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Abstract—Particle Filters are an active field of study to address
highly nonlinear estimation problems, especially when coupled
with optimisation methods (e.g. with the Laplace Particle Filter).
Moreover, recent studies revealed the advantage of Kalman
filtering on Lie groups. This paper introduces an improved
version of the Laplace Particle Filter by deriving a formulation
on Lie Groups. The core idea is to harness probability density
functions on Lie groups to cope with the state intrinsic geometric
constraints and nonlinear nature. In addition, the Lie Group
Laplace Particle Filter (LG-LPF) leverages an optimisation
algorithm fully defined on Lie Groups. Numerical results on
a nonlinear and angles-only navigation scenario demonstrate a
significant enhancement in terms of estimation accuracy and
robustness.

I. INTRODUCTION

Nonlinear state estimation is a pervasive problem when
seeking to describe the evolution of a stochastic system
based on a sequence of random measurements. Particle
filters represent a popular approach when robustness to
nonlinearities and non-Gaussian distributions is a priority in
the algorithm’s requirements. They solve the optimal filter
problem in its most general formulation which is described
by the Chapman-Kolmogorov equation and the Bayes rule.

The principle of particle filters is to sample the state
probability density function by a mixture of weighted Dirac
distributions centered on each sample, referred to as a particle.
At each time step, the particles are propagated according
to a stochastic dynamical model of the system. When an
observation is available, each particle’s weight is updated
according to the likelihood of the measurement value. After a
few iterations, the total particles weight tends to concentrate
on a small number of particles, leading to a poor representation
of the state density function. This problem, referred to as
the degeneracy phenomenon, is solved by resampling new
particles in the neighborhood of the most probable former
particles. The particle filter framework paved the way to
improved resampling methods [1] and alternative paradigms
[2]. In addition, the Laplace particle filter [1] introduces
an enhanced resampling step which improves the filter’s
robustness and accuracy in the challenging case where the
likelihood and the prior density have little overlap or are too
Narrow.

On the other hand, new filtering methods on Lie groups
[3], [4] demonstrate improved results compared to usual
extended Kalman filters. First, the Lie groups framework
allows characterizing a specific class of nonlinear systems
showing linear-like properties [5], [6], leading to convergence
guarantees for extended Kalman filters. In addition, extended
and unscented Kalman filters on Lie groups show improved
accuracy when compared to other filters defined on the
Euclidean space [3], [7], [8]. These improvements come from
algebraic and geometric properties which are specific to Lie
groups.

To that extent, combining the Lie group framework with
particle filters appears to be a fruitful approach. Some
research has already proceeded in this way. In [9] the authors
leverage the properties of a restricted class of systems on
Lie groups to derive a Rao-Blackwellized particle filter with
low computational cost. Besides, [10] shows that embedding
the full state estimation in a Lie group particle filter
enables to lower the number of particles to achieve similar
state output errors compared to traditional particle filters.
Nonetheless, both of these filters rely on classic multinomial
resampling methods which are not optimal in terms of density
representation [1].

The contribution of this paper is to propose a clear and
simple framework for the implementation of a Laplace particle
filter in which the states fully belong to a finite-dimensional
Lie group. Using the results of [1], the paper describes a new
resampling method on Lie groups based on the Maximum
a Posteriori (MAP) computed from an iterative optimization
process. The latter approach is compared to two Euclidean
particle filters on a navigation scenario with fixed points angles
of arrival as aiding measurements.

After introducing key mathematical notions about Lie
groups Section (II), the paper describes the proposed particle
filter on Lie groups Section (III). Finally, the filters’ results
are compared through numerical key indicators Section (IV).

II. PROBLEM STATEMENT

This section describes the theoretical framework that
underpins the Laplace Particle Filter on Lie Groups (LG-LPF)
by first stating the stochastic filtering scheme. Then,



the (Euclidean) Particle Filter is introduced alongside the
(Euclidean) Laplace Particle Filter principle. Finally, Lie
groups theory is summarized with specific emphasis on its
probabilistic framework.

