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A Rule-Based Similarity Measure 
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1 LMS-CNRS URA 317, Ecole Polytechnique, 91128 Palaiseau France and LRI, Universite Paris-XI Orsay, 91405 Orsay France 
2 CMAP-CNRS URA 756, Ecole Polytechnique, 91128 Palaiseau France 
Abstract. An induction-based method for retrieving similar cases and/or easily adaptable cases is presented in a 3-steps process : first, a rule set is learned from a data set ; second, a reformulation of the problem domain is derived from this ruleset ; third, a surface similarity with respect to the reformulated problem appears to be a structural similarity with respect to the initial representation of the domain. This method achieves some integration between machine learning and case-based reasoning : it uses both compiled knowledge (through the similarity measure and the ruleset it is derived from) and instanciated knowledge (through the cases). 

1 Introduction 

In Case-Based Reasoning (CBR), the first step is retrieving cases similar to the 
current one among the case base. The success of the next steps, e.g. reusing the 
retrieved cases to achieve the current goal, and retaining from this experience, 
heavily depends on the quality of the retrieval phase [1]. On the other hand, the 
retrieving phase must be fast for it involves the overall experience of the system. 
Many approaches to this key problem are proposed. 

The most widely-used approach is that of syntactical similarity : one com­
putes the weighted distance between the features of the current case and that of 
every stored case ; the weights may be either equal or provided by the expert [17] 
or even optimized by genetic algorithms [16]. These approaches are restricted to 
propositional domains and many attempts are done to extend syntactical simi­
larities to more complex representations. 
In opposition to surface similarities are structural similarities [12]. These sim­
ilarities take into account the ultimate purpose of retrieval, such as analogical 
transfer or adaptation [15]. But building more sophisticated similarity relation­
ships nearly always request a strong background theory or the thorough support 
of the expert [3]. In the field of analogy, the structural mapping of Gentner [11] 
proposes an evaluation of the degree of analogy between two cases, based on 
a cognitive approach. In inductive learning, Bisson [6] developed a similarity 
measure in order to cluster and classify first order examples. 

A commonly shared opinion is that much knowledge is hidden in a (good) 
similarity measure. Reversing this claim, we propose to compile a knowledge base 
into a similarity measure in a 3-step process : first, a ruleset is learned from a data 
set ; second, this ruleset is used to change the representation, i.e. reformulate 
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the problem ; third, a surface similarity with respect to the new representation 
appears to be a structural similarity with respect to the initial representation 
of the problem. The central claim of this paper is that this procedure permits 
to build automatically a structural similarity - since induction captures to 
some extent the relations between the description of a case, and the concept it 
belongs to. In the meanwhile, induction may be purposely required to consider 
the concepts relevant for retrieving, e.g. further adaptation or classification. 

This paper is organized as follows. Second section describes a change of repre­
sentation based on a rule set, and defines several similarity measures, called rule­
based similarities (RBS) on the reformulated problem. The coarseness of a RBS 
is studied with respect to the characteristics of the rule set. Third section com­
pares RBS and weight-based similarities. A theoretical comparison focuses on 
the properties of idempotence (14] and invariance by translation. Experimental 
comparison is done on two well-studied classification problems (16]. Last section 
focuses on integrating machine learning and case-based reasoning through this 
3-steps scheme. This scheme is briefly compared to some related works (1, 19, 2].2 Principle 
This section focuses on reformulating a problem domain given a set of rules. 
Whatever the initial representation of the domain, it is mapped onto a boolean 
space. The properties of this mapping are studied with respect to both the rule 
set, and the induction algorithm (learner) used to derive this ruleset from a data 
set. 

2.1 A Rule-Based Reformulation 

Let {} be the problem domain, and let Th be a set of production rules defined 
on il. 

