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Abstract          

The present paper implements the lattice Boltzmann method (LBM) to simulate the emission and 

propagation of sound waves in three-dimensional (3D) situations, with the point source technique used 

for wave emission. The 3D numerical model is exercised on a benchmark problem, which is the 

simulation of the lid-driven cavity flow. Tests are then proposed on acoustic situations. The numerical 

results are first confronted with analytical solutions in the case of spherical waves emitted by a single 

point source at the center of a cavity. In view of acoustic streaming applications, we then study the case 

where the waves are emitted from a circular sound source placed at the center of the left boundary of a 

three-dimensional cavity filled with water. With the circular source discretized as a set of point sources, 

we can simulate the wave propagation in 3D and calculate the sound pressure amplitude in the cavity. 

Tests using different emission conditions and LBM relaxation times finally allow us to get good 

comparisons with analytical expressions of the pressure amplitude along the source axis, highlighting 

the performance of the lattice Boltzmann simulations in acoustics. 

Keywords: lattice Boltzmann method, acoustic waves, point source method, sound pressure, 3D 

simulation.   

1. Introduction  

To numerically validate experimental results, the numerical simulation of physical problems in 3D 

becomes a necessity to visualize the physical phenomena much better than in 2D. The three-dimensional 

lattice Boltzmann method is chosen in this work to study an interesting problem in engineering: sound 

wave propagation. This kind of study, especially in the case of ultrasound waves, has been the subject 

of a large number of theoretical, numerical, and experimental works. Its importance resides in its 

involvement in many natural, industrial, and medical phenomena, such as interference, reflection, and 

diffraction processes [1–3], noise [4–6], acoustic separation of fluid particles in a mixture [7,8], 

photovoltaic silicon purification [9,10], cancer treatment [11–13]. 

The lattice Boltzmann method is an open-source alternative numerical method for simulating different 

types of fluid flows. Contrary to the usual approach based on Navier-Stokes equations, the LBM aims 
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at discretizing the Boltzmann equation, corresponding to statistical modeling of the dynamics of the 

particles forming the fluid. The origin of LBM generally derives from cellular automata and lattice-gas 

automata [14–16], and its theory is inspired by statistical physics and the kinetic theory of gases [17–

19]. 

Lattice Boltzmann method is easy to implement and has the advantage of simplicity compared to 

traditional methods, especially when dealing with complex simulation domains. For this reason, it is 

used to study the propagation of different types of waves in two and three dimensions. In two 

dimensions, these studies have been known for a long time in the published literature. For example, 

different scientific researchers have used the LBM approach to simulate shock waves [20,21] or sound 

waves [22–24]. In three dimensions, the theory for the study of acoustic propagation by the lattice 

Boltzmann method has already been stated in previous works [25], but in general, the LBM simulations 

are not too common for studying the 3D propagation of sound waves in fluids. In contrast, this technique 

has been widely used for over twenty years to simulate various other physical phenomena, particularly 

the fluid flows in different geometries [26–28]. Recently, the three-dimensional lattice Boltzmann 

method has evolved in a very significant way to simulate important physical problems in engineering 

such as heat transfer processes [29–33] and multiphase flows [34,35]. 

The present investigation focuses on the study of sound waves generated by a circular sound source by 

exploiting the three-dimensional lattice Boltzmann approach. Numerically, the source is discretized into 

a set of sound sources, each of which is modeled with the acoustic point source technique. This technique 

has been well-known for a long time in the research community. Its mathematical description is well 

detailed in the references [23,36,37]. Its principle is to generate waves by vibrating a point sound source 

around its equilibrium position with a sinusoidal variation. The waveform obtained by the simulation at 

a given time can be visualized on the density field or the pressure field. The sound pressure amplitude 

can also be calculated by time-averaging the square of the instantaneous pressure. Finally, tests using 

different emission conditions and LBM relaxation times allow us to get good comparisons with 

analytical expressions of the pressure amplitude along the source axis, highlighting the performance of 

the lattice Boltzmann simulations in acoustics. 

This scientific document consists of six different sections. In the first part, a general introduction to the 

research subject is given. The two- and three-dimensional lattice Boltzmann methods are discussed in 

the second part, whereas the boundary conditions used at the borders of the studied geometry are 

described in the third part. The validation of the LBM code used is then carried out by studying a 

reference physical problem: the lid-driven cavity flow. The results concerning the simulation of the 

acoustic waves are presented in the fifth section, which is the main section. Finally, general conclusions 

are given in the last section. 

2. Lattice Boltzmann method description 

The lattice Boltzmann method can be applied with several types of mesh (or lattice), generally cubic or 

triangular, with a more or less fine discretization of the propagation directions. A popular representation 

for classifying the different mesh methods is the 𝐷𝑛𝑄𝑚  scheme. In this case, 𝑛  determines the 

dimension of the simulation domain, and 𝑚 gives the number of propagation directions of the particles 

composing the fluid. For example, a D3Q15 scheme is a 3-dimensional lattice with 15 directions of 

fluid-particle propagation. The most used schemes are the following: D2Q9, D3Q15, D3Q19, and 

D3Q27. Each direction is associated with a velocity vector 𝑐. In this work, the D2Q9 (Fig.1) and D3Q19 

(Fig. 2) schemes are used in 2D and 3D calculations, respectively. 
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2.1    Two-dimensional MRT-lattice Boltzmann method 

For the simulation of the sound waves, Viggen [37] shows that the multiple relaxation time (MRT) LMB 

scheme is more stable and accurate than the single relaxation time (SRT) model. Thus, in this work, the 

MRT-LBM technique is chosen to perform the 2D and 3D simulations. For MRT-LBM calculations, 

the computational fluid evolution is described by the following discretized Boltzmann equation 

[17,18,38,39]: 

𝑓(𝑥 + 𝑐𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓(𝑥, 𝑡) +  
                                          (1) 

where 𝑓
 , 𝛥𝑡, 𝑐 and  represent the distribution functions, the time step, the lattice velocities, and the 

collision operator, respectively.  

The nine LBM velocities 𝑐 of the D2Q9 scheme are  

𝑐 = {

            (0,0)                                                = 0
(1,0)c, (0,1)𝑐, (−1,0)c, (0, −1)c                      = 1,… ,4   
(1,1)c, (−1,1)𝑐, (−1,−1)c, (1, −1)c               = 5,… ,8   

             (2) 

where 𝑐 is the LBM speed between two successive nodes of the lattice. 

 

Fig. 1. D2Q9 LBM lattice. 