A. State Estimation Problem and Laplace Particle Filter

1) Stochastic Filtering Scheme: Let the discrete-time state
process describing the evolution of a sequence of hidden
states {zp}ren € R?, according to a set of observations

{Yr }ken € R™:

{ Tip1 = f(T, g k), (1)

Yk+1 = h(@ht1, 10 k11),

where (14,5, n, ) are centered noise vectors and (f, k) two
possibly nonlinear smooth mappings.

The filtering problem lies in the estimation of the posterior
density p(zg|y1.x), where y1.0 = [y1, ... , yx), under the
following classical hypothesis:

o The measurements y;.; are mutually independent given
the state;

o The state vectors x.; describe a Markov process;

o The noise vectors (ngk,n,;) are independent and
identically distributed;

o The initial state probability density function is known.

The estimation process hinges on two main steps. First, the
state density is propagated using the Chapman-Kolmogorov
equation defined by:

P(Trt1|yr:k) = /p($k+1|$k)]9($k|y1;k)d$k~ ()

Then, when a measurement is available, an update step
computes the posterior density based on the Bayes rule:

p(yk—H \Ik+1)P($k+1 \ylzk-)

. 3)

PYk+1|Th41)P( g1 |y1:k ) dTrg1

P(Try1|yrnsr) = /

Equations (2) and (3) are referred to as the optimal filter. In
the sequel, we denote the measurement likelihood with respect
to the predicted distribution by g(zx+1) = p(Yg+1|Tk+1) and
the prior density by ¢(zx+1) = p(Tr+1|Y1:k)-

2) Farticle Filter: Let the probability density function
be approximated by a sample of IV, weighted particles
{28, wi}izy. n, describing a Dirac mixture:

Np
Plak) m Y widy: (). 4
=1

Then, the filtering problem reduces to a weight estimation on
the particles set. The particles are first propagated according
to (1):

x;c+1|k = f($§€7nf1,k) ;1 E [LNP]' (5)

When a new measurement is available, the weights are updated
using the likelihood g:

Wiy X w;’;g(w?mm) 1€ [1,Ny). (6)

After a few updates, a large majority of the particles’ weights
tend to zero while a few tend to unity [11]. Therefore, a
resampling step is triggered when degeneracy is about to occur.
The particle weights are monitored using the criterion [12]:

v
S (wi)?

A resampling step occurs when N, goes below a given
threshold N, = 6.N,, where 6 € (0,1) is an a priori defined
parameter. Generally, resampling techniques aim at duplicating
particles with a high weight and discard low weighted ones.
3) Laplace Particle Filter: The weak point of most
resampling strategies lies in the selection of particles
which mostly accounts for the prior density. Harnessing
the measurement likelihood is expected to improve this
step. The Laplace Particle Filter (LPF) [1] describes a
resampling method based on an importance function centered
on the Maximum A Posteriori (MAP), which showed superior
accuracy and robustness in scenarios where classic particle
filters usually fail.
The LPF core idea comes from the use of accurate importance
sampling method when the degeneracy occurs. The importance
sampling method provides an estimation of p(zj41|y1:k+1)
from the importance density ¢ in the sense of (4) :

Nef/ - < Nzh- (7)

Np
P(Trt1lyries1) = Zwllc+15x}€+1 (Tr41), ®)
=1

where the weights are defined as:

9($2+1)q(x§c+1)
‘j(xz-u)

Wi 41 )
The precision of the importance sampling method depends
on the choice of the importance function ¢. The optimal
importance sampling approximation is obtained for ¢,,; =
P(Tk41|Y1:5+1), which is the density to be estimated [13].
To that extent, the core idea of the LPF is to use
the conditional expectancy E [zji1|y1.5+1] and variance
V [@k41|y1:6+1] of p(Tk+1|y1:£+1) as the mean and covariance
of ¢, ensuring the latter to be close to p. Accurate
approximations of the conditional expectancy and variance are
given by the Laplace integration method after which the filter
is named. The parameters L, PL are defined as follows [1]:

