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Abstract
BACKGROUND As databases grow larger, it becomes harder to fully control their collection, and they frequently come
with missing values: incomplete observations. These large databases are well suited to train machine-learning models,
for instance for forecasting or to extract biomarkers in biomedical settings. Such predictive approaches can use
discriminative –rather than generative– modeling, and thus open the door to new missing-values strategies. Yet
existing empirical evaluations of strategies to handle missing values have focused on inferential statistics. RESULTS
Here we conduct a systematic benchmark of missing-values strategies in predictive models with a focus on large health
databases: four electronic health record datasets, a population brain imaging one, a health survey and two intensive care
ones. Using gradient-boosted trees, we compare native support for missing values with simple and state-of-the-art
imputation prior to learning. We investigate prediction accuracy and computational time. For prediction after imputation,
we find that adding an indicator to express which values have been imputed is important, suggesting that the data are
missing not at random. Elaborate missing values imputation can improve prediction compared to simple strategies but
requires longer computational time on large data. Learning trees that model missing values –with missing incorporated
attribute– leads to robust, fast, and well-performing predictive modeling. CONCLUSIONS Native support for missing
values in supervised machine learning predicts better than state-of-the-art imputation with much less computational
cost. When using imputation, it is important to add indicator columns expressing which values have been imputed.
Key words: Missing values; machine learning; supervised learning; benchmark; imputation; multiple imputation; bagging

Background: missing values in databases

Missing values are pervasive in many application domains.
This is particularly true on health data, where missing values
arise for a multitude of reasons: two patients rarely follow the
same medical path and take the exact same set of exams; mea-
surements are omitted because of lack of time or because the
patient’s condition does not allow it; hospitals do not collect ex-
actly the same information because of diverging practices and
the use of different devices; etc. This problem is exacerbated
when the data are aggregated across multiple sources or when
each individual sample comprises many features. The more

data there is, the more data is missing.
There is a rich and established statistical literature for the

treatment of missing data (Little and Rubin; 2019; Wells et al.;
2013), which has so far been mostly focused on inferential pur-
poses, i.e. estimating parameters of a probabilistic model with
their confidence intervals. For such problem, an important dis-
tinction between missing data mechanisms was introduced by
Rubin (1976): Missing Completely At Random (MCAR) where
the probability of having missing data does not depend on the
covariates, Missing At Random (MAR), where the probability of
a missing value only depends on the observed values of other
variables; and Missing Not At Random (MNAR) which covers
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Key Points

• Benchmarks on health databases highlight the challenges that they represent for statistical learning: non-ignorable miss-
ing values (Missing Not At Random – MNAR), non-linear relationships between covariates and outcomes.

• Native missing-values support in supervised machine learning gives better prediction than state-of-the-art imputation
with significantly less computational cost.

• With linear models, conditional imputation is to be preferred.
• When using imputation, concatenating the missingness indicator with the input features significantly improves predic-

tions.
• Bagging, as sometimes used for multiple-imputation, improves prediction performance but with a prohibitive time cost.

all other cases. MNAR corresponds to cases where the missing-
ness carries information. For example, if heartbeat measures
are not reported when the values are too low, it creates a MNAR
situation. Most available methods for inference in the presence
of missing values are only valid under the MAR assumption,
including maximum likelihood approaches with the Expecta-
tion Maximization algorithm (Dempster et al.; 1977), as well
as Multiple Imputation (Van Buuren; 2018). The latter is a two-
step approach where the data is first imputed multiple times
to create multiple completed datasets, and then the analysis
is performed on each imputed dataset separately before com-
bining the results to take into account the uncertainty due to
missing values.

Supervised learning to build models that predict best a re-
sponse using covariates with missing values can lead to differ-
ent tradeoff than inference models (Sperrin et al.; 2020; Josse
et al.; 2019). In health, such predictive models are central to
building complex biomarkers or risk scores, to forecasting an
epidemic, and they can even underlie causal inference for policy
evaluation (Rose and Rizopoulos; 2020). They are increasingly
used on electronic health records (Miotto et al.; 2016; Zheng
et al.; 2017; Steele et al.; 2018), where the choice of strategy to
handle missing values remains a challenge (Jarrett et al.; 2021).
Indeed, unlike with inference, little work to date has focused
on the systematic evaluation of supervised learning with miss-
ing values. Existing works focus on benchmarking imputation
quality (Jäger et al.; 2021; Bertsimas et al.; 2018) – which, as
our study points out, is a different goal than prediction qual-
ity – or only focus on imputation-based methods (Poulos and
Valle; 2018).

In practice, a number of options are commonly used to learn
predictive models with missing values. The simplest one is
to delete all observations containing missing values. However,
leaving aside the possible biases that this practice may induce,
it often leads to considerable loss of information in high and
even moderate dimensions. Indeed, when there are many vari-
ables, it is common that only a few observations are completely
observed.

In order to deal with arbitrary subsets of input features, the
most common practice currently consists in first imputing the
missing values, and then learning a predictive model (e.g re-
gression or classification) on the completed data. The popu-
larity of this approach is mainly due to its simplicity and ease
of implementation. After imputation, off-the-shelf learners
can be applied on the completed dataset. Recent theoretical re-
sults show that applying a supervised-learning regression on
imputed data can asymptotically recover the optimal predic-
tion function; however most imputation strategies, including
the common imputation by the conditional expectation, create
discontinuities in the regression function to learn (Le Morvan
et al.; 2021).

A small number of machine learning models can natively
handle missing values, in particular popular tree-based meth-

ods. Trees greedily partition the input space into subspaces
in order to minimize a risk. This non-smooth optimization
scheme enables them to be easily adapted to directly learn from
incomplete data. Several adaptations of trees to missing values
have been proposed (see Josse et al.; 2019, for a short review).
Missing Incorporated in Attributes (MIA, Twala et al.; 2008)
is the most promising strategy (Josse et al.; 2019), described
below in the experiment section.

In this work, we benchmark the most popular methods
for supervised learning with missing values on multiple large
real-world health databases. In contrast to most simulations,
real health databases combine a number of challenges: un-
known data distributions (not necessarily Gaussian), uncon-
trolled missing data mechanism (not necessarily MAR), mixed
quantitative and categorical data, and often a high level of
noise. In such a challenging setting, we compare existing ap-
proaches to make recommendations that are directly relevant
for the practitioner. To establish general recommendations, we
study a total of 13 prediction real-world tasks (10 classification
and 3 regression tasks) across four publicly-available health
databases of very different nature. For each of these tasks, we
compare methodologies based on imputation followed by re-
gression or classification, to tree-based models that can na-
tively handle missing values with a MIA strategy. These meth-
ods are chosen from the common practice as well as theoretical
work on supervised learning with missing values (Josse et al.;
2019).

The present study has several strengths in terms of bench-
marking methodology, avoiding common limitations. It uses
real data and real missingness; multiple draws of a cross-
validation loops are used; the imputation procedure is not fit-
ted on the whole dataset but rather on the training set to pre-
vent leaks from the training set to the out-of-sample test set;
hyper-parameters of the predictive model are tuned for each
method to reduce bias in the hyper-parameters selection; and
finally the study benchmarks imputation methods and predic-
tive models that handles missing values. As a result, our bench-
mark is very computation-intensive: the whole study costed
approximately 520 000 CPU hours, i.e. 60 years on a single CPU,
revealing the need to also account for compute cost in recom-
mendations.

After briefly exposing our benchmarking methodology, we
give a synthetic view of the findings and discuss observed
trends. Overall, the benchmarks reveal the presence of miss-
ing not at random (MNAR) values and non-linear mechanisms.
High-quality conditional imputation gives good prediction pro-
vided that a variable indicating which entries were imputed is
added to the completed data. However, its algorithmic com-
plexity makes it prohibitively costly on large data. Rather,
tree-based methods with integrated support for missing val-
ues (missing incorporated attribute – MIA) perform as well or
better, at a fraction of the computational cost.



Perez-Lebel et al. | 3

Empirical study

Benchmarking the imputation and MIA methods

Our experiments compare two-step procedures based on im-
putation followed by regression or classification, as well as
tree-based models with an intrinsic support for missing val-
ues thanks to MIA. The 12 methods compared are summarized
in Table 1: MIA, 8 methods based on single imputation and 3
methods using Multiple Imputation via Bagging. Below, we de-
scribe further the imputation strategies benchmarked as well
as MIA.
Single Imputation
Constant imputation: mean and median. The simplest approach
to imputation is to replace missing values by a constant such
as the mean, the median or the mode of the corresponding fea-
ture. This is frowned upon in classical statistical practice, as
the resulting data distribution is severely distorted compared
to that of fully-observed data. Yet, in a supervised setting, the
goal is different from that of inferential tasks. Recent theo-
retical results have established that powerful learners such as
ones based on trees can learn to recognize such imputed values
and give the best possible predictions (Josse et al.; 2019). The
key to the success of this strategy is to impute the training and
the test set with the same constant: missing values of the test
set are imputed with the constants learned on the training set
(mean, median, etc).
Conditional imputation: MICE and KNN. Powerful imputation ap-
proaches rely on conditional dependencies between features to
fill in the missing values. Adapting machine-learning tech-
niques gives flexible estimators of these dependencies. Clas-
sical approaches include k-nearest neighbor regressors (Chen
and Shao; 2000), and iterative conditional imputers that pre-
dict one feature as a function of others, as with the MICE
imputer (Buuren and Groothuis-Oudshoorn; 2010). In our
experiments, we benchmark their implementation in scikit-
learn (Pedregosa et al.; 2011): the KNNImputer as well as the
IterativeImputer, using linear models to impute missing val-
ues.
Adding the mask. Conditional imputation can make it hard for
the learner to retrieve which entries were originally observed
and which were originally missing. However, the information
of missingness can be relevant for predicting the outcome in
cases where it depends on missingness, or in missing not at ran-
dom settings where the missingness carries information. For

