
to (forgetting the λ variable)

�A0D2H0 = �VA0D2 �VD2H0 �VH0A0

+ �VA0D2 �VD2H0 �VH0A0, (26)

since �VH0A0 = 0 whatever λ (but neither �VA0D2 nor �VD2H0). In
the case of the linear configuration, A0–D0–H0, �VA0D0, �VD0H0,
and �VA0H0 are all three null, and �A0D0H0 is null whatever λ.

The conclusion of this short study is that CSP is more stable
than GCP, which shows large-amplitude variations between −180
and +180◦ versus the parameter values, whatever the geometry of
the array. According to its definition, CSP is limited to the range
[0,90◦]. Thus, when the value of GCP exceeds 90◦, the value of
CSP decreases, and conversely, when the value of GCP becomes

negative, the value of CSP increases. Moreover, for given values of
the model parameters, GCP shows null values, what is potentially
leading to an erroneous diagnosis of centrosymmetry while CSP
does not. Let us also recall that neither GCP nor CSP can be used to
distinguish between the one-spot and the binary models, since both
models may produce the same values. At first sight, they only are
indicators for centrosymmetry. But actually, CSP gives more than
a simple yes/no diagnosis, and may be considered as a measure of
the degree of departure from centrosymmetry.

In order to go a step further with the use of the CSP parameter,
we now study how simple geometrical models could yield crude
approximations of more complicated brightness distributions, using
CSP as a tracer for similarity.

To do this, we consider, in the two following sections, two bright-
ness distributions obtained from physical simulations, and from
which CSP is calculated for the linear and for the triangular base-
line configurations. Then, knowing the global shape of the source,
we build a geometrical model from which several trials and errors
allow us to identify two CSP values close to the ones resulting
from the simulated distribution. Thus, we find that (i) the use of
CSP is not restricted to simple and purposely built toy-models but
may address more complicated brightness distributions; (ii) CSP
can be used to trace the similarity between a toy-model and a more
complex physical model.

6 C O M PA R I N G T H E B I NA RY MO D E L
TO T H E RO C H E L O B E - F I L L I N G M O D E L

Binary stars are especially difficult to detect among evolved stars
(like Mira variables) using the traditional method of searching for
radial-velocity variations of the primary component because the
spectroscopic signature of their pulsating atmospheres overlaps with
that of the orbital motion of the binary. Therefore, interferometry
offers an interesting alternative, not only for detecting the compan-
ion around the primary star (as we have done in Section 4.1 with
the ‘geometric’ binary model) but also for detecting the tidal de-
formation of the primary caused by the secondary star (in the case
where the latter is not visible, being too faint). The latter situation
is encountered when a luminous evolved star is accompanied by a
main-sequence or white-dwarf companion, close enough to trigger
a tidal deformation of the primary (Boffin et al. 2014). If the primary
is close to filling its Roche lobe, it will have an elongated (peer-like)
shape, and parameters probing asymmetries (like the CSP) might
be able to detect it.

In the present section, we investigate the behaviour of CSP
in the case of a simple geometric binary model when applied
to a star filling its Roche lobe, in a system with a mass ratio
Mprimary/Msecondary = 1, seen edge-on to maximize the asymme-
try. The image of the tidally deformed star has been generated
by a program originally designed to analyse eclipsing-binary light
curves obtained by ESA’s Gaia mission (Siopis & Sadowski 2012).
This program was modified to produce images and interferometric
observables, and the details are presented in Paladini et al. (2014).
Here, we restrict ourself to a description of some of its aspects
relevant to our investigation.

The method starts with a MARCS model (Gustafsson et al. 2008)
of Teff = 3200 K, log g = 0.35, and solar metallicity that is used to
generate the limb-darkening profile (as in our Paper I, fig. 9, and
Paper II, fig. 1). These model-parameter values have been taken
from Mayer et al. (2014, in preparation) in order to simulate the
intensity profile of the S-type giant star π1 Gruis, that we have
widely studied for many years (see, e.g. Cruzalèbes & Sacuto 2006;
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Figure 5. K-band mean intensity map given by the Roche lobe-filling
model. The dashed large and small circles show the primary and the sec-
ondary components used by the SPIDAST code for the binary model.

Sacuto et al. 2008). The Gaia eclipsing binary software approxi-
mates the stellar surfaces by Roche equipotentials, which are nu-
merically computed for each component of the binary system using
a dense mesh of points. This mesh defines a scalar field of the pro-
jected intensities (calculated from the MARCS model), which is then
linearly interpolated to produce a synthetic 1020-by-1020-pixel im-
age of the system.