According to the MRT-LBM model, the operator  is a function of the moments 𝑚 and 𝑚
𝑒𝑞

, the 

inverse matrix 𝑀−1, and the collision matrix 𝑆:  

 = −𝑀
−1𝑆[𝑚 −𝑚

𝑒𝑞
 ].                                                   (3) 

For the D2Q9 model, the matrix 𝑆 is defined by fixed values of the relaxation times of the computed 

macroscopic quantities and by the kinematic viscosity (𝜈). Here, the relaxation times employed are the 

same as those given in the references [17,24]: 

𝑆 = diag(1,1.4,1.4,1,1.2,1,1.2,1/(3ν + 0.5),1/(3ν + 0.5))                        (4) 
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The matrix 𝑀 and its inverse 𝑀−1 are described as:  

𝑚 = 𝑀𝑓 and 𝑓 = 𝑀−1𝑚                                                   (5) 

The matrix M is given as:                                          

𝑀 =

(
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                                (6) 

The vector of moments 𝑚
  of the D2Q9 model can be expressed as a function of the fluid density, 

momentum, energy flux, kinetic energy, and macroscopic components of the stress tensor [24,39]. 

The vector  𝑚
𝑒𝑞

 represents the equilibrium moments corresponding to 𝑚
 . The mathematical expression 

of each moment 𝑚
𝑒𝑞

 is: 

                             𝑚0
𝑒𝑞 = 𝜌 

                             𝑚1
𝑒𝑞
= −2𝜌 + 3𝜌2(𝑢2 + 𝑣2) 

                             𝑚2
𝑒𝑞 = 𝜌 − 3𝜌2(𝑢2 + 𝑣2) 

                             𝑚3
𝑒𝑞 = 𝜌𝑢  

                   𝑚4
𝑒𝑞 = −𝜌𝑢                                                                             (7)              

                              𝑚5
𝑒𝑞 = 𝜌𝑣 

                              𝑚6
𝑒𝑞 = −𝜌𝑣 

                              𝑚7
𝑒𝑞
= 𝜌2(𝑢2 − 𝑣2) 

                              𝑚8
𝑒𝑞 = 𝜌2𝑢𝑣    

where 𝜌 is the density of the simulated fluid, 𝑢 and 𝑣 are the macroscopic velocities following the x 

and y axes, respectively.  

2.2    Three-dimensional MRT-lattice Boltzmann method  

The Boltzmann equation described above for the 2D simulations (Eq. (1)) is also used in the 3D 

simulation case. As previously mentioned, the D3Q19 scheme is selected to simulate the propagation of 

sound waves in three-dimensional geometry. The nineteen lattice velocities 𝑐 = (𝑐𝑥,, 𝑐𝑦,, 𝑐𝑧,) of this 

scheme are:    
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Fig. 2. D3Q19 LBM lattice. 

For the D3Q19 scheme, the transformation matrix 𝑀 is chosen as in the reference [31]. It is given by: 

𝑀 =

(
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(9) 

The vector 𝑚 can be written as a function of the density (𝜌), the kinetic energy (𝑒) and its square (𝑒2), 

the momentum (𝑗 = (𝑗𝑥 ,  𝑗𝑦 ,  𝑗𝑧)), and the three elements of the energy flux (𝑞𝑥, 𝑞𝑦, 𝑞𝑧). The remaining 

quantities are 𝑝𝑥𝑥, 𝑝𝑥𝑦, 𝑝𝑦𝑧, and 𝑝𝑧𝑥 , which are the constituents of the symmetrical traceless viscous 
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stress tensor, and 𝜋𝑥𝑥 and 𝜋𝑤𝑤, which have the same symmetry as the diagonal part of the traceless 

viscous tensor 𝑝𝑖𝑗. The other two normal components of the viscous stress tensor 𝑝𝑦𝑦 and 𝑝𝑧𝑧  can be 

used to construct 𝑝𝑤𝑤 = 𝑝𝑦𝑦 − 𝑝𝑧𝑧 . There are three missing quantities 𝑚𝑥, 𝑚𝑦, and 𝑚𝑧 which are parts 

of a third rank tensor [28,40]: 

𝑚 = (𝜌, 𝑒, 𝑒2, 𝑗𝑥 , 𝑞𝑥 , 𝑗𝑦 , 𝑞𝑦 , 𝑗𝑧, 𝑞𝑧, 3𝑝𝑥𝑥 , 3𝜋𝑥𝑥 , 𝑝𝑤𝑤 , 𝜋𝑤𝑤 , 𝑝𝑥𝑦 , 𝑝𝑦𝑧 , 𝑝𝑧𝑥 , 𝑚𝑥, 𝑚𝑦 ,𝑚𝑧 )
𝑇
             (10) 

The nineteen equilibrium moments 𝑚
𝑒𝑞

 can be expressed as a function of the fluid density and the 

impulsions 𝑗𝑥 , 𝑗𝑦 , 𝑗𝑧 [29]. The calculation of the vector 𝑚 
𝑒𝑞 can be directly given by: 

           𝑚 
𝑒𝑞 = 𝑀𝑓 

𝑒𝑞                                                                 (11) 

where 𝑓 
𝑒𝑞 is the equilibrium function. 𝑓 

𝑒𝑞  is expressed as a function of density, speed of sound (𝑐𝑠), 

macroscopic velocity vector �⃗� = (𝑢, 𝑣, 𝑤) , velocities of the D3Q19 lattice (𝑐 ) and discretization 

weights (𝑊): 

𝑓
𝑒𝑞 = 𝑊 [1 +

1

𝑐𝑠
2  𝑐 . �⃗�  +

1

2𝑐𝑠
4  (𝑐 . �⃗�  )

2
−

1

2𝑐𝑠
2 |�⃗�  |

2
], with  = 0,… , 18                (12) 

The nineteen factors 𝑊 are:  

𝑊 =

{
 
 

 
 
1

3
                = 0            

1

18
               = 1, … , 6   

1

36
               = 7,… , 18

                                                 (13) 

The relaxation matrix 𝑆 can be written as: 

S = diag(𝑠0, 𝑠1, 𝑠2, 𝑠3 , 𝑠4, 𝑠5, 𝑠6 , 𝑠7, 𝑠8, 𝑠9, 𝑠10, 𝑠11 , 𝑠12, 𝑠13 , 𝑠14, 𝑠15 , 𝑠16, 𝑠17 , 𝑠18)                  (14)      

𝑠0, 𝑠3, 𝑠5, and 𝑠7 are the relaxation parameters corresponding to the macroscopic quantities 𝜌, 𝑗𝑥 ,  𝑗𝑦, 

and  𝑗𝑧, respectively. They often take the values 0 or 1. In this work, they are fixed to the value of unity. 

The parameters s9 , s11 , s13 , s14  and s15  are linked to the LBM kinematic viscosity ν as s9 = s11 =

s13 = s14 = s15 = 1/(3ν + 0.5) . For the relaxation time s1 , it is advised to fix it at 1.19 [29]. 

Otherwise indicated, it is the value we have chosen. The remaining parameters (s2, s4, s6, s10, s12, s16,  

s17 and s18) are the free parameters [40]. 