Table 1. Methods compared in the main experiment.All use gradient-boosted trees as predictive model. 10 use imputa-tion and 2 uses MIA. Bagging uses 100 estimators in the ensemble.
In-article name Imputer Mask Bagging Predictive model
MIA – No No Boosted trees
Mean Mean No No Boosted trees
Mean+mask Mean Yes No Boosted trees
Median Median No No Boosted trees
Median+mask Median Yes No Boosted trees
Iterative Iterative No No Boosted trees
Iterative+mask Iterative Yes No Boosted trees
KNN KNN No No Boosted trees
KNN+mask KNN Yes No Boosted trees
Iterative+Bagging Iterative No Yes (100) Boosted trees
Iterative+mask+Bagging Iterative Yes Yes (100) Boosted trees
MIA+Bagging – No Yes (100) Boosted trees

these reasons, it can be useful after imputation to add new bi-
nary features that encode whether a value was originally miss-
ing or not: the mask or missingness indicator (Josse et al.; 2019;
Sharafoddini et al.; 2019; Sperrin et al.; 2020).
Multiple Imputation
When estimating model parameters, it is of great importance
to reflect the uncertainty due to the missing values. For this
purpose, Multiple Imputation methods are widely used, of-
ten via Resampling methods such as the Bootstrap. However,
for prediction (classification or regression) theoretical condi-
tions differ from that of parameters estimation. Indeed, it has
been shown recently that a sufficiently flexible learner reaches
optimal performances asymptotically with Single Imputation,
whatever the missing data mechanism and whatever the choice
of imputation function (Le Morvan et al.; 2021). Still, this result
holds in asymptotic regimes, and there is a need for empirical
results on handling missing values with Multiple Imputation or
Bootstrap in the context of supervised learning. Theoretically,
the only result that we are aware of for Multiple Imputation in
the context of prediction requires access to an oracle predictor
for fully observed data and is valid only in MAR (Josse et al.;
2019, th. 3). In general, it is not clear how to use Multiple Im-
putation for supervised learning: sampling can be applied in
different ways during training the model or applying their pre-
dictions to new data. Khan et al. (2019) review and compare
a number of methods for using Multiple Imputation and Boot-
strap: learning on an averaged version of a multiply imputed
dataset, bagging single imputations, bagging Multiple Impu-
tations, constructing ensembles based on predictors that were
each learned on a version of a multiply imputed dataset (Fried-
man et al.; 2001, chap 16). As these methods all come with a
significant computing cost, we focus on the most promising
approach: bagging single imputation. More precisely, we draw
for each task 100 bootstrap replicates. We then fit the single
imputation and the predictive model on each of these replicates,
to obtain 100 predictors. Final predictions are made either by
voting or by averaging (see Supplementary Table 5).
Directly handling missing values with tree-based models: MIA
We also consider the MIA (Missing Incorporated in Attribute)
strategy to readily model missing values in tree-based models.
It has the benefit of using all samples, including incomplete
ones, to produce the splits of the input space. More precisely
for each split based on variable j, all samples with a missing
value in variable j are either sent to the left or to the right child
node depending on which option leads to the lowest risk. Note
that the samples with an observed value in variable j can ei-
ther be split between the left and right child node according to
whether their values xj is greater or smaller than a threshold,
or either all be sent to the same child node so that they are
separated from the samples with a missing value in variable j.
That makes MIA particularly suited to Missing Not At Random
(MNAR) settings, as it can harness the missingness informa-
tion. Moreover, since trees with MIA directly learn with miss-
ing values, they provide a straightforward way of dealing with
missing values in the test set. We use the implementation in
scikit-learn’s boosted trees (HistGradientBoostingRegressor).
Predictive model
For the supervised learning step, we focus on gradient-boosted
trees –though we also benchmark linear models in a comple-
mentary analysis described in the appendices. We applied su-
pervised learning to the imputed data for the imputation-based
methods. We also used the tree models with their support of
MIA for a direct handling of missing values. Gradient-boosted
trees are state-of-the art predictors for tabular data (Chen and
Guestrin; 2016; Olson et al.; 2018; Shwartz-Ziv and Armon;
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2021), and thus constitute a strong baseline. Moreover, using
gradient-boosted trees enables us to keep the same predictive
model for all approaches, thereby putting emphasis on the im-
pact of the missing data treatment.

To define the input features we either use the choice of ex-
perts in prior studies, or feature screening, a classic machine-
learning procedure using a simple ANOVA-based univariate
test of the link of each feature to the outcome (Guyon and Elis-
seeff; 2003). In both cases, the same set of selected features
is used for all methods within each predictive task. Selecting
features is necessary because some of the imputation methods
studied are not tractable with a large number of features.

Health databases

To reach conclusions as general as possible we used four real-
world health-related databases. These databases vary in terms
of location, size, purpose and time, to cover a wider data scope.
These databases already existed and no data collection was
made in this study. Below, we describe them briefly, giving
the prediction tasks studied for each of them.
Traumabase
The Traumabase Group (2012) is a collaboration studying ma-
jor trauma. The database gathers information from 20 French
trauma centers on more than 20 000 trauma cases from admis-
sion until discharge from critical care. Data collection started
in 2010 and is still ongoing in 2020. We used records spanning
from 2010 to 2019. Data can be obtained by contacting the team
on the Traumabase website (The Traumabase Group; 2012).

We defined 5 prediction tasks on this database, 4 classifica-
tions and 1 regression. Outcomes are diverse: patient’s death,
hemorrhagic shock, septic shock, and platelet count. Features
for the hemorrhagic shock prediction are taken from Jiang et al.
(2020).
UK Biobank
UK Biobank (UKBB) (Sudlow et al.; 2015) is a major prospec-
tive epidemiology cohort with biomedical measurements. It
provides health information on more than 500 000 United-
Kingdom participants aged between 40 to 69 years from 2006
to 2010. The data are available upon application as detailed on
the UK BioBank website (Sudlow et al.; 2015).

We defined 5 tasks on this database, 4 classifications and
1 regression. Outcomes are the diagnosis of three diseases -
breast cancer, skin cancer, Parkinson’s disease - as well as pre-
diction of the fluid-intelligence score. Breast cancer prediction
uses features defined in Läll et al. (2019).
MIMIC-III
The Medical Information Mart for Intensive Care (MIMIC)
database (Johnson et al.; 2016) is an Intensive Care Unit (ICU)
dataset developed by the MIT Lab for Computational Physi-
ology. It comprises deidentified health data associated with
about 60 000 ICU admissions recorded at the Beth Israel Dea-
coness Medical Center of Boston, United States, between 2001
and 2012. It includes demographics, vital signs, laboratory
tests, medications, and more. The data can be accessed via
an application described on the MIMIC website (Johnson et al.;
2016).

We defined 2 classification tasks on this database. Out-
comes are septic shock and hemorrhagic shock.
NHIS
The National Health Interview Survey (NHIS) (National Center
for Health Statistics; 2017) is a major data collection program
of the National Center for Health Statistics (NCHS), part of the

Centers for Disease Control and Prevention (CDC) in the United
States. It aims to monitor the health of the population. Since
1957, it collects data from United-States population. We use
the 2017 edition, summing up to approximately 35 000 house-
holds containing about 87 500 persons. The database is freely-
accessible on the NHIS website (National Center for Health
Statistics; 2017).

We defined 1 regression task on this database. Outcome is
the yearly income.

More details on each database and task can be found in the
appendices, in particular in Supplementary Table 7 and Supple-
mentary Figure 4 that detail the number of features available
and their type (numerical, ordinal and categorical), and Sup-
plementary Figure 6 giving the distribution of missing values
across features.

Findings

Figure 1 summarizes the performances and computational
times of the various methods across the 4 databases and 13 pre-
diction tasks. To explore the importance of the amount of data,
we created training datasets of 4 sizes: 2 500, 10 000, 25 000
and 100 000 samples. We report the general trends.
Bagging improves prediction, MIA performs well at limited cost
Iterative+mask+Bagging obtains the best overall average rank
(2.6) across all tasks and sizes in terms of prediction score
closely followed by MIA+Bagging (2.8) as shown on Figure 1a
and Supplementary Table 8b. Overall, Bagging improves
markedly all approaches (supplementary Figure 9). How-
ever the cost of these bagged methods can be prohibitive.
At size n=100 000, Iterative+mask+Bagging and MIA+Bagging
cost 369 and 117 CPU days per task respectively, about 100 to
200 times slower than non-bagged method such as MIA (1.9
CPU days per task).

MIA enables to navigate a trade off between prediction
performance and computational tractability: With Bagging it
comes close to Iterative+Mask with half the computational cost
on large databases. Without Bagging, it is the best overall per-
former, with an overall average rank of 4.3, and up to 200 times
faster. It is followed by Mean+mask, Median+mask and Iter-
ative+mask with overall average ranks of 5.2, 5.5 and 6.0 re-
spectively. Mean, KNN+mask, Iterative, Median and KNN per-
formed the worst with overall average ranks of 7.5, 8.9, 9.0, 9.2
and 11.5 respectively. Supplementary Table 8a and 8b give more
quantitative details about scores and ranks of each method.

Similar observations can be made on each size separately.
MIA obtained the best prediction scores on every size with aver-
age ranks of 4.3, 4.6, 4.4 and 2.5 on sizes 2 500, 10 000, 25 000
and 100 000 respectively as shown on Supplementary Figure 3a.