The process is repeated for each of the wavelengths available in
the K band, mid-resolution mode of AMBER (R = 1500). Thus, we
have in the end a set of 505 (intensity) images matching the mid-
resolution of AMBER. These images are then Fourier-transformed
and we calculate the complex visibility, the triple product and the
CSP as defined in equation (5) for each monochromatic intensity
distribution, and for the two configurations A0–D0–H0 and A0–
D2–H0. Specific details of the method of calculation are given in
Paladini et al. (2014). The resulting CSP values are: 39.◦5 for the
linear configuration, and 41.◦0 for the triangular configuration.

To match the CSP values given by the simulation of a tidally
deformed star and the CSP values given by the simulation of a
binary, using the SPIDAST code, we perform the following steps.

(i) We use a primary limb-darkened stellar disc with angular
diameter φ1 = 20 mas (close to the value for π1 Gruis), whose
intensity profile is produced by the MARCS model with T1 = 3200 K,
log g = 0.35, and solar metallicity.

(ii) We add a secondary uniform (blackbody) disc with parame-
ters: T2 = T1 = 3200 K, φ2 = 3.0 mas, ε2 = 13.0 mas, and θ2 = 71◦.
With these initial geometric parameters, both components of the
binary model are in contact, as shown in Fig. 5.

(iii) We slightly increase the separation ε2 and vary the secondary
diameter φ2, in order to match the CSP values given by the tidally
deformed star simulation with the same interferometric configura-
tions A0–D0–H0 and A0–D2–H0.

The calculated values for CSP are reported in Table 4. For a
secondary-component temperature of 3200 K, the closest binary
CSP values to the tidally deformed star simulation values are
obtained with φ2 = 2.98 mas, and ε2 = 12.90 mas. With these

Table 4. K band CSP values (in degree) obtained for
the Roche lobe-filling model and the binary model
(T2 = 3200 K) with the linear (A0-D0-H0) and the trian-
gular (A0-D2-H0) configurations.

Model A0–D0–H0 A0–D2–H0

Roche lobe-filling model 39.5 41.0
Binary model with

ε2 (mas) φ2 (mas)
11.5 3.00 3.0 43.3
12.0 3.00 18.0 40.6
12.5 3.00 33.1 40.7
12.9 3.00 39.9 41.3
12.9 2.99 39.7 41.2
12.9 2.98 39.6 41.1

parameter values, the displacement of the photometric barycenter
produced by the binary model is identical to that produced by the
Roche lobe-filling model.

Let us notice that we succeeded in matching the CSP values
given by the complex model with the linear and the triangular
configurations, by varying the values of the two parameters φ2 and
ε2 of the binary model, while the three other parameters φ1, T2, and
θ2 are kept fixed (the temperature of the primary being fixed by the
selected atmospheric model). Choosing other values for the three
fixed parameters leads to other values for the two free parameters,
matching the input CSP values as well. Hence, the uniqueness of
the values of the parameter set matching the CSP values is not
guaranteed. This is illustrated in Fig. 4, where different parameter
sets can produce the same CSP value. What is more, we claim that
models producing the same displacement of the photometric centre
produce the same CSP values.

When faced with a source with no a priori guess about its geome-
try, we anticipate that it might be difficult to find toy-models match-
ing the observed CSP values. We stress that neither CSP nor GCP
can discriminate between the model kind (i.e. binary or one-spot);
however, they give an idea about the magnitude of the displacement
of the photocentric barycentre with respect to the geometric one,
which is nevertheless a valuable piece of information.

7 C O M PA R I N G T H E O N E - S P OT MO D E L TO
S T E L L A R C O N V E C T I O N MO D E L S

Three-dimensional radiative-hydrodynamical (RHD) simulations
carried out with the CO5BOLD code (Freytag et al. 2012) show that
evolved massive RSGs are characterized by large convective cells
producing photospheric patterns (more noticeable in the infrared
than in the visible) with a typical size comparable to the stellar
radius, and evolving on a time-scale of tens of years (Chiavassa
et al. 2009, 2010a,b, 2011b). On top of these cells, small convective
structures (most conspicuous in the visible), with a size of about 5
to 20 per cent of the stellar radius, evolve on time-scales of weeks
to months. The latter features result from the opacity variation and
the gas dynamics at optical depths smaller than unity, i.e., farther
up in the atmosphere with respect to the continuum-forming region
(Chiavassa et al. 2011a).