3. Boundary conditions 

The boundary conditions adopted in this paper are bounce-back (BBC) and non-reflecting (NRBC) 

conditions. The BBC conditions are generally used to compute the unknown distribution functions at 

the solid boundary (solid node). They are expressed as 

𝑓
 (𝑥 𝑤𝑎𝑙𝑙 , 𝑡) = 𝑓̅

 (𝑥 𝑤𝑎𝑙𝑙 , 𝑡),                                                     (15) 

where 𝑓
 (𝑥 𝑤𝑎𝑙𝑙 , 𝑡) is an unknown distribution function at the wall node (𝑥 𝑤𝑎𝑙𝑙) and 𝑓

̅
 (𝑥 𝑤𝑎𝑙𝑙 , 𝑡) is the 

known function at the opposite direction (̅ = −). 
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For the NRBC conditions, there are different techniques to absorb waves at boundaries, such as 

characteristic boundary conditions or the use of an absorbing layer [18,41]. In the present work, a simple 

boundary condition, which is a modified bounce-back boundary condition [42], is used to attenuate the 

waves: 

𝑓
̅
 = 𝑓

 − 3 
𝑎
 𝑊 𝑐 𝑠𝑖𝑛(𝑡 − 𝑘𝑥) 𝑒

− 𝑥 ,                                        (16) 

where the parameters 
𝑎

, 𝑊, 𝜔, 𝑡, 𝑥,  and 𝑘 are the amplitude of the sound source, the discretization 

weights, the angular frequency, the time, the distance between the source and the absorbing boundary, 

the spatial attenuation coefficient, and the wavenumber, respectively. The mathematical expression of 

 is given in section 5.    

After determining the collision and the streaming processes and implementing the boundary conditions, 

the physical quantities 𝜌 and 𝑗  can be calculated as: 

𝜌 = ∑ 𝑓
 𝑞

=0 ,  𝑗(𝑥, 𝑦, 𝑧) = ∑ 𝑓
 𝑞

=0 𝑐,                                                   (17) 

where 𝑞 is the number of discretized LBM velocities (𝑞 = 8 in the 2D case or 𝑞 = 18 in the 3D case). 

4. D3Q19-LBM model validation 

In general, fluid dynamics in closed cavities is technically and scientifically a fundamental problem in 

the fluid mechanics discipline. Moreover, it has received significant attention for many years, not only 

for the convenience of using simple geometries, but also for its practical importance to investigate many 

different physical phenomena such as vortex dynamics, hydrodynamic stability, and flow bifurcation. 

For all these reasons, the lid-driven cavity problem has been widely used for testing or validating new 

codes or new numerical simulation methods. The validation in our study will be done by comparing our 

results on this problem with those given in the references [43–45]. This work focuses on a closed cubic 

cavity that is filled with an incompressible viscous fluid (a good approximation for water). The upper 

wall is moved with a uniform translation velocity (𝑢0 =  0.1), while the other walls are fixed and 

submitted to bounce back (no-slip) boundary conditions (see Fig.3). The Reynolds number is defined 

by the lid velocity 𝑢0, the cavity length 𝐿 and the kinematic viscosity ν (𝑅𝑒 = 𝐿 𝑢0/ν), and it varies 

from 100 to 1000.  

 
Fig. 3. Sketch of the validation problem.  
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Numerically, to have a lid-driven cavity flow using the lattice Boltzmann method, the boundary 

conditions for moving walls proposed by Bouzidi et al. [46] can be used (see also the reference [47]). 

These conditions consist in modifying the bounce-back boundary conditions by adding the velocity of 

the moving wall (𝑢0) in the following way: 

𝑓
̅
 = 𝑓

 − 2 𝑊 𝑐
  𝑢0

𝑐𝑠
2 .                                                          (18) 

A first validation with the results of Ku et al. [43], Jiang et al. [44], and Ding et al.[45] is shown in Figs. 

4-6. These figures depict the dimensionless velocities along the 𝑥 axis, 𝑈 = 𝑢/ 𝑢0, and along the 𝑦 axis, 

𝑉 = 𝑣/ 𝑢0, by giving profiles along midlines for different Reynolds numbers. It can be noted that the 

velocity 𝑈 is equal to zero at the bottom wall and reaches the velocity 𝑈0 = 1 imposed at the top wall 

(moving lid), whereas the velocity 𝑉 at the bottom and top walls is equal to 0. The flow intensity in the 

core is found to increase with the increase of the Reynolds number. In any case, a good agreement is 

found between our current LBM results and the previous benchmark results, even for the larger value 

of 𝑅𝑒 (𝑅𝑒 = 1000, Fig. 6). 

 
Fig. 4. 𝑈 and 𝑉 velocity profiles along the cavity midlines for the lid-driven cavity at 𝑅𝑒 = 100. 

 
Fig. 5. 𝑈 and 𝑉 velocity profiles along the cavity midlines for the lid-driven cavity at 𝑅𝑒 = 400.  
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Fig. 6. 𝑈 and 𝑉 velocity profiles along the cavity midlines for the lid-driven cavity at 𝑅𝑒 = 1000. 

As a complement to this validation, we propose to compare the streamlines found in the lid-driven cavity 

by our LBM simulation (Fig. 7) with those obtained by Wang et al. [48] (Fig. 8). The Reynolds number 

for this comparison is fixed at 𝑅𝑒 = 400 and the streamlines are plotted in the main central planes of 

the three-dimensional cavity. In the longitudinal 𝑧 = 0.5 plane (Fig. 7(a)), we clearly see that the flow 

follows the moving lid to the right in the upper part, goes down at the right wall, moves to the left in the 

lower part, and finally goes up to the upper wall along the left wall. The center of the vortex that is thus 

created is located in the upper right region, but progressively moves towards the center of the cavity as 

the Reynolds number is increased. Note that counter-rotating vortices appear in both lower corners of 

the cavity. In the 𝑥 = 0.5 (Fig. 7(b)) and 𝑦 = 0.5 (Fig. 7(c)) planes, streamlines connected with the main 

vortex and to pressure effects induced by the involved rotation are obtained. In all these planes, we 

obtain the same hydrodynamic behavior as Wang et al. [48] (Fig. 8), which shows the reliability and 

accuracy of our numerical model (D3Q19 LBM scheme). In the next section, additional validations will 

be given in the case of acoustic problems through comparisons with analytical results. 

 
Fig. 7. Streamlines obtained by our LBM simulation for the lid-driven cavity at 𝑅𝑒 = 400; (a): 𝑧 =

0.5, (b): 𝑥 = 0.5, and (c): 𝑦 = 0.5.  
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Fig. 8. Streamlines results of reference [48] for the lid-driven cavity at 𝑅𝑒 = 400; (a): 𝑧 = 0.5, (b): 

𝑥 = 0.5, and (c): 𝑦 = 0.5. 