Th= {R1, ... RN} 
where Rs is composed of an hypothesis part and a conclusion part Rs : H; --+ C;. 
For any tractable example E in {}, checking whether E satisfies hypothesis H; 
(in that case, it is said that E fires rule Rs, or equivalently that R; covers E) is 
computable if rule Rs is to be of any use. Therefore a set of N rules defines a 
mapping from {} into the boolean space of dimension N 

CTh : {} - {O, l}N 

VEE il, CTh(E) = (R1(E), ... , RN(E)) where Rs(E) = 1 if E satisfies H;, 0 otherwise. 
Let us see graphically the effects of such transformation, with the 2D space R2 

as problem domain {} ; a conjunctive hypothesis can be thought of as a rectan­
gle: If x in 11 , Andy in 12 , Then ... Two rules R1 and R2 with hypotheses 
H1 and H2 so define a mapping from R2 into {O, 1}2 (Fig 1). Mapping CTh is 
not injective, (nor is it surjective in the general case). It induces a very peculiar 
"topology" on the initial domain: the right and left part of rectangle Hi have 
same image (H1 true, H2 false) which differs from the image of the central part 
of H2 (Hi true, H2 true). 
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y Figure 1 : A rule-based mapping from R2 to {O, 1 }2 Remark. This mapping is the inverse of the usual extensional view of exam­ples and rules. A'rule generally is considered with respect to its extension, i.e. the examples satisfying its hypothesis. Reversely, one may associate to an example the set of rules whose hypotheses are satisfied by this example. Mapping CTh corresponds to the ensemblist representation of examples as subsets of rules. 
2.2 Similarities on the reformulated problem The simplest similarity between two elements in space {O, l}N is the number of their bits of identical value. Given two examples E1 and E2 in fl, we consider the similarity of their images CTh(E1) and CTh(E2) : the similarity S1 (E1, E2) is set to the number of rules which are fired by both or by none of E 1 and E2, Definition (similarity S1) Similarity S1 is a function defined from fl2 to R+ , by : where notation #A stands for the number of elements in set A. However, similarity S1 is not of pratical use on real-world problems because when dealing with a large set of rules there are a lot of rules which are satisfied by none of any two examples. A second similarity is then defined, where only rules effectively satisfied by both examples, are accounted for. Definition (similarity S2) Similarity S2 is a function defined from fl2 to R+ , by : Similarity S2 does not make any difference between rules : any rule satisfied by two examples contributes to their similarity the same. However, some rules are more significant than others. We then weight the rules (the weight of a rule 

3



is set to the number of training examples it covers). Similarity S3 is defined as 
the sum of the weights of rules fired by both examples : 

Definition (similarity S3) Let w(R) denote the weight of rule R. Similarity S3 is a function defined from {12 to R+, by: 
2.3 Abstraction or Coarseness 

It is long known that a ruleset defines a straightforward index on cases : a case 
may be indexed according to the rules it fires. So the question is twofold : why 
are these rule-based indices widely ignored in the CBR community? When could 
they be useful and what are their limitations ? 

The first question refers to the respective positions of CBR and machine 
learning. Machine learning (ML) provides an abstract view of problems domains : 
a rule is abstracted from ( a number of) cases ; much information is purposely 
lost during the induction process. On the contrary, case-based reasoning encap­
sulates a rich and detailed knowledge in a case, as nobody knows what could 
be useful to handling further cases. It is argued [18] that the applicability of 
such instanciated knowledge is much more flexible than that of a rule (given an 
adaptation mechanism ... ). 

The basis of this opposition may become clearer by answering the second 
question, when possibly could a rule-based similarity be of any use. Consider 
what happens with a rule-based index based on a concise ruleset. Assume that 
any example fires a unique rule. Then any two examples either fire the same rule 
- and they are similar ; or they do not - and they are dissimilar. To put it
another way, a concise ruleset defines a boolean similarity on a problem domain.
A boolean similarity is not of any help - except if it derives from a "perfect"
ruleset ; but in that case there is no need for CBR in general... So, a flexible
rule-based similarity should be based on a redundant ruleset. But redundancy is
considered a defect in "classical" AI as a redundant knowledge base is hard to
maintain and to evolve. In this line, ML often attempts to induce consistent and
concise knowledge bases, such as encoded by decision trees [23, 5] : an example
satisfies exactly one leaf in a decision tree. The discussion then can be summed
up as follows : a rule gives an abstract and poor view of a case. So concise
learning (especially decision-trees) does not enable to build usable rule-based
indices for too much information has been lost.

The other extreme, i.e. considering equally all the available information may 
also be misleading. So we propose a mid-term. On one hand, redundancy is a fea­
ture quite easily tunable within a bottom-up induction algorithm (see [20, 25]): 
when we consider the rules generalizing the current example, we may either re­
tain the best rule only, i.e. the rule that covers the maximum number of training 

4



examples (and so obtain a concise ruleset), or retain all rules good enough, i.e. 
rules covering a significant number of training examples ( and we thus obtain a 
redundant ruleset)3• On the other hand, if a rule gives some viewpoint on a case, 
then all the relevant flavour of a case could be captured by considering a number 
of viewpoints, given by a redundant set of rules. Building a usable rule-based 
similarity measure thus only requires to use a redundant learner. 