The predicted granulation pattern causes SBAs, shown in Fig. 6,
that are responsible for deviations from centrosymmetry (already
measured in detail with closure phases and visibilities in the works
by Chiavassa et al.). These departures can be mimicked by a simple
geometrical model (one-spot) yielding (nearly) the same CSP value.
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Figure 6. Infrared intensity map given by the hydrodynamic model, after
removing the spatial frequencies lower than the first lobe of the visibility
function (figure taken from Chiavassa et al. 2010b, see there for details).
The dashed outer and inner circles show the approximate limits of the star
and of the central convective cell, respectively.

The search for such a geometrical model is done in the following
way.

(i) We compute intensity maps at each wavelength of the
AMBER MR–K band from the RHD simulation (denoted
ST35GM03N07), using the appropriate radiative transfer code OPTIM3D

(Chiavassa et al. 2009). The stellar parameters selected for the RHD
simulation are: Teff = 3487 K, log g = −0.335, R = 830 R�, and
M = 12 M� (Chiavassa et al. 2011b). For each wavelength, we fit
the actual instrumental resolution (R = 1500) by using the appro-
priate top-hat filter on the set of wavelengths given by the RHD
simulation. The simulation is scaled to an apparent angular diame-
ter of 10 mas and the intensity maps are rotated by an angle of 71◦,
so that the direction of the shift of the large spot is aligned on the
direction of the linear configuration.

(ii) We compute the 2D Fourier Transform of each monochro-
matic intensity distribution, as well as the triple product and the final
CSP value as defined in equation (5). The calculations are made us-
ing the method explained in Chiavassa et al. (2009) and for the two
configurations A0–D0–H0 (linear) and A0–D2–H0 (triangular).

In order to compare the values given by the SPIDAST code using
a one-spot model and the ones given by the RHD simulation, we
perform the following steps.

(i) We use a central MARCS limb-darkened stellar disc of diameter
φ1 = 10 mas with atmospheric parameters (extracted from a grid
of models) as close as possible to the parameters used for the RHD
simulation. The values we adopt are: T1 = 3490 K, log g = −0.6,
M = 12 M�, [Fe/H] = 0.0, [α/Fe] = 0.0, and ξ turb = 2 km s−1

(microturbulence velocity).

Table 5. K-band CSP values (in degree) obtained for the
hydrodynamic model and the one-spot model with the linear
(A0-D0-H0) and the triangular (A0-D2-H0) configurations.

Model A0–D0–H0 A0–D2–H0

3D hydrodynamic model 43.6 21.8
one-spot model with

T2 (K) ε2 (mas) φ2 (mas)
3490 0.60 6.00 40.0 16.0
3490 0.72 5.88 43.6 21.6
3590 0.72 5.89 43.5 21.8
3690 0.72 5.90 43.7 21.6
3390 0.73 5.86 44.0 21.9
3290 0.73 5.84 43.8 21.9

(ii) We add a blackbody spot with parameters: T2 = T1 = 3490 K,2

φ2 = 6 mas, ε2 = 0.6 mas, and θ2 = 71◦. These values come from
the intensity map of Fig. 6, where we point out the presence of a
large central convective cell with a diameter of about 60 per cent the
stellar diameter, slightly shifted upwards of about 6 per cent with
respect to the stellar centre.

(iii) For various spot temperatures T2 in the range ±200 K around
the disc temperature T1, we slightly vary the size φ2, the position
ε2, in order to match the CSP values given by the RHD simula-
tion with the same interferometric configurations A0–D0–H0 and
A0–D2–H0.

The resulting values for the comparison are reported in Table 5.
Since the initial parameters of the one-spot model have been chosen
so as to reproduce the intensity map of the RHD simulation, the
initial CSP values given by the one-spot model (40◦ with A0–D0–
H0 and 16◦ with A0–D2–H0) are close to the CSP values given by
the RHD simulation (43.◦6 and 21.◦8 , respectively). Note that the
asymmetry in the one-spot model is the result of both the different
fluxes for the blackbody and MARCS models (due to line-blanketing,
and despite the identical spot and disc temperatures) and the limb
darkening whose point-symmetry has been broken by the presence
of the non-centred spot.

Thus, the exact match of the 2 CSP values given by the RHD
simulation can be easily achieved, thanks to the variation of the
two parameters φ2 and ε2 of the one-spot model. Whatever the spot
temperature, the closest one-spot CSP values to the RHD-simulation
values are obtained with φ2 = 5.88 mas, and ε2 = 0.72 mas. Here
again, we notice the small variation of the CSP values with respect
to the spot temperature (see Section 4.2 for explanation).