E[zk+1|y1:k+1]
V[ wrg1|y1:k41]

zh =t B, T,
PL — (J*)—l +'y(x*,J*),

~
~

~

~

(10)

where (3, are two exact high-order corrective terms, x*
denotes the MAP, and J* the Observed Fisher Information
matrix. These elements can be retrieved by solving the
following problem:

a* = maxg(z)q(z),
PR (11)



Fig. 1: Illustration of the Lie group structure. The group
exponential exp, and logarithm log, define a bijection of
G into R?.

For most applications, the following approximation yields
suitable estimation accuracy:

2L
PL
Then, a new sample is drawn according to the importance
density G(z; x”, P¥) of mean x” and covariance P”, and the

weights are updated according to (9). This method provides a
near-to-optimal resampling step to the particle filter.
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B. Probabilistic estimation on Lie groups

1) Introduction to Lie groups: A Lie group (G,-) is a
space having both a group structure and a differential manifold
structure [14]. This enables to define the Lie algebra, denoted
g, as the tangent space at Ig, the identity point of G :
g = T7.,G. Assuming G is a finite-dimensional matrix Lie
groups, the group exponential exps and logarithm maps log,
are two bijective mappings between g and G in the vicinity of
I [15]. Furthermore, their expression reduces to the following
matrix power series [14]:

> xk > (_1)k+1 .
expa(X) = Y 7+ loga(X) = Y S — (X — )"
k=0 k=1
13)
Depending on the Lie group structure, exact closed forms
of these functions exist, thus sparing the computation of
high-order power series. Their composition with the algebra
isomorphisms []" : RY — g and [-]V : g — R? are denoted:

expg ([]") = expg(t) : logg([]Y) =logh(r).  (14)

The Lie group structure is summarized in Figure 1.

2) Error, Adjoint and group Jacobian: Let (X,)?) be two
elements of a Lie group (G,-). The group law - generally
does not commute. Thgs, there are two ways to define the
error between X and X with respect to - : the right group

~

error eg = X - X! or the left group error e;, = X - X.

expg:ig — G

Fig. 2: Construction of a left concentrated Gaussian
distribution on G based on the group exponential and left
product.

The group adjoint [14] is an application Adg : G — R¥*¢
behaving like a commutator on matrix groups:

VX € G,e € RY: X -exply(e) = expy(Adg(X)e) - X. (15)

The algebra adjoint is an application adg : R — R?*? such
that:

Va € R,adg(a) = log,,(Adc(expy(a))). (16)

Based on the latter, the so-called Lie group Jacobian ®¢ :
R? — R*4 ig defined as [16]:
exp(adg(€)) — Id

d —
Ve € RY ®g(e) = ad(c)

a7)

C. Uncertainties on Lie groups

Let 4 € G, € ~ N(0, P) be a centered Gaussian random
vector, and P a covariance matrix. A random matrixon X € G
follows a left (resp. right) concentrated Gaussian distribution
on G if:

Left case: X ~ NE(X;u, P) 3 X = p-expp(e).
Right case: X ~ NE(X;u, P) ; X = expp(e) - p.
(18)
This process is illustrated in Figure 2. The definition of the
Gaussian density on Lie groups holds when the density is
concentrated around its mean, that is to say, all eigenvalues
of P are small enough [17]. This point is important to notice
For the sake of brevity, this section only describes the left
distribution case. Adaptation to the right distribution case is
possible with only minor adjustments. Let X ~ NZ&(u, P) a
left random variable on a Lie group, and ||-|| , the Mahalanobis
norm with respect to P. The probability density function of a
concentrated Gaussian on a Lie group writes: [16]

pe(X) = a(e)te 2l (19)
where € = logg, (1~ X), and « is given by:
a(e) = \/2m) det [0 (— PG(—0)T).  (0)

Note that alternative approaches [17] suggest an approximation
of (20) when the singular values of P are small :

ale) = 1/ (2m)? det [P].