5. Results and discussion 

Three-dimensional (3D) numerical studies of the waves propagation in water are performed using the 

lattice Boltzmann method (LBM) associated with the multiple relaxation time (MRT) model and the 

results are presented in this section. The waves are emitted from a circular sound source placed at the 

center of the left boundary of a 3D cavity using the acoustic point source (APS) technique. In 2D, this 

technique has been widely addressed by many researchers [23,37,49] using the single relaxation time 

model. However, according to [37], the investigation of the wave behavior with the MRT model is more 

stable and accurate than with the SRT model. In the present work, the powerful 2D MRT-LBM model, 

developed for wave simulation and used in our previous two-dimensional works [24,50], is adapted to 

take into account more realistic 3D configurations.  

5.1    Physical problem description and mathematical formulation 

The physical problem studied in this work is the propagation of acoustic waves in a simple 

parallelepipedic cavity with rigid plane walls and filled with water. The waves are emitted by a circular 

vibrating sound source located at the center of the left vertical wall (at 𝑥 =  0). This source vibrates at 

a frequency of 200 kHz. The spatial dimensions of the cavity are the length, the width, and the height, 

which are denoted as 𝐿, 𝑊, and 𝐻, respectively, with 𝑊 = 𝐻 (see Fig.9). The wall opposite to the sound 

source (at 𝑥 =  𝐿) is an absorbing wall. The non-reflecting boundary conditions described in section 3 

are applied to this wall. In contrast, the bounce back-boundary conditions are applied at the other walls, 

which are sound-reflecting.  

 
Fig. 9. The physical problem studied. 
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The waves propagate in water, which is considered as homogeneous throughout the confined cavity, 

with constant thermophysical properties. Physically, the travel of an acoustic wave through a fluid 

(water) creates small perturbations in pressure, density, and velocity. These perturbations [36] are 

expressed by: 

           𝑝(𝑟, 𝑡) = 𝑝0 + 𝑝 
′(𝑟, 𝑡),                                                      (19) 

          (𝑟, 𝑡) = 
0
+ 

 
′(𝑟, 𝑡),                                                      (20) 

          𝑢(𝑟, 𝑡) = 𝑢0 + 𝑢 
′(𝑟, 𝑡),                                                      (21) 

where the quantities 𝑝 
′,

 
′, and 𝑢 

′ are small fluctuations, and the parameters  𝑝0, 0, and 𝑢0 (𝑢0 = 0) 

are the pressure, density, and velocity of the undisturbed fluid (fluid at rest). In these expressions, 𝑟 and 

𝑡 refer to the dependence on space and time. 

The points of the cavity discretization belonging to the circular source are considered as point sources, 

according to the acoustic point source method [23,24,37]. This method can be highlighted by 

considering fluctuations of the density (Eq. (20)). In this case, we generate the waves by vibrating the 

fluid density at the position of each point source, and the quantity 
 
′ can then be expressed by the 

following sine function: 


 
′ = 

𝑎
sin(𝑡),                                                            (22) 

where the parameters 
𝑎

 and  represent the amplitude and the angular frequency, respectively. 

The circular sound source is located at the center of the left wall, i.e. at 𝑥 =  0, 𝑦 = 𝑧 = 𝐻/2, and it is 

defined by its radius 𝑎. For the APS method in 3D, the waves emitted by each point source propagate 

as spherical waves. Analytically, these waves can be described by the solution of the linear wave 

equation. Thus, for spherically symmetric density fields, the analytical solution is 

′(𝑟, 𝑡) =
𝐴

𝑟
𝑒𝑗(𝑡−𝑘𝑟),                                                            (23) 

where 𝑟 is the radial distance from the point source, 𝑘 is the wavenumber, and 𝐴 is a constant.   

In their work on the investigation of sound waves propagation, Salomons et al. [23] have shown that 

high values of fluid viscosity can lead to high sound dissipation. For insignificant thermal effects (as is 

the case in water), the effect of wave dissipation in the fluids can be effectively described by the 

attenuation coefficient 𝛼, which is defined as 

𝛼 =
1

2
 2  (

4

3
+ 𝐵) 𝑐𝑠

−3,                                                         (24) 

where 𝐵 is the bulk viscosity (for water, 𝐵 = 3) [9,36]. 

To consider the effect of dissipation in the analytical solution, it is necessary to introduce a complex 

wavenumber involving the attenuation coefficient α, as in the references [23,24]: 

𝑘 =
2


− 𝑗𝛼.                                                                (25) 
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From equations (23) and (25), the real analytical solution is now expressed by: 

′(𝑟, 𝑡) =
𝐴

𝑟
cos (𝑡 −

2


𝑟)𝑒−𝛼𝑟 .                                                  (26) 

This analytical solution for a single point source will be used as the first test of our numerical method. 

This is discussed in detail in the next sub-section. 

It is worth mentioning that the lattice Boltzmann method is a completely non-dimensional technique. 

However, carrying out physical simulations can impose some constraints on the real units. It is then 

important to refer to the adequate conversion between LBM and physical units, as it is done in references 

[37,49]. In LBM units, the dimensions of the cavity and the source diameter (𝑑 = 2𝑎 = 𝐻/3) are 

defined by the numbers of points 𝑁 of the LBM lattice (points from 0 to 𝑁). Physically, the points 

defining the simulation grid are separated by a specified distance ∆𝑥 (m), and the particles constituting 

the fluid require a time 𝛥𝑡 (s) to migrate from one node to another. These two quantities 𝛥𝑥 and 𝛥𝑡 are 

the references for space and time, respectively, and are generally used to perform the conversion. For 

example, the LBM wavelength (𝜆𝑙𝑏𝑚) and period 𝑇𝑙𝑏𝑚 can be simply calculated as: 

𝑇𝑙𝑏𝑚 =
𝑇𝑝ℎ

∆𝑡
  and   λ𝑙𝑏𝑚 =

𝜆𝑝ℎ

∆𝑥
,                                                 (27) 

where the indexes lbm and ph are used to refer to LBM and physical quantities, respectively. As 

mentioned before, the vibration frequency is 200 kHz. For a speed of sound in the water of 𝑐𝑝ℎ = 1480 

m/s, this frequency leads to a wavelength of 0.74 cm and a period of 5 𝜇s. To ensure that the wave 

propagation through the cavity is accurately simulated, at least 20 ∆𝑥 should be selected for a single 

wavelength. This led us to the choice of ∆𝑥 = 0.032  cm. The parameter ∆𝑡  can then be easily 

determined from the equation mentioned in references [23,37]: 

∆𝑡 =
𝑐𝑙𝑏𝑚 

𝑐𝑝ℎ
∆𝑥,                                                         (28) 

where 𝑐𝑙𝑏𝑚 is the speed of sound in LBM units (𝑐𝑙𝑏𝑚 = 1/√3 for D2Q9 and D3Q19 models). We obtain 

∆𝑡 ≈ 0.125 𝜇s. Note that the LBM time will be denoted as 𝑡 in the following: as an example, 𝑡 = 100 

corresponds to a physical time of 100 ∆𝑡. 

Using these reference quantities, the values of 𝑇𝑙𝑏𝑚  and λ𝑙𝑏𝑚  are 40.0536 and 23.125, respectively. 