In terms of computing time, beyond the fact that Bagging
multiplies by 100 the cost of every method, MIA is almost al-
ways the fastest (Figure 1b), though it gives excellent predic-
tion performance. It is on par with Mean, and Median imputa-
tions, but adding the mask to these methods –a key ingredient
to prediction performance– doubles their computing times. At
the other end of the spectrum, Iterative+mask and KNN+mask
are the slowest non-bagged methods. The gaps between train-
ing times of the methods increase with the size of the database,
revealing the difference in algorithmic scalability.
Statistical significance. To assess significance of the above re-
sults, we ran three statistical tests: the Friedman test (Fried-
man; 1937, 1940), the Nemenyi test (Nemenyi; 1963) and the
one-sided Wilcoxon signed-rank test (Wilcoxon; 1945), all de-
scribed in Demšar (2006).
The Friedman test compares the average ranks of several algo-
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(a) Prediction performance
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Figure 1. Gradient-boosted trees models. Comparison of prediction performance and training times across the 12 methods (see Table 1) for 13 prediction tasks
spread over 4 databases, and for 4 sizes of dataset (2 500, 10 000, 25 000 and 100 000 samples). For each of the tasks and sizes, we computed a reference score by
averaging the scores obtained by the 12 methods on the corresponding task and size. The relative prediction score of a method on a task and size is the deviation
of the prediction score from the reference score of this task and size. For computational time, the total training time comprises imputation and tuning times and
is given relative to the one of MIA for each task and size. More details on how these plots were created are given in the Plotting method section. The significance is
assessed with a one-sided Wilcoxon signed-rank test with MIA taken as reference (see Supplementary Table 4a). Methods which performed significantly poorer
(resp. better) at the 0.05 level are marked with "?" (resp. "?(>)") and "??" (resp. "? ? (>)") for Bonferroni-corrected levels. Two tables give the overall average
ranks and the total number of CPU days for each method, all tasks and sizes combined. The average number of CPU hours per task required to evaluate each
method is given on each line. Detailed scores and ranks broken out by tasks are given in Supplementary Table 8 and Supplementary Figure 7. Notice that KNN
and KNN+mask were intractable at n = 100 000 due to their memory footprint of O(n2).

rithms ran on several datasets. The null hypothesis assumes
that all algorithms are equivalent, i.e. their rank should be
equal. Table 3a shows that the null hypothesis is rejected with
p-values way below the 0.05 level for the sizes 2 500, 10 000
and 25 000. This indicates that at least one algorithm has
significantly different performances from one other on these
sizes. Following Demšar (2006), we then proceed with a post-
hoc analysis with the Nemenyi test, assessing the significance
of the difference between two algorithms using a critical dif-
ference. Algorithms with a difference in ranks smaller than
the critical difference are not significantly different. Unfortu-
nately, there are many methods to compare (12) comparatively
to the number of datasets (13). As a result, the critical dif-
ference is high as shown in equation (3) and Supplementary
Table 3a and there is almost no significance when comparing
the performance of MIA with the one of the other methods as
shown on Supplementary Figure 3a. However, there are some
significance when comparing bagged methods. For exam-
ple at size n=2 500, Iterative+mask+Bagging and MIA+Bagging
performed significantly better than Mean, Median, Iterative,
KNN+mask and KNN.

We run a complementary analysis with a one-sided
Wilcoxon signed-rank test, used for non-parametric tests com-
paring algorithms pairwise. We compare MIA to every other
methods. The null hypothesis claims that the median of the
score differences between the two methods is positive (resp.
negative) for the one-sided right (resp. one-sided left) test.
Results of the test is shown on Figure 1a and Supplementary
Table 4b. At size n=2 500, MIA performed significantly bet-
ter than every other non-bagged methods at the 0.05 level.
MIA also performed significantly better than Mean, KNN and
KNN+mask at the Bonferroni-corrected level. Bagged methods
Iterative+mask+Bagging and MIA+Bagging performed signifi-
cantly better than MIA at the 0.05 level. The bigger the size n,
the less tasks are available and so the less significant are the
results.
Adding the mask improves prediction

Imputations with the additional variable representing the mask
perform systematically better in terms of average prediction
score than their counterpart without mask (Figure 1a, Supple-
mentary Table 8b).
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In addition, MIA is not significantly better than the masked
imputations yet it is for the non-masked imputations (Fig-
ure 1a, Supplementary Table 4). However, adding the mask
leads to longer training times (Figure 1b). Indeed, adding
the mask doubles the number of features for the supervised-
learning step.
Conditional imputation is on par with constant imputation

Figure 1 shows that conditional imputation using Iterative or
KNN imputers does not perform consistently better than con-
stant imputation. The overall mean rank of Iterative and KNN
are 9.0 and 11.5 versus 7.5 and 9.2 for Mean and Median respec-
tively (Figure 1a and Supplementary Table 8b), and a similar
delta is visible on the masked version.
Supplementary finding: Boosted-trees outperform linear methods

Imputation methods paired with a linear model performed
poorer than when paired with boosted-trees (Supplementary
Figure 2, Supplementary Table 9b). Additionally, boosted-
trees paired with MIA are significantly better than every other
method based on a linear model (Supplementary Table 4).

Discussion

Interpretation

Model aggregation drives the good performance of Multiple Impu-
tation

As with standard multiple-imputation strategies used for pa-
rameter estimation, Bagging generates multiple bootstrap
replicate training sets. Yet, the standard practice of Multi-
ple Imputation strives to capture well the conditional distri-
bution of the missing values given the observed one, while
such conditional imputation is not needed for good prediction
(as revealed by the good performance of MIA and Le Mor-
van et al.; 2021). Indeed, Bagging in itself is known to
improve generalization. To answer whether the good per-
formance of Multiple Imputation can be attributed to en-
sembling –averaging multiple predictors– or capturing the
conditional distribution, we performed additional experiment
with Mean+mask+Bagging (see Supplementary Figure 9). We
observed that Mean+mask+Bagging is on par with Itera-
tive+mask+Bagging, which suggests that the improved perfor-
mances are rather due to the effect of Bagging itself rather than
capturing the conditional distribution of the missing data given
the observed ones.
Good imputation does not imply good prediction, even for Multiple
Imputation

It may be surprising at first that a sophisticated conditional im-
putation does not outperform constant imputation. Indeed, it
contradicts the intuition that better imputation should lead to
better prediction. Theoretical work shows that this intuition is
not always true (Le Morvan et al.; 2021): even in MAR settings,
it may not hold for strongly non-linear mechanisms and little
dependency across features. In the health databases that we
studied, the features are weakly correlated: on average, only
12% of the features are correlated at more than 0.3 in absolute
value (Supplementary Table 6). This low correlation among
features may explain our findings. If features are mostly inde-
pendent, there is little information on the unobserved values
to be extracted from the observed ones. For supervised learn-
ing, constant imputation comes with the benefit that it creates
a simple structure captured by the supervised-learning step,
which can then adapt to the missingness (Josse et al.; 2019).

Boosted-trees with MIA give best predictive models at little cost
MIA, the missing-values support inside gradient-boosted
trees, appears as a method of choice to deal with missing val-
ues. It was on average the best performing one in terms of
performance in our extensive benchmark while having a low
computational cost. Sophisticated conditional imputation such
as the Iterative or KNN imputers are appealing because they
may recover plausible values for missing entries, as discussed
below. However, they are intractable with large datasets. Be-
yond the costs outlined by our experiments (Figure 1b), the
broader problem is the algorithmic scalability: for a dataset of
p features and n samples, the compute cost of a KNN imputer
scales as n2p2 and the memory footprint as n2, while the com-
pute cost of an iterator imputer scales as p2nmin(n, p) when
it is based on linear models, the cheapest alternative. If both
p and n grow, these costs rapidly becomes prohibitive. They
prevented us from exploring larger datasets, e.g. with more
features. Note that to ground valid predictions, the imputa-
tion model must be learned only on the train set; hence it is
recomputed many times in a cross-validation loop.

Regardless of missing-values handling, gradient-boosted
trees predict significantly better than linear models (Supple-
mentary Table 4b). Tree-based models excel on categorical or
ordinal features, however these are only a minority of the fea-
tures of the databases studied (Supplementary Figure 4). Hence
the good performance of gradient-boosted trees probably re-
veals non-linear mechanisms in the data. Note that the small-
est database that we explored has a sample size of n=2 500. For
much smaller data, the simplest model –the linear model– may
be the best choice.
The missingness is informative
For imputation-based pipelines, prediction significantly im-
proves with the missingness mask added as input features.
This suggests that the missingness is informative, which is of-
ten the case in health databases (Agniel et al.; 2018; Madden
et al.; 2016). Hence for all health databases studied, either the
covariates are Missing Not At Random (MNAR) or the outcome
to predict depends on the missingness. Either cases fall outside
of the theoretical framework that grounds the validity of statis-
tical analysis using imputation (Rubin; 1976; Josse et al.; 2019).
The empirical results also confirm that the practice of adding
the mask as input allows to harness the predictive information
in missing data patterns (Sperrin et al.; 2020), otherwise hid-
den in the imputed data and much more difficult to recover.
Features with high missing rates are also important.
Within each task, the missing rate per feature varies over a
wide spectrum (see Supplementary Figure 6). We checked that
features’ missing rates and predictive importance were not as-
sociated. For this, we measured permutation features: the drop
in a model score after shuffling a feature, thereby cancelling
its contribution to the model performance. We ran this ex-
periment for each task and each feature using scikit-learn’s
implementation (see Supplementary Table 5). We found no as-
sociation between a feature’s missing rate and its importance
(Supplementary Figure 8). Predictions do not only rely on fea-
tures with few missing values. Moreover, even features with a
very high level of missing values (for example > 80%) seem to
be as important as the others. This highlights the fact that it is
worth making the effort of learning with incomplete features,
even when they have a high missing rate.
Imputation may benefit robustness or interpretability
A good imputation may bring the benefit of recovering a mean-
ingful missing value, reflecting a biological or clinical reality
rather than operational constraints. For instance, the weight
of a patient may be measured upon scheduled admission to a
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hospital but not at the emergency department. A predictive
model based on an imputed underlying value may lend itself
better to mechanistic interpretation than a model implicitly
capturing missingness such as MIA. In addition, using miss-
ingness to drive prediction may be more fragile, e.g. to changes
in the operational process. In such a case, shifts in the missing
data patterns should be closely monitored (Sperrin et al.; 2020;
van Smeden et al.; 2020; Groenwold; 2020) as they could seri-
ously alter prediction performance. Indeed, machine-learning
models building their predictions on “shortcuts” in the data
–not directly related to outcome of interest but rather to the
acquisition– sometimes generalize less well to new hospitals
(DeGrave et al.; 2021). Nevertheless, in health the mere pres-
ence of a measure, such as a colonoscopy, is often an indication
in itself.

Limitations and further work

Limitations: not all differences are significant
Relative performance of approaches varies across datasets,
which is not surprising as no prediction model is expected to
dominate on all data. The diversity of the datasets and the
statistical analysis grounds the generality of the findings. Yet,
not all differences are significant at large sample sizes. This
lack of significance can simply be explained because of a small
statistical power of the benchmark as only a few datasets are
available to test these very large sample sizes settings (only 4
tasks at the n=100 000 size).