21



III. THE LAPLACE PARTICLE FILTER ON LIE GROUPS

The main contributions of this paper are introduced in this
section. It presents the key concepts of Laplace Particle Filter
on Lie groups (LG-LPF).

A. Lie group Particle Filter Algorithm

Let X € G and Y € G’ be two random variables on Lie
groups admitting the discrete state-space model:

Xir1 = f(Xk,ngr), 22)
Yiyr = h(Xpq1,n0),
where ng,, and n,), are centered noise vectors,

f:(GxRY — G and h: (G xRY) — G’ are two smooth
maps. The sequel aims to compute pg(Xy|Y1.x) using the
approximation defined by (4). The initial particles are sampled
according to (18). Then, they are propagated in line with
(22):

Xit1k = F(Xgmg ) i€

where ”fz,k ~ N(0,Qx), Qx is the process noise matrix. The
propagated mean is the solution of:

[1, Np], (23)

NP
X, = argmin w; logl (™t
k= argmin y_w; logg (s

- X1). (24)

This problem is solved using Algorithm 1 [18]. The covariance

Algorithm 1: (Left) Sample Mean on Lie Groups

Result: p
Initialization: 1.°, 7 AX  w'icnn,) 3
while H(SH > 7 do

Zw log

= u expG(dl)

1X)
I+1

I
end

of the propagated sample is computed in the left case as:

Np

Prn = sz 10gG(Xk_+1U¢ X’ZI-"-l) logG(X]g_+1|k Xllc-f-l)T-
i=1

(25)

The update step is completed according to the likelihood in
the group gor (Xpi1ix) = Par (Ve[ Xpt1jk):

wlichl x wiger (X]i+1|k)' (26)

B. Laplace Particle Filter on Lie Groups (LG-LPF)
The core idea of LG-LPF is to fit a Gaussian importance
function to the posterior density using a Gauss-Newton

optimization algorithm on the Lie group. As discussed Section
IT a good importance function is given by:

jo(Xep1) = NE(Xppa; X5, PP). 27)
A first-order approximation gives X' ~ X* and
L~ (J*)~1, where (X*, J*) are the MAP and the posterior

information matrix on G. Hence, the goal of the sequel is to

develop a method for computing X* and J* inspired from
iterative Kalman filters on Lie groups [19].
First, the posterior density on G can be factorized as:

P& (X1 Y1) < 9o (Xir1)96(Xit1)- (28)

Under the concentrated Gaussian approximation, gg/ and qg
are given by:
{ qc(Xp41) = N&E(Xg15 Xt > Prtji)s
9 (Xit1) = N& (M Xk41); Y1, Riet1).
The mean of the fitted Gaussian (i.e the MAP) can be found
by minimizing the negative log-likelihood of (28) using the
approximation (21):

(29)

* : Vv 2
X" = i || logh (vt RO,

+ 1 logd (X X% (30)

k+1|k
The posterior information matrix J* can be obtained using
a Lie Group Extended Kalman Filter (LG-EKF) whose
linearization point is at the MAP. This process, described in
Algorithm 2, is analogous to Lie Group Iterative Extended
Kalman Filter (LG-IEKF) update step [19]. Then, a new set

Algorithm 2: (Left) Gauss-Newton algorithm on Lie groups

Result: X* J* at convergence

Inputs: u, X°, 6% 7, P;
while ||§' — 51| > 7 do
- logg (On(X"exp(€)) ™ yrt1)

Oe
e=0
K, = PoL("H! [Hipa (6 ) PoL (Y HE + R]
S = K (logg (kah(Xl)) + H0')
X = pexpg (671

-1

end
At convergence:
X* = Xl

T = [pa(6)(Id — K Hig(5Y) Poa(6)] ™

of particles {X} };c(1.n,] is drawn according to §o(X) =
jo(X; Xt Ply =~ ./\/'f(X X* (J*)~1). The weights are
computed through the importance sampling process:
wi = 9¢ (X1)ac(X})
W1 = QG(XE) :
Finally, the weights are normalized and the updated mean and
covariance are computed from Algorithm 1 and (25).