Let us also note that, if we start with a different PA θ2 of the
spot, we do not converge to a pair of (φ2,ε2) values matching
the CSP values given by the RHD simulation. For instance, for
θ2 = 0◦ (instead of 71◦), the one-spot model with φ2 = 6.0 mas and
ε2 = 0.6 mas gives CSP = 13.◦2 with A0–D0–H0, and 39.◦2 with
A0–D2–H0, too far from the RHD-simulation CSP values of 43.◦6
and 21.◦8 , respectively.

In this section, we have shown that we can recover the CSP value
given by the 3D hydrodynamic model by using the one-spot model.
This, unsurprisingly, enhances the remark given in the previous
section that models with similar geometries produce similar CSP
values, although the opposite is not true.

We must emphasize that the one-spot model is a very crude
way to represent the complex photospheric structures. More than

2 Despite identical temperatures, the blackbody and MARCS-model fluxes
differ by about 20 per cent due to line-blanketing.
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one spot should be taken into account as well as proper intensity
contrast and shape variations. However, as shown in (e.g.) Chiavassa
et al. (2010b), fine surface inhomogeneities are associated with high
spatial frequencies, appearing farther than the second visibility lobe,
and they escape our capabilities in spatial resolution, since we only
have information in the first and second lobes of the visibility curves.
Thus, in the case of targets with small enough apparent diameter
(i.e. where the details of the photospheres are not resolved), the
one-spot model can be used to approach the stellar aspect given by
the RHD simulation.

Let us note that with an actual (observed) source, we are not to-
tally unaware of what is its physiognomy, and, for example with red
giants and supergiants, a brightness distribution comprising one or
several spots is rather commonplace. Besides, simple geometrical
toy-models involve only few parameters. Thus, a fitting process,
based on trials, is not totally blind at start, and the space of pa-
rameters to explore is rather limited, so that finding a satisfactory
adjustment is not as hopeless as can be thought at first. Indeed, as
already mentioned, observations from several configurations yield
constraints which help to limit the range of variation for the geo-
metrical parameters of the toy-model and the search for the best
adjustment. Besides, a grid of ‘images’ computed from RHD simu-
lations with various physical parameters, is available. Then, as soon
as, for example, a one-spot toy-model is found relevant (agreement
between observed and modelled CSP) the closest ‘image’ is selected
as a first-level hypothetic representation of the observed source. The
associated physical parameters can be considered as first estimates
for iterative fine tuning of the RDH simulation leading to the final
physical source parameters.

8 C O N C L U S I O N

We have described the CSP, an indicator of deviation from cen-
trosymmetry, for the study of source brightness asymmetries. To
study its relevance, we have conducted several tests in parallel to
the usual indicator called GPC (global phase closure). CSP takes
advantage of the spectral information available over the whole set
of individual channels in the spectral range given by a photometric
filter.

To test the efficiency of CSP to measure the degree of asymmetry,
we used models of brightness distribution which present known
asymmetries, from which both GCP and CSP were calculated. The
models are simple geometrical toy-models (binary model and the
so-called one-spot model). This analysis showed that CSP is fully
relevant for the detection of asymmetries and moreover that CSP is
able to detect asymmetries that are not detected by GCP. Besides,
CSP is more stable than GCP.

The second part of our study involved less simple models (phys-
ical Roche lobe model and hydrodynamical model) for which CSP
was calculated. We showed that the simple toy-models can be a
crude approximation of the brightness distributions provided by the
physical models. In this attempt, CSP (associated with the simple
models) works as a likeness tracer, and modifying the parameters
of the simple models allows us to approach the target CSP value.
Here must be recalled that, with an unknown brightness distribu-
tion, neither CSP nor GCP are able to infer a definite description
and their role is at first limited to detection.

Fitting a simple model on an observed brightness distribution
could bring some indications on the physiognomy of the source, but
it can be thought hopeless to find applicable parameters. However,
adjusting simple models on a real distribution involves only a few

parameters, and moreover, if we combine observations with various
interferometric configurations, additional constraints apply in the
adjustment procedure. Therefore, there is some hope that suitable
parameters of the simple model can be found.