More datasets would probably have made more differences
significant. Yet, the benchmarks presented here already in-
curred large computational costs, due to the nested cross-
validation: about 520 000 CPU hours. Also, the findings
build upon 13 different tasks, markedly more than the typ-
ical machine-learning benchmark: only 6% of empirical re-
sults published at NeurIPS and 8% ICLR (both leading machine-
learning venues) build upon more than 10 datasets (Bouthillier
and Varoquaux; 2020).
Limitations: imputation quality is not assessed
All the conclusions of this study pertain to prediction and do
not allow us to conclude on imputation’s ability to accurately
reconstruct missing values. The focus of our study is indeed
on prediction.
Further work: more benchmarks would be interesting, and costly
To limit computation costs and mimic typical usage, no hyper-
parameters tuning was performed on the parameters of the im-
puters. Recently, software tools have been introduced to per-
form model selection on imputation jointly with the supervised
step (Jarrett et al.; 2021; Borowski and Fic; 2021). Further evalu-
ation could quantify how much gains are brought by such joint
model selection, though it would need sizable computational
resources.

Further work could test more supervised learning models.
The motivation of the present study was not to find the absolute
best pipeline, but rather to understand compromises that hold
across datasets and are readily usable.

Conclusion

Extensive benchmarking on health databases reveals trends in
the performance of methods to build predictive models han-
dling missing values. First, directly incorporating missing val-
ues in tree-based models with MIA, gives a small but system-
atic improvement in prediction performance over prior impu-
tation. Second, the computational cost of imputation using

MICE or KNN becomes intractable for large datasets. Third,
gradient-boosted trees give better predictions than linear mod-
els. Fourth, Bagging increases predictive performance but with
a severe computational cost. Fifth, good imputation does not
imply good prediction as both have different tradeoffs. Finally,
the experiments reveal that the missingness is informative.
Overall, a novel message of this benchmark is that for building
predictive models, supervised learning directly handling miss-
ing values should be considered, beyond imputation.

Potential implications

This work suggests a departure from current practices: super-
vised learning directly handling missing values can be prefer-
able to imputation. In particular, classic conditional expecta-
tion methods can be computationally intractable both in terms
of time and memory on large datasets. Constant imputation
with the mask also performs well with little costs.

Detailed benchmarking methodology

Experiment

We selected four real databases with missing values described
in Health databases. From them we defined empirically 13 pre-
diction tasks – that is a set of input features and an outcome
to predict – with the intent of covering as diverse use cases
as possible: regressions, classifications, diverse outcomes, di-
verse feature types (numerical, ordinal and categorical). We
sub-sampled the datasets to study 4 sizes: 2 500, 10 000, 25 000
and 100 000 samples. We selected a subset of features from
the databases for each prediction task using two approaches.
Manually selecting or defining features based on articles or au-
tomatically selecting 100 encoded features using an univariate
ANOVA selection. We often used the later because it has the
advantage of not requiring expert knowledge to define the fea-
tures. Manual selection keeps fewer features than our auto-
mated selection. Note that we one-hot encoded categorical fea-
tures before selecting 100 encoded features with ANOVA. Less
than 100 non-encoded features may thus be involved in the
task. The ANOVA is fitted on one third of the samples and the
two remaining thirds are kept for fitting and evaluating the
methods. To reduce bias induced by the choice of subset on
which is fit the ANOVA, we ran 5 trials in which the subset
is each time redrawn and average the scores and times. Task
having their features manually selected are given the whole
samples and only 1 trial is performed. Each of the 12 methods
is given the exact same features and cross-validation folds.
The next step consists in benchmarking the 12 methods of Ta-
ble 1 on the defined prediction tasks. We used the implementa-
tion from scikit-learn (Pedregosa et al.; 2011) for all methods
(see Supplementary Table 5). Two nested cross-validations are
used. The outer one yields 5 training and test sets. On each
training set, we perform a cross-validated hyper-parameter
search –the inner cross-validation– and select the best hyper-
parameters. We evaluate the best model on the respective test
set. We assess the quality of the prediction with a coefficient of
determination for regressions and the area under the ROC curve
for classification. We average the scores obtained on the 5 test
sets of the outer cross-validation to give the final score. Finally,
we compare averaged prediction scores one to each other.
We also monitored training and imputation times to add time
concerns to our analysis. A very detailed description of the
experimental method is available on protocols.io (Perez-Lebel
et al.; 2022a). A link to the code of the experiments is given in
Availability of source code and requirements.
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Plotting method

Figures on prediction scores

The experiment gives one prediction score per fold, per trial,
per task, per method, per size. Cross-validations aggregate
and average scores across the folds and trials resulting in an
average score for each of the (task, method, size). For each
one of the pairs (task, size), we computed a reference score by
averaging the scores obtained by the 12 methods on the corre-
sponding task and size. The plotted metric is what we called
the relative prediction score - that is the deviation of the pre-
diction score from the reference score - for each of the (task,
method, size). We created one box plot for each of the 4 sizes
with the same structure: the relative prediction score on the
x-axis and the 12 methods on the y-axis. Each is overlaid with
a scatter plot plotting the relative prediction score per (task,
method, size). The scatter plot shares its x-axis with the box
plot. On the y-axis however, each dot is given a y coordinate ac-
cording to its method and database so that scores coming from
a same method and database are plotted on the same horizontal
line.
Figures on computation time

Computational time plots follow the same structure. The met-
ric of interest is now the total training time. It includes impu-
tation time and the full hyper-parameters tuning time. It is
evaluated using computer’s process time instead of wall-clock
time. The total training time of MIA is taken as reference time
for each (task, size). The relative total training time is com-
puted by dividing by the reference time. The x-scale is loga-
rithmic to better apprehend comparison on large scales.

Availability of source code and requirements

• Project name: Benchmarking missing-values approaches
for predictive models on health databases.

• Project home page: https://github.com/aperezlebel/
benchmark_mv_approaches

• Operating system: Platform independent
• Programming language: Python 3.7.6
• Other requirements: all requirements are listed in the

requirements.txt file of the repository.
• License: MIT

Data Availability

All supporting data and materials are available in the Giga-
Science GigaDB database (Perez-Lebel et al.; 2022b). The
datasets supporting the results of this article are available at
the following URL.
• Traumabase, by contacting the team at http://www.

traumabase.eu/en_US/contact.
• UKBB: upon application at https://www.ukbiobank.ac.uk/

register-apply/.
• MIMIC-III: upon application at https://mimic.physionet.

org/gettingstarted/access/.
• NHIS freely available at https://www.cdc.gov/nchs/nhis/

nhis_2017_data_release.htm.
A thorough description of the protocols of the experiments

conducted in this article is available on protocols.io (Perez-
Lebel et al.; 2022a).
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(b) Computational time
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Figure 2. Supplementary results: linear and gradient-boosted trees models. Comparison of prediction performance and training times across the 9 methods
(linear models and gradient boosting trees, see Supplementary Table 2) for 13 prediction tasks spread over 4 databases, and for 4 sizes of dataset (2 500, 10 000,
25 000 and 100 000 samples). For linear models, ridge is used for regressions and logistic regression for classifications. For each of the tasks and sizes, we computed
a reference score by averaging the scores obtained by the 9 methods on the corresponding task and size. The relative prediction score of a method on a task and
size is the deviation of the prediction score from the reference score of this task and size. For computational time, the total training time comprises imputation
and tuning times and is given relative to the one of MIA for each task and size. More details on how these plots were created are given in the Detailed benchmarking
methodology section. The significance is assessed with a one-sided Wilcoxon signed-rank test with MIA taken as reference (see Supplementary Table 4b). Methods
which performed significantly poorer (resp. better) at the 0.05 level are marked with "?" (resp. "?(>)") and "??" (resp. "? ? (>)") for Bonferroni-corrected levels.
Two tables give the overall average ranks and the total number of CPU days for each method, all tasks and sizes combined. The average number of CPU hours per
task required to evaluate each method is given on each line. Detailed scores and ranks broken out by tasks are given in Supplementary Table 9. Notice that KNN
and KNN+mask were intractable at n=100 000 due to their memory footprint of O(n2).

Appendix

Supplementary experiment: linear models or trees?

Protocol
This supplementary experiment uses the same pipeline as the
main experiment except that imputation is paired with linear
models instead of boosted trees as summarized in Supplemen-
tary Table 2. We used ridge for regressions, and `2-penalized
logistic regression for classifications.
Findings: trees with MIA improve upon linear models
MIA with boosted trees outperforms all 8 combinations of im-
puters with linear models, on every size and every database.
Supplementary Figure 2a shows that MIA obtained the best
average rank of 1.3 far ahead of other methods. The follow-
ing ones are Linear+Mean+mask, Linear+Med+mask and Lin-
ear+Iter+mask with a rank of 3.9, 4.0 and 4.5 respectively. The
one-sided Wilcoxon signed-rank test confirms this claim. Sup-

plementary Table 4 shows that MIA with boosted trees is signif-
icantly better than every linear methods on the first two sizes
even at the Bonferroni-corrected level. The null hypothesis of
the Friedman test is rejected below the 0.05 level except for the
last size as shown on Supplementary Table 3b. Thus methods
are not equivalent for the first three sizes. The Nemenyi test
on Supplementary Figure 3b confirms that results are not sig-
nificant for the larger size.
Moreover, we were expecting the mean and median imputa-
tions to give bad results being paired with linear models as
shown in Le Morvan et al. (2020). Not only these results con-
firm our expectations, but they also show that non-constant
imputation models give similar results when paired with a lin-
ear model. As before, masked versions perform slightly better
than their no-mask counterpart.
However, gradient-boosted trees with MIA are a lot slower
than imputation with linear models. Supplementary Figure 2b
shows that boosted trees with MIA is up to 500 times slower
than constant imputations with linear models. Also, condi-
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Table 2. Methods compared in the supplementary experiment.

