
HAL Id: hal-03526439
https://hal.science/hal-03526439

Submitted on 23 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Feature induction by backpropagation
Edmund Ronald, Marc Schoenauer, Michèle Sebag

To cite this version:
Edmund Ronald, Marc Schoenauer, Michèle Sebag. Feature induction by backpropagation. 1994
IEEE International Conference on Neural Networks (ICNN’94), Jun 1994, Orlando, United States.
pp.531-534 vol.1, �10.1109/ICNN.1994.374220�. �hal-03526439�

https://hal.science/hal-03526439
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Feature Induction by Backpropagation

Edmund Ronald, Marc Schoenauer, Martine Sebag

CMAP, Ecole Polytechnique,91 128 Palaiseau, France
email: eronald@cmapx.polytechnique/r

0. Abstract
A method for investigating the internal knowledge representation constructed by neural net learning is described: It is
shown how from a given weight matrix defining a feed-forward artificial neural net, we can induce patterns character
istic of each of the classes of inputs classified by that net. These characteristic patterns, called prototypes, are found
by a gradient descent search of the space of inputs. After an exposition of the theory, results are given for the well
known LED recognition problem where a network simulates recognition of decimal digits displayed on a seven-seg
ment LED display. Contrary to theoretical intuition, the experimental results indicate that the computed prototypes re
tain only some of the features of the original input patterns. Thus it appears that the indicated method extracts those
features deemed significant by the net.

1. Introduction
Feature induction attempts to recover from a given trained net some input pattern whose presentation would elicit a
desired output. Such an input is called a prototype. More formally, given a trained netNw {W stands for the weights
matrix), and a desired target output vector t, we wish to solve for a prototypical input vector i such that the net's com
puted output vector o = N w (i) approximates the target t. Feature induction is a search through input space.
Note that in a supervised learning algorithm such as back-propagation [PDP], we are given a training ensemble P of
input-output pairs <ip, tp>, and search for a net - i.e. a matrix W of synaptic weights {and biases) such that for each
input exemplar ip. Nw(ipJ approximates the corresponding desired output t

p
. Learning is thus a search that trawls

through the space of weight matrices.
To summarize the preceding discussion, both back-propagation and feature induction by prototype search can be seen
as search algorithms that solve for different variables in the equation

(EQ l)

Both methods employ gradient descent, moving through the search space in discrete steps.
The core sections of this paper are sections 2 and 3. In section 2 we derive the value of the steps by which feature in
duction travels through the input vector space. The latter section 3 is devoted to the description of a numerical exper
iment.

2. Feature Induction by Error Back-Propagation
In this section we give a fairly informal derivation for our method of prototype-search by gradient descent1 • Our pro
cedure for finding prototypical inputs is derived from the back-propagation search procedure in W-space (the space of
weight matrices); this procedure as described in [Rumelhart Hinton & Williams 86) has been frequently and success
fully employed in the training of nets, and has since seen numerous improvements. Back-propagation relies on a re
cursive procedure which propagates the so-called error or 8 terms backwards from the output of the net. Our feature
inductionmethod builds on this same set of propagated 8 error terms,which are described in detail in the reference
above pp 325-326. As this error term calculation is well understood, we shall not justify it in the derivation below,
which only highlights the novelties of our feature induction method with respect to classical back-propagation.
In back-prop net training, for a given training exemplar <i

i" tp> in the training ensemble P, the weight matrix W gives
rise to a computational error which is the distance between what the net computes -i.e. O

p
= Nw(ip)- and the desired

target output vector tp· The actual distance is usually chosen to be the square euclidean distance. Back-propagation
computes the gradient of this error function for each test exemplar in tum, and travels in the opposite direction in order
to minimize the error over the whole training set. Feature induction, is a similar gradient descent search procedure,

I. A search method other than gradient descent, e.g. a genetic algorithm could also be employed 10 search the space of weights [de Garis 90), (Schoe
nauer, Ronald &Damour 93]

1

which takes place in the space of input vectors. It is now assumed that the net has already been trained, and thus the W
matrix is fixed. Assume that we have a desired target output rd, and wish to search for an input id such that