Remark. Note that this approach applies whatever the initial formalization 
of the domain : it only needs this formalism to be tractable for a redundant 
learner. This requirement holds for propositional [10, 25] and first-order logic 
[6, 26]. 

2.4 Accounting for Adaptation 

The rule-based similarity can use humanly provided rules as well as rules learned 
from a data set ; it can also combine both. However, the available knowledge if 
any is usually not sufficient to build a usable similarity. 

One then has to extract a rule set from the case base. Supervised learning 
( classification of labelled observations, i.e. examples) is preferred to unsuper­
vised learning (clustering of observations) because unsupervised learning gener­
ally builds a hierarchy of concepts [8], without enough redundancy to provide a 
rich rule-based similarity. 

So the cases must be labelled to be tractable by supervised learning. Our 
approach, primarily motivated by classification, still applies on others problems 
provided that the reuse task involves adapting a finite number of plans. In such 
problems, a case is labelled according to the plan(s) which is (are) adapted to 
this case ; supervised learning then characterizes the conditions of applicability 
of each plan (given its "positive examples", i.e. the cases the plan applies on, 
and its "negative examples"). The hypothesis part of a rule then gives sufficient 
conditions on the features of a case for a given plan to apply. Note that there 
may be a number of reasons to apply a given plan : e.g. in war, retreat may be 
a sign of defeat or a trap. One rule (with conjunctive premises) stands for one 
context where the plan applies. Therefore, if two cases are detected similar by 
such a rule-based similarity, one knows that same plans apply on both examples 
and for the same reasons. Such a similarity so enables to retrieve easy-to-adapt 
cases. 

However, it is worth noting that the rule-based similarity definitions do not 
depend on the rules conclusions ; the learner is free to consider any concept set 
3 From a practical point of view [25], we call density of an example the maximum number of training examples covered by a rule generalizing this example. Let p denote the redundancy rate, then all rules covering a number of examples greater or equal than the density divided by p are retained. Taking p = 1 thus leads to a concise rule set ; more and more rules are retained as p increases. From an empirical point of view, there are some claims that learning redundant rulesets leads to more reliable decision supports[9]. 
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by the expert, and to build inconsistent rules. Let us assume that two examples both fire two inconsistent rules ; they thus share an "ambiguity" of the ruleset. This ambiguity should not, according to us, result in a weaker link than it would, had they fired consistent rules). The only implicit assumption is that the concept to learn, the considered training set and the learner are such that : • if we consider the decision support resulting from these concept, training setand learner, then• if the same arguments, pro or cons, are encountered by this decision supportwhen handling two cases,• then, these cases are similar with respect to the CBR goal.
3 Comparing Rule-Based and Weight-Based Similarities This section compares some theoretical properties of rule-based and weight-based similarities. An empir.ical comparison is run on two problems well-studied in the machine learning literature. 
3.1 Some Properties of Weight-Based Dissimilarities Let the space domain Q be described by K attributes x1, .. XK. A weight-based similarity S on space Q is usually based on a weighted distance Don il, with 

K Ve 1, e2 E il, S(e1, e2) = a - /3D(e1, e2) ; D(e1, e2) = I: Wi x di(Xi(e1), Xi(e2)) i=l where w; is the weight defined on attribute x; and d; a distance defined on the domain of x; 4• On qualitative domains, d;( v1 , v2) usually takes value 1 if v1 andv2 are distinct, 0 otherwise. On numerical domains, d; is the usual distance. Weights are usually supplied by the expert. The properties of a weight-based similarity (WBS) are. linked to that of the underlying distance. A WBS takes its maximal value for a pair (e, f) iff e = f(assuming that no attribute has a null weight). This means first that the point nearest to a given point is itself ; and second, that all points are similar to themselves with the same strength. The latter property, called idempotence pro­perty by [14], may be unwanted from a knowledge acquisition standpoint. For instance, if attribute color takes its value in red, blue, other-color, objets sharing the property of being both blue should be more similar, everything else being equal, than two objects sharing the property of being of an other-color [22]. 
4 Euclidean-like weight-based dissimilarities are frequently used too; one then has D(e1,e2) = (Z::�1(w;d;(e1 ,e2))2)1l2
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WBS, like the usual numerical distances they are based on, are invariant by numerical translation : if X, Y and h stand for vectors in RK, 