In-article name Imputer Mask Predictive model
Boosted trees+MIA - - Boosted trees
Linear+Mean Mean No Ridge/Logit
Linear+Mean+mask Mean Yes Ridge/Logit
Linear+Med Median No Ridge/Logit
Linear+Med+mask Median Yes Ridge/Logit
Linear+Iter Iterative No Ridge/Logit
Linear+Iter+mask Iterative Yes Ridge/Logit
Linear+KNN KNN No Ridge/Logit
Linear+KNN+mask KNN Yes Ridge/Logit

tional imputation leads to slower computations than mean and
median imputation. Given the low gain obtained against mean
and median imputation, they are of limited interest.
The main takeaway is the outperformance in score of MIA
with gradient-boosted trees over imputation with linear mod-
els when it comes to handling missing values. This outperfor-
mance comes with a cost: a much longer computation time.

Significance tests

In the following paragraphs, we took the notations and for-
mulations of Demšar (2006). We consider k algorithms and N
datasets. We note rji the rank of the j-th algorithm on the i-th
dataset. Note Rj = 1

N
∑
i r
j
i the average rank.

Friedman test. The Friedman statistic χ2
F is distributed accord-

ing to a chi-square distribution with k – 1 degrees of freedom.

χ2
F = 12N

k(k + 1)
∑
j
R2
j – k(k + 1)2

4
 (1)

Iman and Davenport (1980) derived a less conservative statistic
FF which is distributed according to the F-distribution with k–1
and (k – 1)(N – 1) degrees of freedom.

FF = (N – 1)χ2
F

N(k – 1) – χ2
F

(2)

Both statistics (1) and (2) are given on Supplementary Table 3
with their associated p-values for the 2 sets of methods and
the 4 sizes of dataset.

Table 3. Friedman test, correction by Iman and Davenport and Ne-menyi test. CD is the critical distance and N the number of tasksfor each size.
(a) Tree-based methods of Table 1.

χ2
F χ2

F p-value FF FF p-value CD N
Size
2500 73 9.6e-11 12 7.4e-16 4.6 13
10000 76 2.3e-11 15 6.1e-18 4.8 12
25000 30 2.5e-03 3.9 2.4e-04 6.3 7
100000 10 0.43 1.2 0.35 6.8 4

(b) Boosted-trees and linear methods of Supplementary Table 2.
χ2
F χ2

F p-value FF FF p-value CD N
Size
2500 41 5.1e-06 7.8 5.2e-08 3.3 13
10000 50 9.7e-08 12 1.7e-11 3.5 12
25000 23 5.6e-03 4.3 6.2e-04 4.5 7
100000 -19 1 -1.1 1 6 4

Figure 3. Mean ranks by method and by size of dataset. The critical difference
is computed using the Nemenyi test (equation (3) and Supplementary Table 3).
Methods within the critical difference range do not perform significantly dif-
ferently from one another according to the Nemenyi test. Methods within the
critical difference range of MIA are in red, others in black.
(a) Tree-based methods.
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(b) Boosted trees+MIA vs linear methods.
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Nemenyi test. Once the Friedman test is rejected, the Nemenyi
test can be applied. It provides a critical difference CD which
is the minimal difference between the average ranks of two
algorithms for them to be significantly different.

CD = qα
√
k(k + 1)

6N (3)

Values of qα are given in Table 5 of Demšar (2006). Values of
critical differences for the 2 sets of methods and the 4 sizes of
dataset are given in Supplementary Table 3.
Wilcoxon signed-rank test. To compute the one-sided Wilcoxon
signed-rank test, we used the wilcoxon function of the
scipy.stats module between the 13 average scores of MIA
against the ones of every other methods. Resulting p-values
are given in Supplementary Table 4 for the 4 sizes of dataset.

Table 4. One-sided Wilcoxon signed-rank test. p-values of theone-sided right test on the difference of score between MIA and ev-ery other method for Table 4a, and between gradient-boosted treesand linear models for Table 4b. p-values below the 0.05 level aremarked with ?. p-values below the Bonferroni corrected level aremarked with ??. When the reversed test (i.e. one-sided left) is sig-
nificant instead, p-values are marked with ?(>) and ??(>) followingthe same rule.
(a)MIA vs imputation. Bonferroni level: 0.05/19 = 2.6×10–3. Rejecting the
null hypothesis means MIA performed better than the compared method.
Size 2500 10000 25000 100000
Method
Mean 1.2e-03?? 4.6e-02? 2.3e-02? 6.2e-02
Mean+mask 4.0e-02? 2.3e-01 1.5e-01 6.2e-02
Median 5.2e-03? 1.7e-03?? 2.3e-02? 6.2e-02
Median+mask 4.0e-02? 2.1e-01 1.5e-01 1.2e-01
Iterative 5.2e-03? 3.2e-02? 3.9e-02? 6.2e-02
Iterative+mask 2.4e-02? 2.1e-01 4.7e-01 6.2e-02
KNN 1.2e-04?? 2.4e-04?? 3.1e-02?

KNN+mask 1.2e-04?? 7.3e-04?? 3.1e-02?

MI 8.1e-01 6.6e-01 3.4e-01 1.2e-01
MI+mask 9.9e-01?(>) 9.6e-01?(>) 9.2e-01 4.4e-01
MIA+bagging 9.7e-01?(>) 9.4e-01 7.7e-01 3.1e-01
Linear+Mean 6.1e-04?? 4.9e-04?? 7.8e-03? 6.2e-02
Linear+Mean+mask 8.5e-04?? 7.3e-04?? 1.6e-02? 6.2e-02
Linear+Med 6.1e-04?? 4.9e-04?? 7.8e-03? 6.2e-02
Linear+Med+mask 6.1e-04?? 4.9e-04?? 1.6e-02? 6.2e-02
Linear+Iter 3.1e-03? 1.2e-03?? 1.6e-02? 6.2e-02
Linear+Iter+mask 2.3e-03?? 1.2e-03?? 1.6e-02? 6.2e-02
Linear+KNN 1.2e-04?? 2.4e-04?? 1.6e-02? 5.0e-01
Linear+KNN+mask 1.2e-04?? 2.4e-04?? 3.1e-02? 5.0e-01

(b) Gradient-boosted trees vs linear models. Bonferroni level: 0.05/8 =
6.25 × 10–3. Rejecting the null hypothesis means gradient-boosted trees
performed better than linear models for the given imputer.

Size 2500 10000 25000 100000
Imputer
Mean 1.2e-03?? 4.9e-04?? 1.6e-02? 6.2e-02
Mean+mask 1.7e-03?? 4.9e-04?? 1.6e-02? 6.2e-02
Median 6.1e-04?? 7.3e-04?? 1.6e-02? 6.2e-02
Median+mask 8.5e-04?? 2.4e-04?? 1.6e-02? 6.2e-02
Iterative 4.0e-03?? 1.2e-03?? 2.3e-02? 6.2e-02
Iterative+mask 2.3e-03?? 1.2e-03?? 1.6e-02? 6.2e-02
KNN 8.5e-04?? 7.3e-04?? 3.1e-02?

KNN+mask 8.5e-04?? 4.9e-04?? 3.1e-02?

Table 5. Scikit-learn’s implementations of the methods.

In-article name Scikit-learn’s method
Boosted trees HistGradientBoostingRegressor,

HistGradientBoostingClassifier
Linear model Ridge, LogisticRegression
Mean, Mean+mask SimpleImputer
Median, Median+mask SimpleImputer
Iterative, Iterative+mask IterativeImputer
KNN, KNN+mask KNNImputer
ANOVA selection f_regression, f_classif
Permutation importance permutation_importance
Bagging BaggingRegressor, BaggingClassifier

Table 6. Correlation between features. Average number of ordi-nal and numerical features correlated to other ordinal or numericalfeatures with an absolute correlation coefficient larger than thresh-olds {0.1, 0.2, 0.3}, averaged on all ordinal and numerical featuresof the task and expressed in percentage of the number of ordi-nal and numerical features in the task. For example in the task"death_screening", a numerical or ordinal feature has an absolutecorrelation value greater than 0.01 with 68% of the ordinal and nu-merical features of the task in average.
Threshold
0.1 0.2 0.3

Database Task # features

Tra
um

aba
se death_screening 92 68% 41% 22%

hemo 12 50% 23% 12%
hemo_screening 76 65% 36% 20%
platelet_screening 90 67% 40% 22%
septic_screening 76 68% 37% 18%

UKBB breast_25 11 40% 20% 19%
breast_screening 100 26% 12% 8%
fluid_screening 100 21% 10% 6%
parkinson_screening 100 28% 16% 11%
skin_screening 100 24% 11% 8%

MIMIC hemo_screening 100 22% 6% 3%
septic_screening 100 21% 6% 2%

NHIS income_screening 78 15% 6% 4%
Average 79 40% 20% 12%
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Figure 4. Types of features. Number of categorical, ordinal and numerical
features in each dataset, before encoding. Note that one non-encoded categor-
ical feature can lead to several selected encoded features. Since we select 100
encoded features, some task have less than 100 non-encoded features. For
tasks having several trials, five horizontal bars are plotted representing one
trial each, as feature selection may select different features.
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(a) Classification tasks
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(b) Regression tasks
Figure 5. Effect of difficulty on the ranks of the methods. For each task and
size, the average score obtained by the methods is taken as a proxy of its diffi-
culty. Local regressions (LOWESS) are plotted for each method to better visu-
alize trends.