3D

C. Discussion About the Method

The main interest of Lie groups is to provide a natural
framework for angular variables (e.g. quaternions, rotation
matrices...), as arbitrarily large errors are always exactly
defined, unlike Euclidean filters which often use small rotation
errors as an approximation. Moreover, an apt choice of the
group involves natural constraints on the state variables,
leading to a better covering of the state-space by the particles.



Algorithm 3: The (left) Lie Groups Laplace Particle Filter

Result: )?o:T and 130:T

Initialization: sample X/ ~ N (X; Xo, By) (18);

Prediction: X}, , = f(X{,ny;).i€[1,Np]

Update: wj o< wy - g (Xj )

if Neﬁf < Ny, then

Prior mean: X k1] from Algorithm 1

Prior covariance: P ), from (25)

Compute: X, J;, from Algorithm 2

Compute: X/, ~ X7 | and Pl ~ (J; )"

Drawn: X} ~ (jG(X;X,?LJrl,P,él), i€ [1,N,)
i 96 (X )ae (X))

Update: wy Gc(XD)

1
W41

Np 7
>ith W41

ize: w' . —
Normalize: w; |, =

end
Mean: Xj; from Algorithm 1
Covariance: Py, from (25)

Without loss of generality, the presented method is developed
for Gaussian models and provides a framework that suits most
applications. For severely non-Gaussian scenarios, a general
LPF framework [13] can be applied to Lie Groups to derive
the method for any density.

IV. APPLICATION AND NUMERICAL RESULTS

A. Principles of radio navigation

Many aerial positioning systems rely on GPS, which may
provide faulty information or undergo outages. The use of
a data fusion algorithm for long-range navigation lessens
the adverse impact of a sensor failure and improves the
performance of positioning in nominal conditions. Radio
Direction Finders (RDF) are radio navigation systems that
consist of short-medium-range VHF beacons, each having
a specific frequency and identification code. An embedded
device provides the angle of arrival for each beacon within the
range of the system. In the sequel, the beacons are represented
by a set of fixed landmarks whose positions are known and
denoted pg,, ;. for the k" landmark. The antenna on the aircraft
measures the azimuth and the elevation of the aircraft to the
beacon line of sight. The situation is illustrated in Figure 3
and the angular measurements equations are:

0% = arctan?2 (Ag?k, Az,k) )
(pz — arctan 2 (—AZ’Z, \/(Ag’k)Q + (Ag,k)z) )

(32)

where Ab = CP(pg, . — 2¢,) is the relative distance between
a landmark and the aircraft resolved in the aircraft frame [b]

defined in Figure 3b, and arctan 2(y, =) is such that V(z,y) #
(0,0):

sign(y) arctan ‘ 4 ’
sign(y) 5 =0,
sign(y)(m — arctan ‘ g ’)

arctan 2(y, x) =

(a) Global scheme

(b) Frames and parameters

Fig. 3: Illustration of the angles of arrival measurements from
fixed beacons(a). The parametrization is given in (b).