K d(X, Y) = I: IXi - }'ii ==> d(X + h, Y + h) = d(X, Y)5 

i=l More generally let Th be an application defined on domain E by translating every numerical attribute Xi of an amount of hi, then one has S(e1, e2) =S(Th(e1), Th(e2)). Similarly, if T is an application defined on Eby permuting the values of any qualitative attribute xi, the invariance property with respect to T holds. This entails that local modifications of WBS are impossible : modi­fying the similarity between any pair of cases will have side-effects on the whole space. This effect of "uniformity" may also be unwanted from a knowledge ac­quisition standpoint : as everybody working with experts knows, modifying the same detail on two cases may lead the expert to evaluate completely differently their similarity. 3.2 Some Properties of Rule-Based Similarities We distinguish among similarities S1, S2 and Sa. The idempotence property holds for S1 : the similarity between a case and itself always amounts to the number of rules in the ruleset. But idempotence does not hold neither for S2 nor for Sa. For S2, the similarity between a case and itself amounts to the number of rules fired by this example. The number of rules fired by an example depends on the density of counter-examples in the region the example lies in : if there is a lot of counter-examples, the induction process is so constrained that few solutions (i.e. terms covering this example without covering counter-examples) are found. Hence , the farther a case is from counter-examples (according to the induction goal set, see 2.4) the more similar it is to itself. For Sa, the similarity between a case and itself amounts to the sum of the weights of the rules fired, where the weight of a rule is the number of examples covered by this rule. The similarity between a case and itself thus increases with the number of examples and as the number of counter-examples decreases in the same region. RBSs do not satisfy the invariance property. Consider the two following pairs of cases: 
Color Shape Size Color Shape Size e1 Green Circle Small Ii Green Triangle Medium e2 Blue Circle Small '2 Blue Triangle Medium 

Figure 2 : Two pairs of examples 

5 Similarly, if d(X, Y) = (2::1 IX; - Yil2 )1l2 , then d(X + h, Y + h) = d(X, Y).
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Case e1 differs from e2 in that that the former is green while the latter is blue. Same difference is observed between fi and '2. Consider now rule R: I f  (Color = Green) and (Shape = Circle), Then Green_Pea Rule R makes a difference between e1 and e2 because it is fired by e1 and not by e2 ; but it does not make any difference between Ji and '2 ,  as it is fired by none of them. On the other hand /i and '2 are respectively the images of e1 and e2 by permuting the values of attribute shape and size ( e 1 and e2 are both circles of small size , while Ii and '2 are medium triangles). Hence RBS are not invariant by permuting the values of a qualitative attribute ( or translating a numerical attribute). In summary RBS are more flexible than WBS : it recognizes the significance of particular combinations of factors, as requested by Ashley [4] , rather than considering each feature independantly. 3.3 Experimental Validation Two classification problems fitting within attributes-values formalism, are con­sidered. The first one (Iris) consists of 150 examples divided into 3 classes and described by 4 attributes. The second one ( Glass) is composed of 214 examples divided into 6 classes and described by 9 attributes. The reference results are those of J .  Kelly and L. Davis (16). The data set is divided into a training set (4/5 of the data) and a test set. This selection is done at random, except that the classes distributions in the training set are same as in the total data set. The result is the percentage of examples in the test set correctly identified. Legend KNN denotes a classical K-nearest neighbors method using a weight-based similarity with equal weights. Legend GA-KNN denotes a K-nearest neighbors method using a weight-based similarity whose weights areoptimized by genetic algorithms. KNN GA-KNI\ 
IRIS 90 94 - 93 

GLASS 58 60 - 62 Table 1 : KNN and GA-KNN Results Our approach is denoted RKNN, for Rule-based K Nearest Neighbors. Rules are learned from a training set including 2/5 of the data. The case base comprises 4/5 of the data, including the training set ; the test set is the remaining 1/5. Rules are learned by using a star-like generalization algorithm [25) , that allows for tuning the rules redundancy. The predictive results obtained on the test set are averaged over five inde­pendant selections of the training and test sets. Here are the results obtained by RKNN for similarities S1 , S2 and S3. The redundancy rate (cf 2.3) ranks from 1 ( concise rules) to 5 ( this corresponds to multiplying the rules number by about 2.5 in the considered problems). 
8