Effect of tasks’ difficulty on the performance of the methods. For
classification tasks, Supplementary Figure 5a shows the rel-
ative performance of the methods as a function of the
tasks’ difficulty. Bagged methods Iterative+mask+Bagging and
MIA+Bagging show a clear trend with lower (resp. higher)
ranks for easier (resp. harder) methods. Also, MIA is the best
performing one for harder tasks (for AUC < 0.8). Thus, the in-
terest of MIA seems more pronounced for harder tasks. There
is not enough regression tasks to observe exploitable trends on
Supplementary Figure 5b.
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Figure 8. Feature importance versus proportion of missing values. Importance is measured as the drop in score when randomly permuting the considered feature.
Each feature is permuted 10 times and its importance is taken as the average drop in score. Score drops are also averaged across folds. Local regressions (LOWESS)
are plotted for each task to better visualize trends.
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(a) Prediction performance
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Figure 9. Effect of bagging. Comparison of prediction performance and training times between MIA, Mean+mask, Iterative+mask and their bagged version, for 13
prediction tasks spread over 4 databases, and for 4 sizes of dataset (2 500, 10 000, 25 000 and 100 000 samples). This figure is based on Figure 1, refer to caption
of Figure 1 for more details.
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Table 7. Overview of the prediction tasks used in this article. For selection, ’A’ means ANOVA and ’M’ means manual. Type ’C’ isclassification and type ’R’ is regression. The number of features is given after encoding and selection. Since this number may vary betweentrials, we average it on the 5 trials for the ANOVA selection. Target is the name of the feature to predict in the original database or a formulato build a new feature to predict from the existing ones.
Sco

re
Sco

rer
Sel

ect
ion

Nu
mb

er
of

sam
ple

s

Nu
mb

er
of

fea
tur

es
Typ

e

Target Description
Database Task

Tra
um

aba
se death_screening 0.96 AUC A 12341 98 C Décès == Oui Predict the death of patients.

hemo 0.85 AUC M 19569 12 C Choc hémorragique (? 4 CGR sur 6h)
== Oui

Predict the hemorrhagic shock using
features defined in Jiang et al. (2020).

hemo_screening 0.95 AUC A 13047 89 C Choc hémorragique (? 4 CGR sur 6h)
== Oui

Predict the hemorrhagic shock using
ANOVA selection.

platelet_screening 0.17 R2 A 12696 96 R Plaquettes Predict the level of platelet on arrival
at the hospital using ANOVA selection.

septic_screening 0.86 AUC A 6046 90 C Choc septique == Oui Predict septic shock.

UKBB breast_25 0.60 AUC M 273384 66 C One of: C500, C501, C502, C503, C504,
C505, C506, C508, C509; found in
one of: 41270-0.0, 41202-0.0, 41204-
0.0, 40006-0.0; or one of: 1740, 1743,
1744, 1745, 1748, 1749; found in one
of: 41271-0.0, 41203-0.0, 41205-0.0,
40013-0.0

Predict malignant neoplasm of breast
on female patients only using features
defined in Läll et al. (2019).

breast_screening 0.59 AUC A 182257 100 C Same as breast_25 Predict malignant neoplasm of breast
on female patients only using ANOVA
selection.

fluid_screening 0.56 R2 A 110308 100 R 20016-0.0 Predict the fluid intelligence score.
parkinson_screening 0.65 AUC A 335005 100 C One of: G20, G210, G211, G212, G213,

G214, G218, G219, G22, F023; found in
one of: 41270-0.0, 41202-0.0, 41204-
0.0, 40006-0.0; or one of: 3320, 3321;
found in one of: 41271-0.0, 41203-0.0,
41205-0.0, 40013-0.0

Predict Parkinson’s disease.

skin_screening 0.64 AUC A 335005 100 C One of: C430, C431, C432, C433,
C434, C435, C436, C437, C438, C439,
C440, C441, C442, C443, C444, C445,
C446, C447, C448, C449; found in one
of: 41270-0.0, 41202-0.0, 41204-0.0,
40006-0.0; or one of: 1720, 1723, 1725,
1726, 1727, 1729, 1730, 1731, 1732, 1733,
1734, 1735, 1736, 1737, 1739; found in
one of: 41271-0.0, 41203-0.0, 41205-
0.0, 40013-0.0

Predict melanoma and other malignant
neoplasms of skin.

MIMIC hemo_screening 0.74 AUC A 30836 100 C One of: 78559, 99809, 9584; found in
ICD9_CODE

Predict the hemorrhagic shock from
the LABEVENTS table only.

septic_screening 0.87 AUC A 30836 100 C ICD9_CODE == 78552 Predict the septic shock from the
LABEVENTS table only.

NHIS income_screening 0.52 R2 A 20987 96 R ERNYR-P Predict the income earned on the previ-
ous year with information from tables:
household, family, person and adult.
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Table 8. Scores and ranks of the tree based methods described in Table 1.
(a) Scores relative to the absolute reference score plotted in Figure 1a. Values in bold are the reference scores and are absolute. Other scores are given relative
to the reference score of their task and size.
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Size Method
2500 MIA -8e-5 +5e-3 -1e-3 -4e-4 +4e-3 +7e-3 +2e-3 +5e-5 +2e-3 -3e-3 +3e-3 +8e-3 +3e-3

Mean -8e-4 +1e-3 -1e-3 -2e-3 -3e-3 +6e-3 -1e-3 -2e-3 +2e-3 -2e-3 -1e-2 -6e-4 -5e-3
Mean+mask -5e-4 +2e-3 -1e-3 -1e-3 +2e-4 +7e-3 -8e-4 -5e-4 -2e-3 -3e-3 +5e-3 +9e-3 -1e-3
Median -1e-3 -4e-3 -2e-3 -3e-3 -8e-3 +6e-3 -1e-3 -4e-3 +6e-3 -2e-3 -8e-3 -5e-3 -1e-2
Median+mask -2e-4 +3e-3 -2e-3 -1e-3 +7e-4 +7e-3 -9e-4 -1e-3 -2e-3 +1e-3 +2e-3 +1e-2 -3e-3
Iterative -5e-4 +2e-3 +1e-3 -5e-3 -2e-3 -2e-3 -5e-3 -6e-3 -2e-3 +4e-3 -2e-2 -2e-2 -7e-3
Iterative+mask +4e-6 +4e-3 +3e-4 -5e-3 +5e-3 -2e-3 -4e-3 -4e-3 +1e-3 -4e-4 +6e-4 +7e-3 -5e-3
KNN -2e-3 -5e-3 -2e-3 -1e-2 -1e-2 -2e-3 -9e-3 -9e-3 -3e-3 -5e-3 -4e-2 -3e-2 -2e-2
KNN+mask -2e-3 -5e-3 -3e-3 -1e-2 -1e-3 -2e-3 -3e-3 -3e-3 -1e-3 -6e-3 -1e-2 +7e-3 -9e-3
Iterative+Bagging +2e-3 -1e-3 +5e-3 +1e-2 +2e-3 -6e-3 +5e-3 +8e-3 +8e-3 +1e-2 -1e-2 +1e-2
Iterative+mask+Bagging +3e-3 +1e-3 +5e-3 +1e-2 +7e-3 -6e-3 +9e-3 +1e-2 +9e-3 +3e-2 +1e-2 +2e-2
MIA+Bagging +2e-3 -2e-3 +2e-3 +1e-2 +6e-3 -1e-2 +1e-2 +1e-2 -4e-4 +4e-2 +2e-2 +2e-2
Reference score 0.97 0.85 0.96 0.19 0.89 0.62 0.55 0.57 0.55 0.62 0.77 0.90 0.54

10000 MIA +2e-4 +4e-3 -4e-4 +3e-4 +5e-3 +4e-3 -1e-5 -9e-3 +1e-3 -1e-4 +6e-3 +5e-3
Mean -6e-4 -3e-4 -1e-3 -8e-4 +6e-3 -3e-3 -3e-3 +3e-4 +2e-3 -3e-3 -2e-4 -2e-3
Mean+mask -2e-4 +3e-3 -8e-4 -1e-3 +6e-3 -1e-3 -1e-3 -6e-4 +1e-3 +5e-3 +6e-3 +2e-3
Median -1e-3 -8e-4 -2e-3 -4e-3 +8e-3 -3e-3 -4e-3 -1e-2 +1e-3 -1e-2 -2e-3 -1e-2
Median+mask -1e-4 +2e-3 -1e-3 -3e-3 +7e-3 +2e-3 -1e-3 +8e-3 +1e-3 +3e-3 +6e-3 +1e-3
Iterative -6e-4 -3e-4 +8e-5 -6e-3 +6e-3 -7e-3 -7e-3 +1e-2 +1e-3 -1e-2 -1e-2 -8e-3
Iterative+mask -1e-4 +4e-3 +9e-5 -5e-3 +5e-3 -1e-4 -3e-3 -2e-3 +1e-3 +4e-3 +4e-3 -4e-3
KNN -2e-3 -9e-3 -2e-3 -1e-2 +2e-3 -9e-3 -9e-3 -2e-2 +1e-3 -2e-2 -3e-2 -1e-2
KNN+mask -1e-3 -3e-3 -1e-3 -9e-3 +2e-3 -2e-3 -4e-3 -1e-2 +1e-3 +1e-4 +4e-3 -5e-3
Iterative+Bagging +2e-3 -1e-3 +3e-3 +1e-2 -1e-2 +2e-3 +8e-3 +2e-2 -3e-3 +7e-3 -6e-3 +7e-3
Iterative+mask+Bagging +2e-3 +1e-3 +3e-3 +1e-2 -1e-2 +8e-3 +1e-2 +1e-2 -2e-3 +2e-2 +1e-2 +1e-2
MIA+Bagging +2e-3 +2e-3 +2e-3 +1e-2 -2e-2 +1e-2 +1e-2 +1e-2 -7e-3 +1e-2 +1e-2 +2e-2
Reference score 0.97 0.86 0.96 0.22 0.64 0.59 0.60 0.63 0.67 0.82 0.92 0.57

25000 MIA +3e-3 +3e-3 +9e-4 -1e-3 +9e-4 +8e-4 +6e-3
Mean +4e-3 -2e-3 -2e-3 -5e-3 +9e-4 -1e-3 +5e-4
Mean+mask +3e-3 +2e-3 -1e-4 -1e-2 +1e-3 +2e-3 +5e-3
Median +5e-3 -2e-3 -4e-3 -5e-3 +5e-4 -5e-3 -2e-3
Median+mask +5e-3 +2e-3 -1e-3 -1e-2 +9e-4 +1e-3 +6e-3
Iterative +3e-3 -7e-3 -7e-3 +4e-3 +5e-4 -9e-3 -1e-2
Iterative+mask +3e-3 +8e-4 -2e-3 +6e-3 +8e-4 +5e-3 +5e-3
KNN +2e-3 -1e-2 -9e-3 -2e-2 -2e-2
KNN+mask +1e-3 -1e-4 -4e-3 +6e-4 +4e-3
Iterative+Bagging -7e-3 -8e-4 +7e-3 +1e-2 -1e-3 +3e-3 -8e-3
Iterative+mask+Bagging -7e-3 +7e-3 +1e-2 +2e-2 -7e-4 +1e-2 +1e-2
MIA+Bagging -1e-2 +7e-3 +1e-2 +4e-4 -4e-3 +1e-2 +1e-2
Reference score 0.65 0.61 0.62 0.68 0.68 0.84 0.93