The LBM angular frequency can also be easily determined from the LBM period (𝑙𝑏𝑚 = 2/𝑇𝑙𝑏𝑚). 

The number of points taken to simulate the cavity is 𝑁 = 240 along the 𝑧 and 𝑦 axes (𝐻 = 𝑊 = 240) 

and 𝑁 = 320 along the 𝑥 axis (𝐿 = 320). Then, the diameter of the circular source corresponds to 81 

point sources. Note that the point sources are those of the lattice belonging to the circular source area, 

so that they are not axisymmetrically disposed. 

It is well known that the waves attenuate under the effect of dissipation and geometric spreading. As 

mentioned before, in water, the effect of dissipation is due to the fluid viscosity. The LBM viscosity 

𝑙𝑏𝑚 can be directly determined from the real viscosity 𝑝ℎ using 

𝑙𝑏𝑚 = 𝑝ℎ  
𝑐𝑙𝑏𝑚

𝑐𝑝ℎ ∆𝑥
 .                                                               (29) 
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5.2  Acoustic point source method validation and boundary conditions verification 

A first test concerning the propagation of the wave and its interaction with the cavity walls is carried 

out. Figs. 10-12 represent the numerical results obtained for waves generated by a point acoustic source 

at the center of a cubic cavity filled with water. These results are taken at two different times. We observe 

that the waves propagate in the form of spheres, with a radius increasing with the number of iterations 

(Figs. 10(A), 11(A), and 12(A)). Vertical sections at 𝑦 = 𝑊/2 are plotted in Figs. 10(B), 11(B), and 

12(B) to illustrate the waveform in two dimensions, which appears as circles. For a small number of 

iterations (𝑡 = 100 for example), the waves propagate in the cavity without reaching the boundaries 

(Fig. 10). When the waves encounter surfaces where the bounce-back conditions (15) are applied (Fig. 

11), significant reflections of the waves are noticed: the reflected waves meet the waves emitted by the 

source, and interferences are then produced. In contrast, when the absorbing boundary conditions (16) 

are applied on all the walls (Fig.12), the waves appear to be well absorbed by the cavity walls as almost 

no interference can be noted. These results are a good validation of the BBC and NRBC boundary 

conditions. 

 
Fig. 10. Propagation of sound waves generated by a single point source: numerical result expressed 

with the density field at 𝑡 = 100; (A) 3D representation; (B) 2D representation for a vertical section at 

𝑦 = 𝑊/2. 
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Fig. 11. Propagation of sound waves generated by a single point source: numerical result expressed 

with the density field at 𝑡 = 260, in the case of BBC boundary conditions; (A) 3D representation; (B) 

2D representation for a vertical section at 𝑦 = 𝑊/2. 

 
Fig. 12. Propagation of sound waves generated by a single point source: numerical result expressed 

with the density field at 𝑡 = 260, in the case of NRBC boundary conditions; (A) 3D representation; 

(B) 2D representation for a vertical section at 𝑦 = 𝑊/2. 

For comparison, the analytical solution of equation (26) is shown in Fig. 13. This equation being 

undefined at the center of the cavity (𝑟 = 0), the analytical density at this point is assumed to be equal 

to the numerical density. For all types of waves (plane, cylindrical or spherical), a constant factor 𝐴 

appears in the analytical solution of the ideal wave equation [36]. For the case of cylindrical waves, 

previous 2D studies [23,24,37,50] have shown that a good correspondence with the numerical results 



15 

 

can be obtained when 𝐴 is a function of the perturbation amplitude 
𝑎

. Similarly, in the present study, 

a close correspondence is obtained for 𝐴 = 0.04
𝑎

. Fig. 13(A) shows the 3D analytical density field, 

with a nice spherical shape, in close correspondence with what was obtained numerically in Fig. 12(A). 

This correspondence is still more clearly noticed from the vertical sections shown in Figs. 12(B) and 

13(B). Note that the LBM points used to get the results in Figs. 10-13 are 200 nodes along 𝑥, 𝑦 and z 

axes (𝐿 = 𝑊 = 𝐻 = 200). 

 
Fig. 13. Propagation of sound waves generated by a single point source: analytical result expressed 

with the density field at 𝑡 = 260; (A) 3D representation; (B) 2D representation for a vertical section at 

𝑦 = 𝑊/2. 

A good agreement in terms of waveforms was noted between the density shapes obtained analytically 

and numerically (Figs. 12 and 13). For a more quantitative comparison, the analytical and numerical 

density profiles are plotted along the central 𝑥 axis (see Fig. 14(A)). These longitudinal profiles are very 

similar to each other. The absolute error (𝐸𝑎) between the two results, shown in Fig. 14(B), appears to 

vary between 0 and 6.5 10−5, its amplitude decreases with the distance 𝑥 from the point source. The 

main error is in fact located on two peaks, in a small area near the center of the cavity, so that the two 

calculations can be considered as very close. This can be well illustrated by computing the mean error 

𝐸𝑚 of 𝐸𝑎. The value found for 𝐸𝑚 is relatively low, about 4 10−6. It must be noted, however, that the 

adjustment of the analytical results with the numerical results has only been done roughly, without real 

optimization, through the factor of 0.04 𝜌𝑎  involving a single figure, and, contrary to previous 2D 

comparisons [37,50], without introducing a phase shift. As seen in figure 14(A), a slight phase shift and 

a more precise value of the factor would really improve the comparisons. This was not the main objective 

of our study. These different tests show that the APS technique and the boundary conditions can be 

considered as well validated and the LBM code is now ready for the simulation of the problem shown 

in Fig. 9.  
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Fig. 14. Longitudinal profiles of the analytical and numerical densities along the central 𝑥 axis at 𝑡 =

260 in the case of sound waves generated by a single point source (A) and the variation of the absolute 

error between them (B). 

5.3    Acoustic field emitted by a circular acoustic source 

We now consider the problem of sound waves generated by a circular acoustic source, the problem 

described in section 5.1 and sketched in Fig. 9. We first consider the case where the sound waves are 

due to density fluctuations applied at the source. For this case, the LBM simulations are performed with 

a LBM kinetic viscosity of 0.01 and 𝑠1 = 1.19. These choices are discussed later. In a second step, we 

will propose to consider velocity fluctuations at the source. 

 

5.3.1 Density fluctuations applied at the source 

Fig. 15 illustrates the sound waves generated by density fluctuations applied at the circular acoustic 

source (Fig. 9) through the plot of the density field after 1100 iterations. The interference between the 

spherical waves emitted by each point source creates an acoustic beam in the cavity. This beam is well 

directed towards the absorbing endwall. As can be seen in Fig. 15(A), the density field is not perfectly 

axisymmetric around the central 𝑥 axis (the symmetry axis of the source), as it ought to be with a circular 

acoustic source. It can be explained by the fact that the discretization of the source by point sources is 

not axisymmetric. On the vertical section of the density field shown in Fig. 15(B), we can see that the 

resulting waves have not a spherical shape near the source, but rather a flat central front and curved 

sides. The maximum wave amplitudes are found in this near field zone, on the central 𝑥 axis or on both 

sides of it, a characteristic of the complex near field zone. As expected, the spherical shape of the waves 

can only be observed in the far-field zone, at a large distance of the source, beyond about mid-length. 