(EQ2)
Now let E stand for the value taken by the square error function, i.e. the square of the euclidean distance, in output
space, separating the desired target output td and the actual output od=NwOd) computed by the net with weight matrix
W Then Ed is defined by

(EQ3)
n

where the index n ranges over the dimensions of the input space, or over the set of input neurons if the reader prefer
the concrete over the abstract. Minimizing the error Ep by an iterative algorithm like gradient descent will allow us
(provided the iterations converge) to satisfy (2).
Whereas the usual [PDP] back-propagation learning methods varies the weights, our modified algorithm searches it
eratively through input space, yielding corrections to the input vector i, corrections we shall denote by [�i] . Gradient
descent means that these corrections are steps taken in opposite direction to the gradient of the error function, with the
partial derivatives being taken with respect to the input neurons' activations1 . Proportionality in the opposite direction
is written as

[�i] = -11V E (EQ4)
where T) is some small fixed positive parameter called the learning rate. The error function Eis a mapping from net
input space into the set of reals. Thus equation (4) is equivalent to a system of equations in partial derivatives:

[�i] = -T)�E
n uan

(EQS)

where n ranges over the set of input neurons, and '2n are the corresponding activation values. For the purposes of our
algorithm, let us assume however that n ranges over the set of all neurons of the net. The algorithm thus involves com
puting all the partial derivatives in this extended system, although only those for the input neurons are of ultimate rel
evance. Now back-propagation learning [Rumelhart] already gives us a recursive method for estimating the weight
error derivatives 8n defined by:

where net0 is the net-input to neuron n defined by

netn = I,wknan

(EQ6)

(EQ7)

where the wkn are the synaptic weights leading from the output of the precursors of neuron n to neuron n's input. The
back-propagation method for deriving the 6 iterates through the layers of the net, starting from the output, moving
backwards. At each neuron n, it involves corilputing the weight-error derivative 6 , and then assigning credit for this
error to the preceding neurons in the net. Now if we look at some neuron k that is f; direct successor of neuron n in the
input layer, and we are interested in the partial derivative of the error function with respect to this input neuron's acti
vation, (dE/d an) then, assuming that neuron j admits only neuron k as successor, though k can have many inputs as
antecedents, we can obtain this partial derivative by employing the chain rule for derivation in order to rewrite equation
(5) as:

I. This straightforward gradient-descent could be enhanced by employing a momentum term to smooth the search and accelerate convergence.

2

-11""\a E = -E(�E) <} netk) = Ok(d netk)ua. unetk ua. da, J J J
(EQ 8)

And as by definition (7), net k = L W nkan, and in this special case the summation has a single term, we finally
obtain

-11iE = o W•kda. k J
}

(EQ9)

Now, in the general case, the input neuronj is of course connected to, and feeding forwards towards, several successor
neurons such as k. Thus it is reasonable to complete the algorithm by crediting it with the ponderated error that each
successor propagates backwards. We thus obtain our [�i] vector's components as

[�i] . = L,Okwik
J k

(EQ 10)

As classical back-prop training already gives us a method for recursively deriving the error terms Sic, the above descrip
tion suffices to define our feature induction algorithm. This is born out by experiment, as described in the next section.

The Seven-Segments example.
To investigate the usefulness of the technique on a small yet non-trivial example, a numerical experiment was per
formed on the so-called LED problem, simulating recognition of digits displayed on a seven-segment light emitting
diode display such as are commonly employed in pocket calculators. The network topology for effecting recognition
was a classical 3 layer feed-forward net: Seven neurons in the input layer (one per segment), 10 bidden neurons in a
single hidden layer totally connected to the input layer, and 10 again (one per decimal digit) in the output layer, this
being also completely connected to the hidden layer. The neurons embodied the usual sigmoid logistical activation
function F(x) =1/(l+exp(-x)).

12:355b7Bg□
�BB8?JS�eP

Top row shows display figures used for training net.
Bottom row indicates induced prototype. Marked
segments in prototypes are forced to 1 or forced to 0,
absent segments have an Indeterminate value.