RKNN red. 1 red. 2 red. 3 red. 4 red. 5 81 82 83 81 82 83 81 82 83 81 82 83 81 82 83 
IRIS 92 91 91 93 93 93 93 93 93 92 91 91 91 91 91 
GLASS 65 64 64 62 68 67 64 68 68 56 67 67 52 70 70 

Table 2 : RKNN Results These results show that rule-based similarities S1, S2 and S3 behave in dif­ferent ways depending on the data at hand. On the problem Iris, our results are very similar to those obtained by weight­based similarity (with weights optimized by using genetic algorithms) ; and 81, 82 and 83 nearly lead to the same results. This is connected to the fact that there is no matter of distribution in these data (all classes are equally rep­resented) ; so there is no difference between 82 (rules fired by both examples contribute to their similarity) and 83 (same as in 82, but the amount of con­tribution depends on the number of training examples covered by a rule). The only advantage of our approach regarding the well distributed Iris problem and compared to GA-KNN is to lessen the computational cost (about 10 minutes on a Symbolics Ivory-based Lisp machine, against 10 seconds on a HP 710 work station). On the ill-distributed problem Glass, similarity S1 slightly outperforms sim­ilarity 82 and 83 when redundancy is low ; the inverse is true when consid­ering redundant rulesets. This can be explained as follows. F irst and overall, 81 becomes less and less accurate when redundancy increases, because any two examples, no matter how different they are, will not fire a number of rules in a redundant ruleset. In opposition, 82 and 83 improve as expected. Last, on the Glass problem, our results are significantly better than the reference results (from 5 to 8 points). 4 Related Works This section describes some integrations of CBR and machine learning (ML) and discusses the proposed scheme. Unfortunately, space limitations prohibit discussing the reformulation aspects of our work with respect to [13] and [24] among others. 
4.1 Some Integrations of CBR and ML It is generally acknowledged that coupling case-based and induction-based tech­niques could lead to more performant than standalone systems . As a matter of fact, some learning is already embedded into CBR : the last phase of a CBR process is retaining from the current experience. However, the induction used in "classical" CBR differs from that of machine learning, with respect to its output 
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representation (for instance similarity versus rules) as well as the optimization criteria : CBR is much more reluctant to drop information than ML. Our pur­pose is not to draw any ( controversial) borderline, but to limit our discussion to considering some integrations of CBR and "classical" machine learning, without pretending to exhaustivity. The couplings can be divided into two categories : those using CBR to supplement an insufficient KB, and those using ML to im­prove a CBR system. In the first category falls the INRECA project [19]. This integration scheme is mainly motivated by handling incompletely described examples. A concise knowledge, such as built in a decision tree, has difficulties in dealing with un­known values and explaining the eventual decisions. The idea is then to use the decision tree as a pre-retrieval phase for a CBR process ; when a question (a node in the decision tree) is answered Unknown, then the CBR process is run with the subset of cases meeting the previous nodes. Here, induction is used to pre-select cases. A somewhat similar scheme is proposed by [2] ; the difference is that pre-selection is data-driven in [19], while it is conclusions-driven in [2]. A weakness of this scheme is that it works with incomplete but correct knowl­edge ; otherwise, the preselection may biase the search toward irrelevant regions of space. Another work falling in the first category is the tuning of rules by cases proposed by Nakatani and Israel [2 1]. This scheme deals with domains where domain theories both are available and suffer many exceptions. The idea is to attach to rules a CBR process ; a case stores the description of a rule firing that did not lead to a satisfactory solution, plus the hypothesized explanations, plus some alternative solutions proposed by the user ; when the current context fires this rule, the CBR process is run to check whether the current case meets the exception environments. The exceptions handling thus is stored as a case base ; this case base may be used off-line to refine the domain theory. In the second category is the work of Aamodt [l]. The proposed integration of ML and CBR tackles open domains with incomplete and/or incertain theory. The same formalism - a frame network - is used to represent all kinds of knowledge, ranking from general to case-specific knowledge. This frame network is abductively used (because of its incompleteness and uncertainity) ; the dif­ference between reasoning from general knowledge or from cases then vanishes. All phases of CBR are performed as 3-steps processes : activation, where the input information is propagated along the network ; explanation, which stands both for summarizing the activations acting on nodes, and for explaining this summary6 
; focusing, that handles external constraints and performs some con­sensus or choice among the solutions recommended by the explanation function­nality. For instance, the learning phase notices the nodes or structures activated during retrieval and reuse ( activation step) ; it detects ( and justifies) whether new structures are to be created ; the case findings are updated (generalized) if required by justifications or by the user (explanation step) ; finally, the struc-