In summary, we have shown that CSP is an efficient indicator for
source brightness asymmetries, and yields a measure of the degree
of asymmetry. It is complementing the use of GCP by additional
capabilities. Moreover, it seems possible to use it as a help to build
simple geometrical models, which could fit (at least roughly) to
brightness distributions of observed sources via an iterative process
involving physical and more complex models.
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Sacuto S., Jorissen A., Cruzalèbes P., Chesneau O., Ohnaka K., Quirrenbach

A., Lopez B., 2008, A&A, 482, 561
Siopis C., Sadowski G., 2012, in Arenou F., Hestroffer D., eds, Orbital Cou-

ples: Pas de Deux in the Solar System and the Milky Way. Observatoire
de Paris, France, p. 59

Tatebe K., 2007, PhD thesis, Univ. California, Berkeley
Tatebe K., Chandler A. A., Hale D. D. S., Townes C. H., 2006, ApJ, 652,

L666
Wu J., Yang Z., Feng D., 2005, Trans. Tianjin Univ., 6, 428
Young J. S. et al., 2000, MNRAS, 315, 635

A P P E N D I X A : A N G U L A R A N D R A D I A L
B O U N DA R I E S O F T H E E L L I P S E

We describe hereafter the steps leading to the expressions of the
boundaries in the standard case of an elliptic spot not truncated by
the stellar limb

(1) We start with θ2 equal to zero. We keep the same notations
for the boundaries (r± and θ±), but we momentarily introduce 2A
for the major axis (thus parallel to the y-direction, A = φ2/2) and
2B for the minor axis (B = μφ2/2).

(2) We determine the Cartesian coordinates of the points Q− and
Q+, as well as the ones of the contact points of the tangent (setting
the angular boundaries θ− and θ+).

(3) We transform the Cartesian coordinates into polar coordi-
nates.

(4) Then, we consider the case θ2 �= 0, and the effect of chang-
ing this orientation will be done by a shift applied to the angular
coordinates.

To perform step 2, we first recall the standard equation of an
ellipse shifted from the origin of coordinates, and the equation of
the straight line containing Q− and Q+:

(x − ε2)2

B2
+ y2

A2
= 1

y = x tan θ. (A1)

Resolving this system, we have the quadratic equation:(
1 + B2

A2
tan2 θ

)
x2 − 2ε2x + ε2

2 − B2 = 0, (A2)

whose roots are the x-coordinates of the intersection of the straight
line with the ellipse. The x-coordinates of the tangential points
(Q0 ±) are found by making the discriminant � equal to zero, what
gives a quadratic equation in tan θ yielding:

(i) ifε2 ≥ B : θ0± = ± arctan

√
A2

ε2
2 − B2

(ii) ifε2 ≤ B : θ0± = ±π/2. (A3)

When � is strictly positive, we find the roots x±:

x± = ε2 ± B

√
1 − ε2

2−B2

A2 tan2 θ

1 + B2

A2 tan2 θ
. (A4)

Going to step 3 is straightforward (definitions): x = r cos θ and
y = r sin θ .

Step 4: using the notation used in Fig. 1 (right), when restoring
θ2 �= 0, we have to change the θ ’s into (θ − θ2) in the expressions,
so that we have

(i) if ε2 ≥ B : θ0± = θ2 ± arctan

√
A2

ε2
2 − B2

(ii) if ε2 ≤ B : θ0± = θ2 ± π/2, (A5)

and

r± = 1

cos (θ − θ2)

ε2 ± B

√
1 − ε2

2−B2

A2 tan2 (θ − θ2)

1 + B2

A2 tan2 (θ − θ2)
. (A6)

Introducing the ratio minor to major axis
μ = B/A =

√
1 − (2ε2/φ1)2 and restoring the initial nota-

tions A = φ2/2, B = μφ2/2, we have the final expressions
(for ε2 ≤ (φ1 − μφ2)/2):

(i) if ε2 ≥ μφ2/2 : θ± = θ2 ± arcsin

⎛
⎜⎜⎝ 1√

1 − μ2 +
(

2ε2
φ2

)2

⎞
⎟⎟⎠

(ii) if ε2 ≤ μφ2/2 : θ± = θ2 ± π/2, (A7)

and

r± = ε2 cos (θ − θ2)

cos2 (θ − θ2) + μ2 sin2 (θ − θ2)

± μφ2

2

√
cos2 (θ − θ2) +

[
μ2 −

(
2ε2
φ2

)2
]

sin2 (θ − θ2)

cos2 (θ − θ2) + μ2 sin2 (θ − θ2)
.

(A8)

If μ = 1 (circular spot), we retrieve the expressions of the angular
and radial boundaries for the binary model, respectively, given by
equations (15) and (17).
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