B. Long-range navigation

Long-range navigation must account for Coriolis forces and
ellipsoidal Earth effects. To that extent, the kinematics of the
aircraft is described using the WGS84 model resolved in the
Earth Centered Earth Fixed (ECEF) frame [20]:

Cy =y, — Q5. Cy,

ne __ (e rb el .e e e
Ueb = Cb ib +9g (xeb) - 2Qieveba

(34
Tey = Vepy
where C} denotes the rotation matrix from the aircraft frame
[b] to the ECEF frame [e], v, x¢, are respectively the velocity
and position of [b] with respect to [e] resolved in [e]. 2,
and QY are the skew-symmetric matrices of the Earth rotation
rate and the gyroscopes output rotation rate, fibb is the specific
acceleration measured by the accelerometers and ¢g°(x¢,) is the
estimated local gravity which is the sum of the gravitational
force due to Earth gravity and the centrifugal force due to
Earth rotation [20].
The embedded navigation system has a high-grade Inertial
Measurement Unit (IMU) running at 50Hz, which noise levels
are described in Table I.

C. Practical Implementation of LG-LPF

1) Choice of group and probability densities: The first step
to implement the filter is to select a proper Lie group in which
the state matrix can be defined. An interesting choice is the
Special Euclidean group SE,,(3),n € N such that the particles
are defined as follows:

Cok Vhek Tk
01,3 1 0
01,3 0 1

Vie[l,N),k>0: X} = € SEy(3).

(35)
This choice allows the couplings between the attitude matrix
Cy and the other variables, which is expected to bring more



consistency during the updates. Hence, all the filter particles
are S E5(3) matrices. For the sake of simplicity the probability
densities are modelled as concentrated Gaussians on G. The
measurements belong to G’ = R?, which is a Lie group such
that log, = expg, = Ia. Thus the likelihood of the angle of
arrival measurement model writes:

exp (=5 llyes = (Xip) IR, )
(2m)9 det[Rys 1]

P (Yrs1|Xfyr) =

)

(36)
where h(X) = (6°, ") is computed for each landmark with
(32) and R is the measurement noise matrix.

2) Propagation: The propagation of the particles is
obtained thanks to a time discretization with time step
dt in (34). The exponential map on SO(3) enables
an accurate integration of the attitude rotation matrix.
VE>0,Vi€ [1,Np] e = (€, €5 €hr) ~N(0,Q) :

i _ e b i ' i
Clili+l|k = Oy eXPso3) (dt(Qib - CiQ5.CL) + ei,k) ,
Vo ki = Vebge T AU (CLF], + 9°(2) — 295.04) + €4, 1

ng,k-&-uk = xgy ), +dw) €.
(37)
3) Update: When a measurement is available, the particle

weights are updated using (36):

. . 1 .

Vi € [1,Ny] s wjopy o wiexp(—5lyess = (Xl )
(38)

When the resampling criterion (7) goes below the threshold

N = 0N, where 6 = 0.6 in this paper, the particles are about

to degenerate and LG-LPF triggers Algorithm 3. In the case

of a left distribution, the measurement Jacobian on SFE5(3)

writes:

Dloggz (h(X expsp, () 1)

H =
Oe

(39)
e=0
It is worth noting that I represents the linearization of the
measurement function at X and is different from the group

Jacobian (17). Let A’ : G — R? and 7 : R — R? such that
h=no AY, the derivation chain rule gives:

OAY(X e
- Oh(A) (X expgp,(3)(€)) 40)
A [a—av(x) Oe =0
Ab
Then, taking A’ = | A | and p = (AD)2 + (AL)2:
Ab
Oh(A) N
= = won AP Ab B , (41
OA A—Ab(X) A2AY y=z p
plIAP[Z  p[[AP[]2 [JAP]]2
OAY(X exp L(3)(€))
8€SE ®) = ([A*(X)]x 033 —I5),
e=0

(42)
where [u]x is the skew-symmetric matrix of the vector .