The simulator software supplied with [Mc Lelland & Rumelhart 88] was employed as a basis for rewriting a suite of
programs. The first is a standard back-propagation simulator which trains a 3-layer net and writes the weight matrix
out to a file. The second program does the actual feature extraction. It reads in the net topology and the weights matrix
as generated by the back-prop simulator. It then reads in the definition of a target vector, and performs a prescribed
number (NITER) of forward-backwards iterations of the prototype search algorithm described in the preceding section,
starting from some random input vector. The prototype input corresponding to the target vector is assumed to be that
input vector which the algorithm has obtained after NITER steps.
Back-propagation training yielded a net capable of recognizing the digits in the LED problem, feature extraction then
retrieved the digits' shape from the weight matrix. This may seem a trivial example; but imagine that a human were
faced with digits presented as a bar-chart with the order of bars fixed but jumbled! This task would be conceptually
identical to reading. However a human attempting to solve it needs an explicit representation of knowledge that is usu
ally internalized (the features of the digits), and subconscious. This knowledge, stating which features (segments) are
essential for recognition and which may be neglected, is exactly that which our method retrieves from the trained net.
It can be seen in the figure that the prototype shapes retrieved by the feature induction method differ strongly from the

3

digits that served as training input. Clearly, the net bas eliminated some redundant information, and is therefore relying
on a subset of features to effect the recognition of the digits. In our figure, we have marked in black those segments
whose value in the prototype exceeds 0.75, and with bubbles those whose value lies under 0.25. A typical prototype is
that corresponding to the digit "5":

1 .0

I 0.68 I -0.07 _J1 .08

I -0 .08 I 0.69 I0.51

lnout •5" Comouted Prototvoe Reoresentatlon

4. Conclusion.
Explanation of reasoning is an area where neural nets are weak, compared to expert systems: Weight matrices are bard
to interpret directly, and the generalization process by which a net categorizes novel input is not yet well understood.
Prototype induction can be seen as a tool to enlighten the user of a net.
In our experiments, the speed of convergence of prototype search seems to be much greater than for back-prop learn
ing. We believe this is because the search-space is much smaller in dimensionality than in standard backprop where
the search-space is weight-matrix-space. In the case of the seven segments problem, as solved by a 7-10-10 net, the
input space has dimensionality of 7, while (7*10 +l0*lO) weights and lo+l0 biases, i.e. 190 parameters are needed
to define a weight matrix.
Our experiments with this prototype recovery method have encountered some potential problem areas which stem from
the mathematics of the algorithm. Our method shares with classical back-prop the well known drawbacks of the gra
dient-descent approach: Local minima can trap the search, and oscillations can occur when the learning rate is too
steep. The speed of convergence seems however to be much greater than for back-prop, perhaps because the search
space is smaller in dimensionality. Like back-prop learning, prototype search starts from a random initial input state,
thus the algorithm might converge to different prototypes on subsequent runs.
A mathematics-induced problem which we have seen occur in prototype recovery, but which cannot appear in back
propagation is run-away. By this we mean convergence to fictitious prototype input vectors outside the a-dimensional
unit cube. Such a prototype vector has no signification as an input, yet we have encountered this problem in the seven
segments example. It is particularly vexing, because the direction to which such a ghost points can be entirely spurious.
This is a problem which we hope to investigate further.

S. Acknowledgments
The first author thanks Steve Suddarth for introducing him to back-propagation. Patrick Greussay found time to look
at a rough outline of this paper

6. References
[de Garis 90] de Garis H : Genetic Programming, Proceedings of the 7th international conference on machine learning,
B. Porter, R. Mooney Eds, Morgan Kaufman 1 990, p. 132-1 39.
[Schoenauer, Ronald and Damour 93]: Schoenauer M., Ronald E. & Damour S. Evolving Nets for Control in Neuro
Nimes 93, EC2 . ,
[McClelland &Rumelhart 88] McClelland J.L. & Rumelhart D.E. Explorations in parallel distributed processing, a
handbook of models, programs and exercises, MIT Press 1988.
[Rumelhart Hinton & Williams 86] Rumelhart D.E., Hinton G.E. & Williams R.J. : Learning internal representations
by error propagation in Parallel distributed processing, explorations in the microstructure of cognition, Vol. 1 : Foun
dations, McClelland J.L. & Rumelhart D.E Eds, MIT Press 1986.

4