These waves are, however, perturbed near the longitudinal walls (those perpendicular to the circular 

source) due to reflections on these walls. These perturbations remain rather weak and do not perturb the 

main central part of the acoustic beam. It is why absorption conditions have not been applied at these 

boundaries. In contrast, since the acoustic beam is directed towards the right endwall, the waves remain 

rather intense in this end region. The non-reflecting conditions applied at this endwall are then really 

necessary to attenuate these waves and avoid their reflection and the occurrence of standing waves. 

For comparison, the same situation is simulated in 2D, i.e. we consider a rectangular enclosure with 

dimensions 𝐻 = 240 and 𝐿 = 320, and a line of 81 point sources is located at mid-height of its left 

wall. The validation of this two-dimensional model has been widely discussed in our previous 2D works 
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[24,50]. Fig. 16 gives the longitudinal 2D and 3D density profiles plotted along the central 𝑥 axis. We 

see that the two profiles have the same shape, but not the same amplitude. Indeed, the waves obtained 

in 2D and 3D are in phase and globally attenuated as they move away from the source. In the near field, 

however, the waves obtained in the 3D case have a larger amplitude than those obtained with a 2D 

simulation. This is due to the extra contribution of the point sources in the vicinity of the line of point 

sources considered in 2D. 

 
Fig. 15. Density field generated by a circular acoustic source at 𝑡 = 1100: (A) 3D representation; (B) 

2D depiction for a vertical section at 𝑦 = 𝑊/2. 

 
Fig. 16. Comparison of the longitudinal profiles of the density obtained at 𝑡 = 1100 by 2D and 3D 

simulations of waves emitted by a source.  

A velocity field is also generated in the enclosure as a result of the fluctuating density at the source. 

Since the direction of the waves propagation is along the 𝑥 axis, the 𝑥 component of the velocity (𝑢) is 
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the main component. Fig. 17 shows the field of 𝑢 at 𝑡 =  1100. The flow is created by the sound source 

and therefore the velocity field itself takes the form of waves, with successively positive and negative 

velocities. As for the density, the strongest velocity amplitudes are found in the near field zone, with 

waves with a flat central front and curved sides. The spherical shape is only observed for the waves in 

the far-field zone, but it is also perturbed by the reflections on the longitudinal walls. Note that the field 

of 𝑢 is also not perfectly axisymmetric. The transverse profile of the velocity 𝑢 along the mid 𝑧 axis (at 

𝑥 = 𝐿/2, 𝑦 = 𝑊/2) is also plotted at two different times to observe the velocity fluctuations near the 

walls and at the center of the cavity (see Fig. 18). For example, at 𝑡 = 600 (Fig. 18(A)), the velocity 

profile has a main positive peak around the central axis of the cavity (at 𝑧 = 120), and smaller peaks, 

negative and then positive, closer to the walls. At 𝑡 = 1100 (Fig. 18(B)), the profile of 𝑢 is almost 

reversed. This could be expected, as the two states, separated by 12 and half periods, are in phase 

opposition. Note that the central peak has a positive value (at 𝑡 = 600) stronger than the negative value 

(at 𝑡 = 1100). This could be a sign of the streaming induced by the acoustic field, which is expected to 

be in the direction of the wave propagation (i.e. positive) along the central 𝑥 axis. The study of the 

streaming will be the objective of our future works.   

 
Fig. 17. Velocity field 𝑢 generated by a circular acoustic source at 𝑡 = 1100: (A) 3D representation; 

(B) 2D depiction for a vertical section at 𝑦 = 𝑊/2. 

 

 
Fig. 18. Transverse profile of the velocity 𝑢 along the mid 𝑧 axis (at 𝑥 = 𝐿/2, 𝑦 = 𝑊/2) and at 𝑡 =

600 (A) and 1100 (B). 
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In engineering, the calculation of the sound pressure is important, particularly in the case of acoustic 

streaming created by the propagation of waves generated by a transducer. Physically, the passage of 

sound waves through a fluid causes compression and decompression of the medium. This varying 

pressure is connected with the varying density. The variation of the density is described by the sinusoidal 

form of the out-of-equilibrium density 𝜌′ (Eq. (20) or Eq. (22)) and the instantaneous pressure can be 

directly deduced from 𝜌′ using the following relations: 

𝑝′ = 𝜌′𝑐𝑠
2  or  𝑝′ = (𝜌 − 𝜌0)𝑐𝑠

2.                                                    (30) 

For a pressure wave expressed as 𝑝′
 
 
= 𝑝𝑎𝑐

  𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑥), the amplitude 𝑝𝑎𝑐
  can be directly calculated 

from the RMS value of the pressure 𝑝 as:                                                

𝑝𝑎𝑐
 = √2 〈 𝑝′

 
 2〉 .                                                                  (31) 

The term 〈 𝑝′
 
 2〉 is calculated after the sound waves emitted by the sound source are well established 

throughout the cavity. Fig. 19 shows the sound pressure field averaged over a time interval of 10 periods 

𝑇𝑙𝑏𝑚 between iterations 700 and 1100. The three-dimensional structure of the pressure amplitude 𝑝𝑎𝑐 is 

illustrated in Fig. 19(A) and a vertical section at 𝑦 = 𝑊/2 is depicted in Fig. 19(B). From these figures, 

it can be observed that the amplitude of the sound pressure takes important values in the first half of the 

cavity. Maxima are found on the source axis, close to the source and at the Fresnel length (near field: 

far-field boundary), and also outside the axis, around the minimum on the axis. The pressure amplitude 

then decreases in the far-field zone. The transverse profile along the mid 𝑦 axis (𝑥 = 𝐿/2, 𝑧 = 𝐻/2) is 

also given in Fig. 20. As expected for this profile taken in the far-field zone, the amplitude 𝑝𝑎𝑐
  takes a 

maximum value at the center, with a large main peak surrounded by really smaller peaks when moving 

towards the sides.      

 
Fig. 19. Acoustic pressure amplitude 𝑝𝑎𝑐 generated by a circular acoustic source: (A) 3D 

representation; (B) 2D depiction for a vertical section at 𝑦 = 𝑊/2. 
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Fig. 20. Transverse profile along the mid 𝑦 axis (𝑥 = 𝐿/2, 𝑧 = 𝐻/2) for the acoustic pressure 

amplitude 𝑝𝑎𝑐 presented in Fig. 19. 