D. Testing Framework

This section aims to compare LG-LPF with Euclidean
Regularized Particle Filter (RPF) and (Euclidean) Laplace
Particle Filter (LPF). They are tested on a straight trajectory
in ECEF Figure 4 with angles-only measurements. To test

Aircraft Trajectory

56
TR 2
559
EJD 556.8
=
S—
Z s57t
=
= — - —— Estimated trajectory
5 55.6 True trajectory
# VOR Landmark
¢ Starting point
5551
55.4 . . . . ,
-4.6 -4.58 -4.56 -4.54 -4.52 -4.5
Longitude (deg)
Number of observed landmarks
3 T
2 4
1 4
0
0 50 100 150 200
Time (s)

Fig. 4: View of the estimated trajectories of the aircraft for
LG-LPF (100 particles) for 20 Monte Carlo runs with different
initial errors compared to the true trajectory. The number of
observed beacons varies along the trajectory.

the algorithms, fictional beacons are generated all along the
ground path of the aircraft. They are represented in Figure 3.
Also, the sensor range is limited in this testing framework.
The number of visible beacons at each time of the trajectory
is displayed in Figure 3.

1) Performance criteria: The filters are evaluated using
several criteria. The percentage of convergent Monte Carlo
runs is relevant to assess the robustness of the filter. A run
is considered convergent if the mean position of the state is
contained inside the confidence ellipsoid I';, computed by the
Posterior Cramer-Rao Bound (PCRB) [21], for the last five
measurement iterations as follows:

Fk? = {xie,kK‘/Bie,k - EEge,k)TPCRBIZI(xge,k - Zfie,k) < ’%}
43)
chosen from the test
9 the dimension of the

where the threshold & is
p(x%(d) < k?) =0.99 with d =
state vector.

The Average Root Mean Square Error (ARMSE) assesses the
accuracy of the filter over a period of time. In this paper, the
ARMSE values displayed are averaged over the last minute



Sensor Parameters

Sensor rates (Hz) IMU: 50Hz RDF: 1Hz
IMU noise (1o) Gyro: 2deg /b Acc: 1073m/s?
RDF noise (10) Azimuth: 0.6° Elevation: 0.6°

Filter parameters

LG-LPF shows improved performances on every state variable
especially regarding the attitude estimation compared to LPF.
The attitude ARMSE of RPF (* in Table II) have to be viewed
critically. Given the low convergence rate of the filter, they are
likely to reflect the survivor bias whereby only the runs with
very low attitude error converged. This emphasises the fact

Initial uncertainties  Attitude Velocity Position ) ) ) 3 -
Nominal (1) 0.115° 10ms™1 1km that in this case, RPF is not robust to attitude errors while
Poor (10) 11.50° 50ms~" 10km LPF and LG-LPF bring robustness.
Process noise (10) Attitude Velocity Position
20° 10~2m/s 10~2m Np = 500 RPF LPF LG-LPF
Update noise Azimuth: 2.8° Elevation: 2.8° Convergent runs ~ 47% 100% 100%
. — Position (m) 66.0 12.6 7.89
Resampling threshold Nin = 0.6Np Velocity (m/s) 291 0.95 0.69
Yaw (°) 0.048* 0.299 0.092
. . TABLE I . Pitch (°) 0.032* 0.142 0.088
Simulation and filters parameters for the two scenarios. Roll (°) 0.026* 0.101 0.072

of the trajectory. The RMSE at time k is computed from
convergent runs only based on the criterion (43) as:

Neony
1 conv
RMSE (k) = y | = D_ lle(®)]13,

conv

(44)

m=1

where N.o, represents the number of convergent runs, and
the error vector e(k) is either defined as:

l0g50(3) <(Cf,k)T6§,k,m)
Vpe,ks — i}:\ge,kﬂn,

The ko~ The kom

The ARMSE is computed from (44) over the period T" of Np
steps ranging from Kipj to Kepg:

e(k) = (45)

k'cnd
1
ARMSEr = — RMSE, (k). 46)
TN, kék»» (k) (

In this paper the results are displayed for the last 7" = 60s
(i.e. Ny = 600), and Ny, = 100.