6 Explanation is a key feature, as it is the only way for the expert to control (debug) the system. 
10



tures to create are put in a new frame if necessary (focusing step). The step most 
apparented to machine learning (inductive logic programming) lies in detecting 
whether and which new structures are to be created. Unfortunately, this step is 
too succintly described to see how it is related to ILP. This work is described 
by the author as a continuous knowledge maintenance process ; it beautifully 
emphasizes the continuity that exists between knowledge-based and case-based 
reasoning. 

4.2 The proposed integration 

The scheme we propose also fits in the second category : the ML component is 
used to achieve retrieving of similar and/or adaptable cases. One part of the data 
is used as training set to learn rules ; from these rules then derives a similarity 
measure, that is used together with the case base for CBR (Fig. 3). 

TRAINING SET CASE BASE CBR Lea •ner
RULE SET - s IMILARITY MEASURE Figure 3 : The proposed integration of ML and CBR 

This scheme achieves a 2-gears learning : a slow, expensive learning is done 
off-line ; cases are compiled into rules and from rules derives a similarity mea­
sure ; but in opposition to machine learning, cases remain available in the case 
base. Besides this " long-term learning", a fast, on-line learning consists in just 
enriching the case base. 

Moreover, this scheme takes advantages from both a machine learning and a 
CBR standpoint. From the CBR standpoint, it provides a structural similarity without requiring any background knowledge1 : a majority of retrieved cases is 
guaranteed to be relevant with respect to the current classification or adaptation 
purpose according to the induction goal set to the learner ( the relevance of the 
ruleset of course reflects the quality of the training set). On the other hand, this 
approach does not incur the whole adaptation cost : the current case is matched 
against only the rules hypotheses. From the machine learning standpoint, it 
decreases a lot the induction cost : using the case base allows for correcting 
7 Of course providing the learner with background knowledge can ease the induction task and improve its results ; but it is not a sine qua non condition. Therefore we claim that this similarity building does not demand a strong interaction with the expert, such as required in Protos [3] for instance. 
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most of the errors in the ruleset, as in the "tuning rules by cases" effect [21] . When the comparison is possible , learning from a few examples and using a large case base is equivalent to learning from significantly more examples. A critical point is deciding when a next long-term learning should be run. By analogy with human beings , learning is necessary when the error rate of the system increases , or does not decrease as expected. Note that induction can consider the initial description of the cases , as well as the index derived from previous rules. In the latter case , what is learned is overcoming the defects and biases of the previous index. 5 Conclusion and Perspectives This paper presents a way to using inductive learning to provide CBR with a similarity measure . This similarity compiles the relationships linking the des­cription of a case to the CBR goal, be it either classification or adaptation. This way, a structural similarity can be built in the absence of background knowledge . Rule-based similarities are not invariant by translating numerical attributes or permuting qualitative attributes , in opposition to weight-based similarities . They thus enable different behaviors in different regions of the problem domain . The opposition between "classical" induction , delivering abstract informa­tion , and CBR storing rich and instanciated knowledge , is overcome by using redundant induction. A redundant set of rules provides a number of different viewpoints on a case , by which one can recollect the "flavour" of the case. This method applies whatever the initial representation of the domain is ; it only requires a redundant learner to work within this representation . It is acknowledged that there are different phases in the life of a CBR sys­tem ; the desirable properties of a similarity measure depend on the current phase of the system. So our further research will focus on studying the similarity properties (symmetry, triangular inequality, . .  ) adapted to the different phases , and accordingly modifying rules-based similarities . References 1. A. Aamodt, Explanation-Driven Retrieval, Reuse and Retain of Cases, in (7).2. S.K. Bamberger, K. Goos, Integration of CBR and Inductive Learning Methods, in
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