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Abstract— Recently, memristive devices have been shown to 
possess unique and intriguing properties such as small size, high 
density, non-volatility, state-dependent behavior, good 
scalability, very low leakage current, and compatibility with 
CMOS technology. A critical requirement for using memristive 
devices at the circuit level is the availability of a simple, accurate 
and efficient model that adequately characterizes circuit 
performance. Most existing models for memristive devices 
presented in the literature suffer from high complexity and 
computational inefficiency. In this paper, we propose a new 
scheme to reduce the complexity of existing models and improve 
simulation time while maintaining circuit designer requirements 
in terms of accuracy. Using this technique, the simulation time 
can be improved by around 20% while maintaining a good 
accuracy. 
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I. INTRODUCTION 
Recently, Resistive Random Access Memory (RRAM) 

devices received considerable attention in light of their fast 
programming and high scalability characteristics. In its 
simplest form, a resistive memory element relies on a 
Metal/Insulator/Metal (MIM) stack that acts as a resistive 
switch. This concept of resistive switching is at the core of the 
behavior of the so-called memristor device discovered by 
Chua [1]. A critical requirement for using memristors at a 
circuit level is the availability of a predictive model for device 
behavior that can be used in simulations, as well as a guide to 
assist designers. An accurate physical model of a memristive 
device will not only lead to a better understanding of the 
memory cell behavior but will also result in a better 
exploitation of its unique properties in novel systems and 
architectures combining data storage and processing in the 
same physical location. However, typically, such a model is 
complicated and computationally inefficient. 
A model with simpler expressions rather than the complex 
equations is therefore desired. Yet, the accuracy of the simple 
model must be adequate. Large scale memristor crossbar 
simulations are typically done using simulation tools such as 
LTspice and PSpice. These simulations can only handle 3,000 
memristors before simulation time becomes unreasonable [2].  
Using these tools for simulating large-scale memristor 
crossbars takes more than 3 days to train as they are non-
parallel simulators that utilize only a single-core processor 
[3]. 

This paper presents a general technique used to reduce 
model’s simulation time at the circuit level. This technique 
can be applied to all complex existing memristor models. A 
selection of actual memristor models is presented in Section 
II. In Section III, a technique for improving the computational 
efficiency and simulation runtime of the existing models is 
discussed. Simulation results are presented in Section IV. 
Concluding remarks are developed in Section V. 

II. OVERVIEW OF MEMRISTOR COMPLEX MODELS 
Recently, research on memristors has increased rapidly 

due to their promising potential in a wide range of applications, 
backed by the maturity of memristor manufacturing process. 
A typical memristor device consists of two electrodes 
(typically metal electrodes), and the resistance of the device 
depends on the polarity and magnitude of the voltage applied 
across the electrodes. The first memristor device was 
fabricated in 2008 by R. Stanley Williams in HP labs [4]. It 
was based on a MIM structure using Platinum for the 
electrodes and Titanium dioxide as insulator. Figure 1 shows 
a cross-section of the first HP TiO2-memristor consisting of a 
high conductive (doped) part and a low conductive (un-doped) 
part placed in between two platinum electrodes (Pt). 𝑅off and 
𝑅on are the high resistance and low resistance, w the length of 
the doper region and D the structure length. The boundary 
between the two parts is dynamic and is moved back and forth 
by the passing charge carriers. The parameter w is a 
mathematical variable that describes the position of the 
boundary [4]. 

 
Fig. 1. Cross-section of the first HP TiO2-memristor [4] 

When the voltage is switched off, the resistance remains at its 
previous level. Thus, we can say that a memristor 
“remembers” its history; this is the non-volatility property 
that gives it the name of “memory resistor”.  
Currently, research is in full swing to use memristors in 
analog circuits, digital or programmable logic controllers, 
computers and sensors [5]. Thus, new models of memristors 
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need to be developed for design engineers to use as circuit 
elements throughout design exploration. Physics-based 
device models are generally adopted to accurately capture 
device characteristics for simulations. However, the use of 
physics-based compact models is still infeasible for 
simulations of large arrays due to the enormous amount of 
required computing resources as presented in Fig. 2; it takes 
approximately a year to simulate a 400 Mb array [6]. 

