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0. Abstract
A method for investigating the internal knowledge representation constructed by neural net learning is described: It is
shown how from a given weight matrix defining a feed-forward artificial neural net, we can induce patterns character­
istic of each of the classes of inputs classified by that net. These characteristic patterns, called prototypes, are found
by a gradient descent search of the space of inputs. After an exposition of the theory, results are given for the well
known LED recognition problem where a network simulates recognition of decimal digits displayed on a seven-seg­
ment LED display. Contrary to theoretical intuition, the experimental results indicate that the computed prototypes re­
tain only some of the features of the original input patterns. Thus it appears that the indicated method extracts those
features deemed significant by the net.

1. Introduction
Feature induction attempts to recover from a given trained net some input pattern whose presentation would elicit a
desired output. Such an input is called a prototype. More formally, given a trained netNw {W stands for the weights
matrix), and a desired target output vector t, we wish to solve for a prototypical input vector i such that the net's com­
puted output vector o = N w ( i) approximates the target t. Feature induction is a search through input space.
Note that in a supervised learning algorithm such as back-propagation [PDP], we are given a training ensemble P of
input-output pairs <ip, tp>, and search for a net - i.e. a matrix W of synaptic weights {and biases) such that for each
input exemplar ip. Nw(ipJ approximates the corresponding desired output t

p
. Learning is thus a search that trawls 

through the space of weight matrices. 
To summarize the preceding discussion, both back-propagation and feature induction by prototype search can be seen 
as search algorithms that solve for different variables in the equation 

(EQ l) 

Both methods employ gradient descent, moving through the search space in discrete steps. 
The core sections of this paper are sections 2 and 3. In section 2 we derive the value of the steps by which feature in­
duction travels through the input vector space. The latter section 3 is devoted to the description of a numerical exper­
iment. 

2. Feature Induction by Error Back-Propagation
In this section we give a fairly informal derivation for our method of prototype-search by gradient descent1 • Our pro­
cedure for finding prototypical inputs is derived from the back-propagation search procedure in W-space (the space of 
weight matrices); this procedure as described in [Rumelhart Hinton & Williams 86) has been frequently and success­
fully employed in the training of nets, and has since seen numerous improvements. Back-propagation relies on a re­
cursive procedure which propagates the so-called error or 8 terms backwards from the output of the net. Our feature 
inductionmethod builds on this same set of propagated 8 error terms,which are described in detail in the reference 
above pp 325-326. As this error term calculation is well understood, we shall not justify it in the derivation below, 
which only highlights the novelties of our feature induction method with respect to classical back-propagation. 
In back-prop net training, for a given training exemplar <i

i" tp> in the training ensemble P, the weight matrix W gives 
rise to a computational error which is the distance between what the net computes -i.e. O

p 
= Nw(ip)- and the desired 

target output vector tp· The actual distance is usually chosen to be the square euclidean distance. Back-propagation
computes the gradient of this error function for each test exemplar in tum, and travels in the opposite direction in order 
to minimize the error over the whole training set. Feature induction, is a similar gradient descent search procedure, 

I. A search method other than gradient descent, e.g. a genetic algorithm could also be employed 10 search the space of weights [de Garis 90), (Schoe­
nauer, Ronald &Damour 93] 
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which takes place in the space of input vectors. It is now assumed that the net has already been trained, and thus the W 
matrix is fixed. Assume that we have a desired target output rd, and wish to search for an input id such that 

(EQ2) 
Now let E stand for the value taken by the square error function, i.e. the square of the euclidean distance, in output 
space, separating the desired target output td and the actual output od=NwOd) computed by the net with weight matrix 
W Then Ed is defined by 

(EQ3) 
n 

where the index n ranges over the dimensions of the input space, or over the set of input neurons if the reader prefer 
the concrete over the abstract. Minimizing the error Ep by an iterative algorithm like gradient descent will allow us 
(provided the iterations converge) to satisfy (2). 
Whereas the usual [PDP] back-propagation learning methods varies the weights, our modified algorithm searches it­
eratively through input space, yielding corrections to the input vector i, corrections we shall denote by [�i] . Gradient 
descent means that these corrections are steps taken in opposite direction to the gradient of the error function, with the 
partial derivatives being taken with respect to the input neurons' activations1 . Proportionality in the opposite direction 
is written as 

[�i] = -11V E (EQ4) 
where T) is some small fixed positive parameter called the learning rate. The error function Eis a mapping from net­
input space into the set of reals. Thus equation (4) is equivalent to a system of equations in partial derivatives: 

[�i] = -T)�E 
n uan

(EQS) 

where n ranges over the set of input neurons, and '2n are the corresponding activation values. For the purposes of our 
algorithm, let us assume however that n ranges over the set of all neurons of the net. The algorithm thus involves com­
puting all the partial derivatives in this extended system, although only those for the input neurons are of ultimate rel­
evance. Now back-propagation learning [Rumelhart] already gives us a recursive method for estimating the weight­
error derivatives 8n defined by: 

where net0 is the net-input to neuron n defined by 

netn = I,wknan 

(EQ6) 

(EQ7) 

where the wkn are the synaptic weights leading from the output of the precursors of neuron n to neuron n's input. The 
back-propagation method for deriving the 6 iterates through the layers of the net, starting from the output, moving 
backwards. At each neuron n, it involves corilputing the weight-error derivative 6 , and then assigning credit for this 
error to the preceding neurons in the net. Now if we look at some neuron k that is f; direct successor of neuron n in the 
input layer, and we are interested in the partial derivative of the error function with respect to this input neuron's acti­
vation, (dE/d an) then, assuming that neuron j admits only neuron k as successor, though k can have many inputs as 
antecedents, we can obtain this partial derivative by employing the chain rule for derivation in order to rewrite equation 
(5) as:

I. This straightforward gradient-descent could be enhanced by employing a momentum term to smooth the search and accelerate convergence. 