100000 MIA +2e-3 +2e-3 +3e-3 +1e-3
Mean +1e-3 -2e-3 -5e-3 +7e-4
Mean+mask +2e-3 +9e-4 -2e-3 +1e-3
Median +2e-3 -2e-3 -6e-3 +5e-4
Median+mask +2e-3 +9e-4 -5e-3 +1e-3
Iterative +1e-3 -9e-3 -4e-3 +2e-4
Iterative+mask +1e-3 +6e-4 +1e-4 +8e-4
KNN
KNN+mask
Iterative+Bagging -3e-3 -2e-3 +6e-3 -2e-3
Iterative+mask+Bagging -3e-3 +5e-3 +6e-3 -2e-3
MIA+Bagging -4e-3 +5e-3 +6e-3 -2e-3
Reference score 0.66 0.63 0.76 0.69

Average Reference score 0.97 0.85 0.96 0.20 0.89 0.64 0.59 0.60 0.66 0.66 0.81 0.92 0.56
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(b) Ranks computed from the relative scores in Supplementary Table 8a. Best average ranks are in bold.
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All

Size Method
2500 MIA 5 1 6 4 4 1 4 4 2 10 5 5 4 4.0 4.2 5.0 4.0 4.3

Mean 9 6 8 7 10 5 8 7 3 7 9 8 8 8.0 6.0 8.5 8.0 7.6
Mean+mask 7 5 7 5 7 2 5 5 8 9 4 4 5 6.2 5.8 4.0 5.0 5.2
Median 10 10 10 8 11 4 7 9 1 8 8 9 11 9.8 5.8 8.5 11.0 8.8
Median+mask 6 3 11 6 6 3 6 6 6 4 6 3 6 6.4 5.0 4.5 6.0 5.5
Iterative 8 4 4 9 9 9 11 11 7 3 11 11 9 6.8 8.2 11.0 9.0 8.8
Iterative+mask 4 2 5 10 3 8 10 10 4 5 7 6 7 4.8 7.4 6.5 7.0 6.4
KNN 12 12 9 12 12 7 12 12 9 11 12 12 12 11.4 10.2 12.0 12.0 11.4
KNN+mask 11 11 12 11 8 6 9 8 5 12 10 7 10 10.6 8.0 8.5 10.0 9.3
Iterative+Bagging 2 8 2 2 5 10 3 3 2 3 10 3 3.8 4.5 6.5 3.0 4.4
Iterative+mask+Bagging 1 7 1 1 1 11 2 2 1 2 2 2 2.2 4.0 2.0 2.0 2.6
MIA+Bagging 3 9 3 3 2 12 1 1 6 1 1 1 4.0 5.0 1.0 1.0 2.8

10000 MIA 4 2 6 4 6 3 4 9 2 8 3 4 4.0 4.8 5.5 4.0 4.6
Mean 8 7 8 5 3 9 7 6 1 9 8 7 7.0 5.2 8.5 7.0 6.9
Mean+mask 7 3 7 6 4 7 5 7 5 4 5 5 5.8 5.6 4.5 5.0 5.2
Median 10 9 12 8 1 10 10 10 4 10 9 11 9.8 7.0 9.5 11.0 9.3
Median+mask 6 4 10 7 2 5 6 5 7 6 4 6 6.8 5.0 5.0 6.0 5.7
Iterative 9 8 5 10 5 11 11 3 8 11 11 10 8.0 7.6 11.0 10.0 9.2
Iterative+mask 5 1 4 9 7 6 8 8 3 5 6 8 4.8 6.4 5.5 8.0 6.2
KNN 12 12 11 12 9 12 12 12 9 12 12 12 11.8 10.8 12.0 12.0 11.6
KNN+mask 11 11 9 11 8 8 9 11 6 7 7 9 10.5 8.4 7.0 9.0 8.7
Iterative+Bagging 3 10 2 3 10 4 3 1 11 3 10 3 4.5 5.8 6.5 3.0 5.0
Iterative+mask+Bagging 1 6 1 1 11 2 2 2 10 1 2 2 2.2 5.4 1.5 2.0 2.8
MIA+Bagging 2 5 3 2 12 1 1 4 12 2 1 1 3.0 6.0 1.5 1.0 2.9

25000 MIA 4 3 4 6 2 7 3 3.8 5.0 4.4
Mean 3 10 7 8 4 9 8 6.4 8.5 7.4
Mean+mask 6 4 5 10 1 5 5 5.2 5.0 5.1
Median 2 9 10 7 6 10 9 6.8 9.5 8.2
Median+mask 1 5 6 9 3 6 4 4.8 5.0 4.9
Iterative 5 11 11 4 7 11 11 7.6 11.0 9.3
Iterative+mask 7 6 8 3 5 3 6 5.8 4.5 5.2
KNN 8 12 12 12 12 10.7 12.0 11.3
KNN+mask 9 7 9 8 7 8.3 7.5 7.9
Iterative+Bagging 11 8 3 2 9 4 10 6.6 7.0 6.8
Iterative+mask+Bagging 10 2 2 1 8 1 2 4.6 1.5 3.0
MIA+Bagging 12 1 1 5 10 2 1 5.8 1.5 3.6

100000 MIA 2 3 4 1 2.5 2.5
Mean 7 8 9 5 7.2 7.2
Mean+mask 3 5 6 2 4.0 4.0
Median 4 9 10 6 7.2 7.2
Median+mask 1 4 8 3 4.0 4.0
Iterative 5 10 7 7 7.2 7.2
Iterative+mask 6 6 5 4 5.2 5.2
KNN
KNN+mask
Iterative+Bagging 9 7 1 10 6.8 6.8
Iterative+mask+Bagging 8 2 2 8 5.0 5.0
MIA+Bagging 10 1 3 9 5.8 5.8

Average MIA 4.5 1.5 6.0 4.0 4.0 3.2 3.2 4.0 5.2 3.8 6.7 3.7 4.0 4.0 3.9 5.2 4.0 4.3
Mean 8.5 6.5 8.0 6.0 10.0 4.5 8.8 7.0 6.5 4.2 9.0 8.0 7.5 7.8 6.2 8.5 7.5 7.5
Mean+mask 7.0 4.0 7.0 5.5 7.0 3.8 5.2 5.0 7.8 4.2 4.3 4.7 5.0 6.1 5.2 4.5 5.0 5.2
Median 10.0 9.5 11.0 8.0 11.0 2.8 8.8 9.7 7.0 6.0 9.3 9.0 11.0 9.9 6.8 9.2 11.0 9.2
Median+mask 6.0 3.5 10.5 6.5 6.0 1.8 5.0 6.0 7.0 4.2 6.0 3.7 6.0 6.5 4.8 4.8 6.0 5.5
Iterative 8.5 6.0 4.5 9.5 9.0 6.0 10.8 11.0 5.2 6.2 11.0 11.0 9.5 7.5 7.8 11.0 9.5 9.0
Iterative+mask 4.5 1.5 4.5 9.5 3.0 7.0 7.0 8.7 5.0 4.2 5.0 6.0 7.5 4.6 6.4 5.5 7.5 6.0
KNN 12.0 12.0 10.0 12.0 12.0 8.0 12.0 12.0 10.5 10.0 12.0 12.0 12.0 11.6 10.5 12.0 12.0 11.5
KNN+mask 11.0 11.0 10.5 11.0 8.0 7.7 8.0 8.7 8.0 9.0 8.3 7.0 9.5 10.3 8.3 7.7 9.5 8.9
Iterative+Bagging 2.5 9.0 2.0 2.5 5.0 10.0 5.5 3.0 1.3 8.0 3.3 10.0 3.0 4.2 5.6 6.7 3.0 4.9
Iterative+mask+Bagging 1.0 6.5 1.0 1.0 1.0 10.0 2.0 2.0 1.7 6.8 1.3 2.0 2.0 2.1 4.5 1.7 2.0 2.6
MIA+Bagging 2.5 7.0 3.0 2.5 2.0 11.5 1.0 1.0 4.0 9.2 1.7 1.0 1.0 3.4 5.4 1.3 1.0 2.8
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Table 9. Scores and ranks of gradient-boosted trees+MIA compared to linear methods described in Supplementary Table 2.We removed one outlier fold from one trial for the methods Linear+Iter and Linear+Iter+mask for the "task platelet_screening" at size
n=2 500. Others are unchanged.
(a) Scores relative to the absolute reference score and plotted in Supplementary Figure 2a. Values in bold are the reference scores and are absolute. Other
scores are given relative to the reference score of their task and size.
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Size Method
2500 Boosted trees+MIA +1e-2 +9e-3 +2e-2 +1e-1 +5e-2 +8e-2 -2e-3 +6e-2 -8e-3 +2e-2 +1e-1 +1e-1 +5e-2

Linear+Mean +8e-4 -3e-3 -3e-3 +8e-3 -4e-3 -6e-3 +2e-4 -1e-2 +2e-3 -6e-3 -1e-2 -2e-2 -2e-2
Linear+Mean+mask +6e-4 +2e-4 -2e-3 -2e-3 -4e-3 -5e-4 +1e-3 +8e-4 +2e-3 -4e-3 -2e-2 -1e-2 +7e-3
Linear+Med -7e-4 -8e-3 -3e-3 +6e-3 -4e-3 +2e-3 +3e-4 -1e-2 -5e-4 -5e-3 -2e-2 +1e-2 -2e-2
Linear+Med+mask -3e-4 -7e-3 -3e-3 -2e-3 -4e-3 +3e-3 +8e-4 +8e-4 -3e-4 -3e-3 -1e-2 +1e-2 +7e-3
Linear+Iter +2e-3 +4e-3 +8e-5 -5e-2 -6e-6 -1e-2 +3e-3 -2e-2 +2e-2 +9e-3 -1e-2 -3e-2 -2e-2
Linear+Iter+mask -2e-2 +7e-3 -5e-4 -8e-2 +1e-3 -1e-2 +2e-3 -7e-3 +2e-2 +1e-2 -2e-2 -3e-2 +3e-3
Linear+KNN +1e-3 -3e-3 -5e-3 +9e-3 -2e-2 -3e-2 -2e-3 -8e-3 -1e-2 -1e-2 -2e-2 -2e-2 -2e-2
Linear+KNN+mask +7e-4 +8e-4 -4e-3 +5e-3 -2e-2 -3e-2 -3e-3 +2e-3 -1e-2 -1e-2 -2e-2 -2e-2 +3e-3
Reference score 0.96 0.84 0.94 0.09 0.84 0.55 0.56 0.51 0.56 0.59 0.64 0.81 0.49