To validate our 3D approach in the case of the circular acoustic source, it would be interesting to 

compare our results with analytical or experimental results, as it was done in a previous section for the 

single point source. An analytical expression of the pressure amplitude 𝑝𝑎𝑐 along the central axis of a 

circular vibrating piston can be found in [36]. This expression, which does not involve attenuation, can 

be written as:  

𝑝𝑎𝑐(𝑥) =  𝑝𝑚𝑎𝑥 |𝑠𝑖𝑛 (
1

2
 𝑘 𝑥 (√1 + (

𝑎

𝑥
)
2

− 1))|,                                          (32) 

where 𝑝𝑚𝑎𝑥 is the maximum pressure without attenuation, which, for a baffled piston (as a transducer), 

is given as a function of equilibrium density, sound speed, and velocity amplitude 𝑢𝑎  as 𝑝𝑚𝑎𝑥 =

2
0
𝑐𝑠𝑢𝑎 [36]. Basically, as mentioned in [51], factor 2 comes from the fact that the sound source is 

baffled and that all the radiation emitted by the source is forced into only half of the space (the free 

space ahead of the piston). In our case, we only consider the forward emission of the radiation inside 

the enclosure and this factor 2 has not to be introduced. To confirm this behavior, we have compared 

the waves generated by a point source placed, on one side, at the center of the cavity, and, on another 

side, at the center of the left wall. In both cases, it was found that the density oscillates between the same 

minimum and maximum values. Therefore, the maximum pressure amplitude in our case is given by: 

𝑝𝑚𝑎𝑥 = 
0
𝑐𝑠𝑢𝑎 .                                                                   (33) 

Note that equation (32) does not consider the viscous attenuation effects of the waves. In the LBM 

approach, however, these effects are taken into account implicitly and will affect the different variables, 

as density, pressure, and velocities. Then, as for the analytical solution in the case of the spherical wave 
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(Eq. (26)), the dissipation of wave energy must be introduced in the analytical solution (32), with a 

factor 𝑒(− 𝑥). This finally gives: 

𝑝𝑎𝑐(𝑥) =  𝑝𝑚𝑎𝑥 |𝑠𝑖𝑛(
1

2
 𝑘 𝑥 (√1 + (

𝑎

𝑥
)
2

− 1))| 𝑒(− 𝑥),                             (34) 

where, for a viscosity 𝜈 = 0.01 and 𝜈𝐵 = 3𝜈, the value of the attenuation coefficient 𝛼 given by (24) is 

2.77 10−3. 

The analytical result of the sound pressure amplitude given by Eq. (34) is shown in Fig. 21, together 

with the corresponding profile of 𝑝𝑎𝑐  obtained numerically. The two profiles of 𝑝𝑎𝑐  have the same 

spatial structure, with one peak in the near field, another peak at the Fresnel length, and a further decrease 

with the distance 𝑥 in the far-field. The amplitude variations of the numerical profile, however, are 

clearly distinct from those of the analytical profile. Moreover, the value of 𝑝𝑚𝑎𝑥 used in the analytical 

expression in Fig. 21 is 0.002, a value obtained by adjustment with the numerical profile. This value is 

different from the theoretical value given by Eq. (33), which is about 0.0033 (this value is calculated by 

defining the velocity amplitude as 𝑢𝑎 = 𝑐𝑠𝑎 = 0.0057  [36]). Different ways are proposed in the 

following to improve our acoustic model in order to get a better fit of the numerical results with the 

analytical results. 

 
Fig. 21. Analytical (34) and numerical longitudinal profiles of sound pressure amplitude 𝑝𝑎𝑐 plotted 

along the central 𝑥 axis in the case of the circular acoustic source, when the condition of wave 

emission is applied on the density and 𝑠1 = 1.19. The 𝑝𝑚𝑎𝑥 value used in the analytical expression is 

here obtained by adjustment with the numerical profile. 
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5.3.2 Discussion on the choice of the viscosity 

To simulate the propagation of sound waves in the air using the D2Q9-SRT model, Salomons et al. [23] 

used a LBM kinematic viscosity 𝜈 = 0.06. This viscosity value is significant and can lead to high 

attenuation. However, it has been used to stabilize the SRT model, as this model is unstable at low 

viscosity values. In contrast, with the MRT model, small viscosity values can be used, and this can be 

considered as a major advantage for the use of the MRT-LBM model. 

In our study, the LBM kinematic viscosity found for water from Eq. (29) is very low (𝜈 = 1.21 10−6) 

and therefore does not induce a high dissipation. As said before, the corresponding value of the 

attenuation coefficient given by (24) (with 𝜈𝐵 = 3𝜈 ) is very low (𝛼 = 3.35 10−7 ), which causes 

difficulties for the implementation of the absorbing boundary conditions (16) at the endwall. Then, the 

use of a relatively larger value of the viscosity is recommended. Moreover, numerically, the kinematic 

viscosity only enters into the calculation of the relaxation times ( s9 = s11 = s13 = s14 = s15 =

1/(3ν + 0.5)), and its change from 1.21 10−6  to 0.01, for example, does not lead to a significant 

change of these parameters which keep a value in the vicinity of 2, so that similar results, particularly 

in terms of wave attenuation, are expected. As shown in Fig. 22, tests performed in the case of the 

circular acoustic source for kinematic viscosity of 0.01 instead of 1.21 10−6  confirm this fact: the 

longitudinal density profiles plotted along the central 𝑥 axis at 𝑡 = 500 are almost superimposed for the 

two cases, with only small differences at the top of the different oscillations. Thus, for reasons of 

reliability of our numerical LBM code, the viscosity of 0.01 is used instead of 1.21 10−6  in all the 

calculations performed in this work, and, as said before, the corresponding attenuation coefficient is 

𝛼 = 2.77 10−3, a value used in the analytical comparison using the equation (34). 

 
Fig. 22. Longitudinal density profiles along the central 𝑥 axis at 𝑡 = 500 for two values of the 

kinematic viscosity in the case of the circular acoustic source.  
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5.3.3 Velocity fluctuations applied at the source 

For the vibration of a single point source, it was preferable to put the condition of wave emission on the 

density in order to take into account the propagation of waves in all directions. In contrast, for a surface 

vibrating in a single direction, as for a transducer, this condition could be as well put on the velocity. 

This choice even appears to be closer to the experimental conditions and is comforted by the 

mathematical expression of 𝑝𝑚𝑎𝑥 for a transducer (Eq. (33)), which is expressed as a function of the 

velocity amplitude 𝑢𝑎. To test this possibility, we have modified the condition of wave emission, which 

is now: 

𝑢(𝑡) = 𝑢a 𝑠𝑖𝑛(𝑡),                                                           (35) 

where 𝑢 refers to the velocity along 𝑥, i.e. the transducer axis. To remain in similar conditions as in the 

previous sections (same value of 𝑝𝑚𝑎𝑥 ), the chosen velocity amplitude is 𝑢𝑎 = 0.0057 , the value 

deduced previously from 𝜌𝑎. The kinetic viscosity is kept at 𝜈 = 0.01 and 𝑠1 = 1.19. 