2) Simulation scenarios: Navigation systems are initialized
with the best-known information at the beginning of their
mission. This process, called alignment, is often challenging
and can have a significant impact on the performance of
the system. The filters are tested for two different initial
errors detailed in Table I. The nominal scenario intends to
compare the three filters with usual initialization errors. The
poor alignment scenario enables to assess the ability of the
LG-LPF to withstand large initialization errors. This case can
occur after a long measurement outage and in a situation where
the filter cannot be properly aligned or when using lower grade
Sensors.

E. Numerical Results

1) Nominal initialization: The simulation results for the
nominal scenario are displayed in Table II. The percentage of
convergent runs for RPF shows low robustness to the scenario
while LPF and LG-LPF are performing well. Furthermore,

TABLE II: Comparison of the ARMSE of the RPF, LPF and
LG-LPF with a nominal initialization.

2) Poor initialization: The simulation results for the poorly
initialized scenario are displayed in Table III and the RMSE
are displayed in Figure (5). In this case, the focus is on
LG-LPF as the initial errors are far beyond the working zone
of the Euclidean filters. The simulation shows that LG-LPF is
performing well for a very little number of particles. Adding
particles to the filter improves its robustness and accuracy.

Np 100 500 1000
Convergent runs ~ 78% 84% 82%
Position (m) 17.4 8.86 8.78
Velocity (m/s) 2.1 0.85 0.71
Yaw (°) 0.311 0.082 0.041
Pitch (°) 0.248 0.099 0.079
Roll (°) 0.282 0.092 0.073

TABLE III: LG-LPF tested in the poor initialization case for
different numbers of particles.

3) Results discussion: The performance of RPF and LPF
in the nominal initialization scenario Table II shows that the
Laplace method greatly improves robustness and accuracy.
Such difference directly comes from the choice of the
importance function discussed in Section II. Indeed, RPF
would require a lot more particles to match the robustness
results of LPF. Then, LG-LPF shows improved results
compared to LPF on each variable of the state vector.
This behavior was anticipated, as discussed in Section II-B,
the particles and the stochastic processes defined on Lie
groups fully embrace the nonlinear nature of the state vector
model. Thus, the curved geometry on the Lie group behaves
as a natural constrain. This prevents the particles from
spreading to non-attainable states and minimizes the intrinsic
errors of the estimation process. Besides, the particles are
directly resampled at the neighborhood of the MAP with a
close-to-optimal importance function as Algorithm 2 enables
a full state optimization with improved accuracy and stability
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Fig. 5: LG-LPF RMSE for several numbers of particles V,, in
the case of the poorly initialized scenario (large initial errors).
The results are displayed for 100 Monte Carlo runs.

compared to LPFE. The coupling between the variables involved
in the matrix error defined on SF}(3) enhances the estimation
of velocity and position. The three filters show similar
execution times for the same number of particles.
Considering results in Table III, LG-LPF performs well on a
very difficult scenario where LPF and RPF failed to run even
for a very small number of particles. Moreover, LG-LPF still
achieves better accuracy than LPF and RPF on the nominal
scenario. This significant improvement in robustness comes
from the exact definition of the group error.

Thus, LG-LPF shows an improved behavior compared to
state-of-the-art particle filters. It can handle very high
initialization errors, which is desirable when the alignment
is not accurate. Finally, LG-LPF runs properly even on a
very small amount of particles. This could greatly reduce
the computation cost, compared to Euclidean filters, when
resources are limited.

V. CONCLUSION

This paper introduces a general framework for particle filters
on Lie groups and describes a new resampling strategy at the
MAP. This formulation enables Laplace Particle Filter on Lie
groups (LG-LPF) to produce improved results for nonlinear
navigation problems (e.g. angle of arrival measurements).
Furthermore, LG-LPF performs well, even with a limited
amount of particles, and is robust to large estimation errors.

Thus, LG-LPF addresses the main drawbacks of particles
filters (e.g. computational cost, angles error management)
with promising results. Future work will focus on testing
the proposed algorithm on more scenarios and make further
comparisons with currently state-of-the-art algorithms.
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