2



-11""\a E = -E(�E) <} netk) = Ok( d netk)ua. unetk ua. da, J J J
(EQ 8) 

And as by definition (7), net k = L W nkan, and in this special case the summation has a single term, we finally 
obtain 

-11iE = o W•kda. k J 
} 

(EQ9) 

Now, in the general case, the input neuronj is of course connected to, and feeding forwards towards, several successor 
neurons such as k. Thus it is reasonable to complete the algorithm by crediting it with the ponderated error that each 
successor propagates backwards. We thus obtain our [�i] vector's components as 

[�i] . = L,Okwik 
J k 

(EQ 10) 

As classical back-prop training already gives us a method for recursively deriving the error terms Sic, the above descrip­
tion suffices to define our feature induction algorithm. This is born out by experiment, as described in the next section. 

The Seven-Segments example. 
To investigate the usefulness of the technique on a small yet non-trivial example, a numerical experiment was per­
formed on the so-called LED problem, simulating recognition of digits displayed on a seven-segment light emitting 
diode display such as are commonly employed in pocket calculators. The network topology for effecting recognition 
was a classical 3 layer feed-forward net: Seven neurons in the input layer (one per segment), 10 bidden neurons in a 
single hidden layer totally connected to the input layer, and 10 again (one per decimal digit) in the output layer, this 
being also completely connected to the hidden layer. The neurons embodied the usual sigmoid logistical activation 
function F(x) =1/(l+exp(-x)). 

12:355b7Bg□ 
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Top row shows display figures used for training net. 
Bottom row indicates induced prototype. Marked 
segments in prototypes are forced to 1 or forced to 0, 
absent segments have an Indeterminate value. 

The simulator software supplied with [Mc Lelland & Rumelhart 88] was employed as a basis for rewriting a suite of 
programs. The first is a standard back-propagation simulator which trains a 3-layer net and writes the weight matrix 
out to a file. The second program does the actual feature extraction. It reads in the net topology and the weights matrix 
as generated by the back-prop simulator. It then reads in the definition of a target vector, and performs a prescribed 
number (NITER) of forward-backwards iterations of the prototype search algorithm described in the preceding section, 
starting from some random input vector. The prototype input corresponding to the target vector is assumed to be that 
input vector which the algorithm has obtained after NITER steps. 
Back-propagation training yielded a net capable of recognizing the digits in the LED problem, feature extraction then 
retrieved the digits' shape from the weight matrix. This may seem a trivial example; but imagine that a human were 
faced with digits presented as a bar-chart with the order of bars fixed but jumbled! This task would be conceptually 
identical to reading. However a human attempting to solve it needs an explicit representation of knowledge that is usu­
ally internalized (the features of the digits), and subconscious. This knowledge, stating which features (segments) are 
essential for recognition and which may be neglected, is exactly that which our method retrieves from the trained net. 
It can be seen in the figure that the prototype shapes retrieved by the feature induction method differ strongly from the 
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digits that served as training input. Clearly, the net bas eliminated some redundant information, and is therefore relying 
on a subset of features to effect the recognition of the digits. In our figure, we have marked in black those segments 
whose value in the prototype exceeds 0.75, and with bubbles those whose value lies under 0.25. A typical prototype is 
that corresponding to the digit "5": 

1 .0 

I 0.68 I -0.07 _J1 .08 

I -0 .08 I 0.69 I0.51 

lnout •5" Comouted Prototvoe Reoresentatlon 

4. Conclusion.
Explanation of reasoning is an area where neural nets are weak, compared to expert systems: Weight matrices are bard
to interpret directly, and the generalization process by which a net categorizes novel input is not yet well understood.
Prototype induction can be seen as a tool to enlighten the user of a net.
In our experiments, the speed of convergence of prototype search seems to be much greater than for back-prop learn­
ing. We believe this is because the search-space is much smaller in dimensionality than in standard backprop where
the search-space is weight-matrix-space. In the case of the seven segments problem, as solved by a 7-10-10 net, the
input space has dimensionality of 7, while (7*10  +l0*lO) weights and lo+l0 biases, i.e. 190 parameters are needed
to define a weight matrix.
Our experiments with this prototype recovery method have encountered some potential problem areas which stem from
the mathematics of the algorithm. Our method shares with classical back-prop the well known drawbacks of the gra­
dient-descent approach: Local minima can trap the search, and oscillations can occur when the learning rate is too
steep. The speed of convergence seems however to be much greater than for back-prop, perhaps because the search­
space is smaller in dimensionality. Like back-prop learning, prototype search starts from a random initial input state,
thus the algorithm might converge to different prototypes on subsequent runs.
A mathematics-induced problem which we have seen occur in prototype recovery, but which cannot appear in back­
propagation is run-away. By this we mean convergence to fictitious prototype input vectors outside the a-dimensional
unit cube. Such a prototype vector has no signification as an input, yet we have encountered this problem in the seven­
segments example. It is particularly vexing, because the direction to which such a ghost points can be entirely spurious.
This is a problem which we hope to investigate further. 
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