The numerical profile of the pressure amplitude 𝑝𝑎𝑐 obtained with this new emission condition is given 

in Fig. 23 where it is compared with the analytical profile obtained from (34). The pressure profile 

obtained numerically is now closer to that calculated analytically, with, in particular, a good amplitude 

for the two peaks, but the dissipation in the far-field zone remains still too strong. Moreover, the value 

of 𝑝𝑚𝑎𝑥 estimated from the numerical results (𝑝𝑚𝑎𝑥 = 0.0028) and used for the analytical profile in 

Fig. 23 is closer but still different from the theoretical value 0.0033 given by (33). 

To still improve our numerical solution, we have to find a way to correct the too strong attenuation, 

particularly in the far-field zone. As mentioned in the previous sections and as indicated in the literature 

[23,37], in the LBM method, the two factors responsible for the attenuation of the waves are the viscous 

dissipation effect and the geometric spreading. Concerning the geometric spreading effect, it is proposed 

in [23] to improve its consideration by refining the mesh. This solution, which can be valid in 2D cases, 

is, however, of difficult use in 3D cases, as it is very costly in terms of computation time. Concerning 

the viscous dissipation effect, we come back to the characteristics of the MRT model. In this model, the 

effect of dissipation is integrated into several relaxation times, which depend on the kinematic viscosity 

𝜈  ( s9 = s11 = s13 = s14 = s15 = 1/(3ν + 0.5 ). These times are well taken into account in our 

calculations, using the chosen viscosity (𝜈 = 0.01). A thorough survey of the literature, however, led us 

to find that there is another relaxation time, 𝑠1, which also depends on the viscosity, but now the bulk 

viscosity 𝜈𝐵 . s1 is defined in [28] as: 

𝑠1 =
2

9𝐵 + 1
.                                                                      (36) 



24 

 

 
Fig. 23. Analytical (34) and numerical longitudinal profiles of sound pressure amplitude 𝑝𝑎𝑐 plotted 

along the central 𝑥 axis in the case of the circular acoustic source, when the condition of wave 

emission is applied on the velocity and 𝑠1 = 1.19. The 𝑝𝑚𝑎𝑥 value used in the analytical expression is 

here obtained by adjustment with the numerical profile. 

For 𝐵 = 3 = 0.03, Eq. (36) gives a value of 𝑠1 of about 1.57, a little stronger than the value 1.19 

recommended in [28] and also used in [29]. Using this new value of 𝑠1 instead of 1.19 significantly 

reduces the attenuation of the waves in the numerical LBM simulations of the circular source case. This 

is illustrated in Fig. 24, which represents the profile of the longitudinal velocity 𝑢 along the central 𝑥 

axis for both values of 𝑠1. Indeed, with 𝑠1 = 1.57, the waves are less attenuated, especially in the far 

zone. Note that the value 𝑠1 = 1.19 was recommended to have a stable model allowing the simulation 

of different problems of fluid mechanics [28]. Here, for the study of the propagation of acoustic waves 

in water, the value 𝑠1 = 1.57, which seems more appropriate, remains numerically valid for the D3Q19 

model, as no instability appears in the results. Further tests were performed by continuing to increase 

the value of 𝑠1 to see its effect on the stability of our LBM model. These tests showed that our D3Q19 

MRT scheme only becomes unstable for values of 𝑠1 higher than 1.9: in these cases, clear perturbations 

are observed in the velocity profile along the central 𝑥 axis. 
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Fig. 24. Profiles of the longitudinal velocity 𝑢 along the central 𝑥 axis at 𝑡 = 1100 for two values of 

the time relaxation 𝑠1 in the case of the circular acoustic source. 

  

Fig. 25 finally gives the numerical profile of the pressure amplitude 𝑝𝑎𝑐 along the central 𝑥 axis for the 

case where the condition of wave emission is put on the velocity and the more appropriate value of 𝑠1 

given by the bulk viscosity (𝑠1 = 1.57) is used. In that case, the comparison with the analytical profile 

(34), which is not adjusted with the numerical results but uses the theoretical value of 𝑝𝑚𝑎𝑥 given by 

(33) (𝑝𝑚𝑎𝑥 = 0.0033), is very good: the amplitude of the peak at the Fresnel length and the further 

decrease in the far-field zone are particularly well taken into account. 

 

All these different studies allow us to conclude that the LBM method based on the D3Q19 MRT model 

is well adapted for the study of acoustic waves in 3D situations, and in particular waves emitted by a 

transducer. It can then be used with confidence to study different acoustic problems in the future. 
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Fig. 25. Analytical (34) and numerical longitudinal profiles of sound pressure amplitude 𝑝𝑎𝑐 plotted 

along the central 𝑥 axis in the case of the circular acoustic source, when the condition of wave 

emission is applied on the velocity and 𝑠1 = 1.57. The 𝑝𝑚𝑎𝑥 value used in the analytical expression is 

here the theoretical value given by (33) (𝑝𝑚𝑎𝑥 = 0.0033). 

6. Conclusion 

In previous works, we simulated the two-dimensional waves propagation phenomena by the lattice 

Boltzmann method (LBM) in the cases of a single point source and a line source. The results obtained 

were very precise and satisfactory but lacked comparisons with realistic situations. In the present work, 

our LBM code has been restructured to be able to simulate waves in three dimensions (3D). 

As a first step, we started with the validation of our 3D model by simulating a lid-driven cavity flow: a 

good agreement was found between our results and those previously published in the literature. In a 

second step, we simulated the case of spherical waves emitted by a localized infinitesimal source and 

showed that sound waves can be easily produced with the point source technique. 

From the perspective of acoustic streaming applications, our main objective was to study the case where 

the waves are emitted from a circular sound source (as the face of a transducer) placed at the center of 

the left boundary of a three-dimensional cavity filled with water. We first characterized the waves 

generated by such a source, using plots of the instantaneous density field and longitudinal velocity field. 

The results show that the waves propagate with a flat central front and curved sides near the source, in 

the near field zone where maximum wave amplitudes are found, whereas spherical shapes can be found 

in the far-field zone, at a large distance of the source, beyond about mid-length. These waves are 

numerically well absorbed at the surface opposite to the source by exploiting non-reflecting absorption 

conditions. The sound pressure amplitude in the cavity was also calculated by time-averaging the square 

of the instantaneous pressure. This allowed us to give the spatial structure of this pressure amplitude and 

to compare its values along the source axis with available analytical values for a circular piston. Different 
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tests led us to find the appropriate numerical conditions for a good comparison. The acoustic pressure 

amplitude resulting from a circular piston is first better reproduced by a condition of wave emission 

applied on the longitudinal velocity rather than on the density. Moreover, the right level of wave 

dissipation is obtained by using a relaxation time 𝑠1 = 1.57, based on the value of the bulk viscosity, 

rather than the value 𝑠1 = 1.19 recommended in the literature. 

All these results highlight the performance of the lattice Boltzmann simulations in acoustics. They also 

give confidence in the possibility to use the LBM approach to simulate acoustic streaming, as in 

references [9,10]. 
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