10000 Boosted trees+MIA +2e-2 +1e-2 +3e-2 +4e-2 +9e-2 +1e-2 +7e-2 -1e-2 +6e-2 +1e-1 +8e-2 +7e-2
Linear+Mean +1e-2 -9e-4 +8e-4 -4e-3 -1e-2 +8e-4 -2e-2 +2e-4 -1e-2 -1e-2 -2e-2 -2e-2
Linear+Mean+mask +1e-2 +4e-3 +9e-4 +1e-3 -1e-2 -2e-4 +1e-3 +7e-4 -7e-3 -2e-2 -1e-2 +1e-2
Linear+Med +9e-3 -6e-3 +5e-4 -6e-3 -1e-2 -7e-4 -2e-2 -5e-3 -9e-3 -8e-3 +8e-3 -2e-2
Linear+Med+mask +9e-3 +2e-3 +5e-4 +1e-3 -1e-2 +9e-4 +1e-3 -5e-3 -1e-2 -9e-3 +1e-2 +1e-2
Linear+Iter -3e-2 -1e-3 -2e-2 -1e-2 -2e-3 -3e-3 -3e-2 +3e-2 +1e-2 -2e-2 -2e-2 -4e-2
Linear+Iter+mask -5e-2 +5e-3 -1e-2 -6e-3 -1e-3 -3e-3 -7e-3 +3e-2 +9e-3 -7e-3 -2e-2 -6e-4
Linear+KNN +1e-2 -9e-3 -1e-3 -8e-3 -2e-2 -3e-3 -9e-3 -2e-2 -2e-2 -2e-2 -2e-2 -2e-2
Linear+KNN+mask +1e-2 -5e-3 -9e-4 -4e-3 -2e-2 -3e-3 +4e-3 -1e-2 -2e-2 -2e-2 -2e-2 +5e-3
Reference score 0.95 0.85 0.94 0.18 0.56 0.58 0.53 0.63 0.61 0.70 0.84 0.51

25000 Boosted trees+MIA +8e-2 +2e-2 +8e-2 -7e-3 +6e-2 +1e-1 +8e-2
Linear+Mean -1e-2 +9e-4 -2e-2 -7e-3 -1e-2 -2e-2 -2e-2
Linear+Mean+mask -1e-2 +1e-3 +1e-3 -7e-3 -7e-3 -1e-2 -1e-2
Linear+Med -1e-2 -9e-4 -2e-2 -9e-3 -2e-2 -4e-3 +6e-3
Linear+Med+mask -7e-3 -1e-3 +1e-3 -6e-3 -1e-2 -1e-2 +9e-3
Linear+Iter -5e-3 -8e-3 -3e-2 +2e-2 +1e-2 -1e-4 -1e-2
Linear+Iter+mask -9e-4 -8e-3 -8e-3 +2e-2 +1e-2 +1e-3 -1e-2
Linear+KNN -2e-2 -2e-3 -1e-2 -4e-2 -3e-2 -2e-2
Linear+KNN+mask -2e-2 -2e-3 +3e-3 -3e-2 -2e-2
Reference score 0.57 0.59 0.54 0.69 0.62 0.73 0.85

100000 Boosted trees+MIA +6e-2 +3e-2 +2e-2 +5e-2
Linear+Mean -1e-2 -8e-4 -5e-3 -2e-2
Linear+Mean+mask -8e-3 -1e-3 -3e-3 -2e-2
Linear+Med -9e-3 -2e-3 -7e-3 -2e-2
Linear+Med+mask -6e-3 -4e-3 -6e-3 -2e-2
Linear+Iter -1e-2 -8e-3 -4e-4 +9e-3
Linear+Iter+mask -1e-2 -7e-3 +4e-4 +9e-3
Linear+KNN -3e-3
Linear+KNN+mask -1e-3
Reference score 0.60 0.60 0.74 0.64

Average Reference score 0.96 0.85 0.94 0.14 0.84 0.57 0.58 0.53 0.66 0.62 0.69 0.83 0.50
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(b) Ranks computed from relative scores in Supplementary Table 9a. Best average ranks are in bold.
Database Traumabase UKBB MIMIC NHIS Average
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Size Method
2500 Boosted trees+MIA 1 1 1 1 1 1 7 1 7 1 1 1 1 1.0 3.4 1.0 1.0 1.6

Linear+Mean 4 7 6 3 6 5 6 7 3 7 3 6 6 5.2 5.6 4.5 6.0 5.3
Linear+Mean+mask 6 5 4 7 4 4 3 3 4 5 5 4 2 5.2 3.8 4.5 2.0 3.9
Linear+Med 8 9 7 4 5 3 5 8 6 6 7 3 8 6.6 5.6 5.0 8.0 6.3
Linear+Med+mask 7 8 5 6 7 2 4 4 5 4 4 2 3 6.6 3.8 3.0 3.0 4.1
Linear+Iter 2 3 2 8 3 7 1 9 1 3 2 9 7 3.6 4.2 5.5 7.0 5.1
Linear+Iter+mask 9 2 3 9 2 6 2 5 2 2 6 8 4 5.0 3.4 7.0 4.0 4.8
Linear+KNN 3 6 9 2 9 9 8 6 9 9 9 5 9 5.8 8.2 7.0 9.0 7.5
Linear+KNN+mask 5 4 8 5 8 8 9 2 8 8 8 7 5 6.0 7.0 7.5 5.0 6.4

10000 Boosted trees+MIA 1 1 1 1 1 1 1 7 1 1 1 1 1.0 2.2 1.0 1.0 1.3
Linear+Mean 4 5 3 4 7 3 7 4 6 5 6 6 4.0 5.4 5.5 6.0 5.2
Linear+Mean+mask 5 3 2 3 6 4 4 3 4 7 4 2 3.2 4.2 5.5 2.0 3.7
Linear+Med 7 8 4 6 5 5 8 6 5 3 3 7 6.2 5.8 3.0 7.0 5.5
Linear+Med+mask 6 4 5 2 4 2 3 5 7 4 2 3 4.2 4.2 3.0 3.0 3.6
Linear+Iter 8 6 9 9 3 7 9 2 2 6 8 9 8.0 4.6 7.0 9.0 7.2
Linear+Iter+mask 9 2 8 7 2 8 5 1 3 2 5 5 6.5 3.8 3.5 5.0 4.7
Linear+KNN 2 9 7 8 9 6 6 9 8 9 9 8 6.5 7.6 9.0 8.0 7.8
Linear+KNN+mask 3 7 6 5 8 9 2 8 9 8 7 4 5.2 7.2 7.5 4.0 6.0

25000 Boosted trees+MIA 1 1 1 5 1 1 1 1.8 1.0 1.4
Linear+Mean 7 3 7 6 5 7 8 5.6 7.5 6.6
Linear+Mean+mask 5 2 4 4 4 6 6 3.8 6.0 4.9
Linear+Med 6 4 8 7 7 4 3 6.4 3.5 5.0
Linear+Med+mask 4 5 3 3 6 5 2 4.2 3.5 3.8
Linear+Iter 3 9 9 1 3 3 5 5.0 4.0 4.5
Linear+Iter+mask 2 8 5 2 2 2 4 3.8 3.0 3.4
Linear+KNN 9 6 6 8 9 9 7.2 9.0 8.1
Linear+KNN+mask 8 7 2 8 7 5.7 7.5 6.6

100000 Boosted trees+MIA 1 1 1 1 1.0 1.0
Linear+Mean 6 2 5 5 4.5 4.5
Linear+Mean+mask 3 4 4 4 3.8 3.8
Linear+Med 4 5 7 7 5.8 5.8
Linear+Med+mask 2 7 6 6 5.2 5.2
Linear+Iter 5 9 3 3 5.0 5.0
Linear+Iter+mask 7 8 2 2 4.8 4.8
Linear+KNN 6 6.0 6.0
Linear+KNN+mask 3 3.0 3.0

Average Boosted trees+MIA 1.0 1.0 1.0 1.0 1.0 1.0 2.5 1.0 5.0 1.0 1.0 1.0 1.0 1.0 2.1 1.0 1.0 1.3
Linear+Mean 4.0 6.0 4.5 3.5 6.0 6.2 3.5 7.0 4.5 5.8 5.0 6.7 6.0 4.8 5.4 5.8 6.0 5.5
Linear+Mean+mask 5.5 4.0 3.0 5.0 4.0 4.5 3.2 3.7 3.8 4.2 6.0 4.7 2.0 4.3 3.9 5.3 2.0 3.9
Linear+Med 7.5 8.5 5.5 5.0 5.0 4.5 4.8 8.0 6.5 6.2 4.7 3.0 7.5 6.3 6.0 3.8 7.5 5.9
Linear+Med+mask 6.5 6.0 5.0 4.0 7.0 3.0 4.5 3.3 4.8 5.8 4.3 2.0 3.0 5.7 4.3 3.2 3.0 4.0
Linear+Iter 5.0 4.5 5.5 8.5 3.0 4.5 6.5 9.0 1.8 2.8 3.7 7.3 8.0 5.3 4.9 5.5 8.0 5.9
Linear+Iter+mask 9.0 2.0 5.5 8.0 2.0 4.2 6.5 5.0 1.8 2.2 3.3 5.7 4.5 5.3 4.0 4.5 4.5 4.6
Linear+KNN 2.5 7.5 8.0 5.0 9.0 9.0 6.5 6.0 9.0 8.3 9.0 7.7 8.5 6.4 7.8 8.3 8.5 7.8
Linear+KNN+mask 4.0 5.5 7.0 5.0 8.0 8.0 7.0 2.0 8.0 8.5 8.0 7.0 4.5 5.9 6.7 7.5 4.5 6.2
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