 
Fig. 2. Computation time and memory vs. array size [6] 

A model is considered complex if the equations use 
hyperbolic functions and exponentials rather than 
polynomials [7]. At the expense of computational efficiency, 
hyperbolic sine and exponential functions have been used in 
many memristor models in the litterature [9-17]. Hyperbolic 
sine function is widely used in physics-based device models 
since it represents very well the hysteris of the memristor 
MIM structure. Exponential functions define accurately the 
Schottky barrier between the oxide layer and the bottom 
electrode [8]. The three models considred in this study are the 
non-Linear Ion Drift Model [9], the Simmons Tunnel Barrier 
Model [10] and the Stanford model [11]. These models are 
considered complex and cover all different types of physics 
based I-V equations. These models are listed bellow and 
detailled in this section. 

A. Non-Linear Ion Drift Model 
The non-linear ion drift model presented in Fig. 1, is an 

improvement of the linear ion drift model presented in [9]. 
Studies and experiments have proved that the behavior of the 
implemented memristors is quite nonlinear and the linear ion 
drift model is not accurate enough. The non-linearity of the 
device is voltage dependent; a nonlinear dependence between 
the voltage and the internal state derivative is assumed. By 
using physically reasonable parameters, this model properly 
captures both the static electric conduction as well as the 
switching dynamic behaviors and provides a good fit to the 
experimental data. The major application of this memristor 
model is in logic gates. In this model, the relationship between 
the current and voltage given by: 

   (1) 

where β, χ and γ are experimental fitting parameters, and n is 
a parameter that determines the influence of the state variable, 
𝜔, on the current. 𝜔 is a normalized parameter within the 
interval [0,1]. In this model, an asymmetric switching 
behavior is assumed. When the device is in the ON state, 𝜔 is 
close to 1 and the current is dominated by the first expression 
in (1) (i.e. 𝛽 sinh(𝛼𝑣(𝑡).), which describes a tunneling 
phenomenon. When the device is in the OFF state, 𝜔 is close 
to 0 and the current is dominated by the second expression 

(𝑖. 𝑒.		𝜒[exp(𝛾𝑣(𝑡). − 1])), which is similar to an ideal diode 
equation. This model assumes also a nonlinear dependence on 
voltage in the state variable differential equation: 

   (2) 

where a and m are constants, m is an odd integer, and 𝑓(𝜔)	is 
a window function. 

B. Simmons Tunnel Barrier Model 
Pickett et al. presented a more accurate physical model of 

a memristors [10]. Instead of two resistors in series, as in HP’s 
model, a resistor is used in series with an electron tunnel 
barrier as shown in Fig. 3. The model exhibits nonlinear and 
asymmetric switching characteristics. The relationship 
between the current and voltage is shown as an implicit 
equation (3): 

  

 (3)  
  
 (4)  

   (5) 

The state variable	𝑥	is the Simmons tunnel barrier width, so 
its derivative can be interpreted as the oxygen vacancy drift 
velocity given in equation (5); where coff, con, ioff, ion, aoff, aon, 
wc and b and are fitting parameters. Rs is the channel 
resistance, v is the internal voltage of the device and Vg is the 
voltage in the oxide region. 

 
Fig. 3. Physical memristor structure based on Simmons model [10] 

C. Stanford Model 
The Stanford RRAM model is a SPICE-compatible 

compact model that describes the switching performance for 
bipolar metal oxide RRAM [11]. In principle, this model has 
no limitations on the RRAM cell size. The complex process of 
ion and vacancy migration is simplified into the growth of a 
single dominant filament that preserved the essential switching 
physics as presented in Fig. 4. The size of the tunneling gap, 
g, which is the distance between the tip of the filament and the 
opposite electrode, is the primary variable determining the 
device resistance. The current conduction is exponentially 
dependent on the tunneling gap distance. This distance is 
found by calculating the growth of the gap, taking into 
consideration the electric field, temperature-enhanced oxygen 
ion migration, and local temperature due to Joule heating. 
Included also is the stochastic and temperature-dependent 
filament movement (δg). 
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Fig. 4. Stanford-PKU RRAM model illustration. (a) and (c) Schematic of the 
SET and RESET switching processes and conductive filament configuration. 
(b) and (d) Simplified model of the conductive filament at the SET and 
RESET states. LRS has shorter (b) tunneling gap distance while HRS has (d) 
longer tunneling gap distance [11]. 
 
The current flowing through the cell is defined as: 

   (6) 

where g is the gap distance, V is the applied voltage across the 
cell; the prefactor I0, the gap coefficient g0, and the voltage 
coefficient V0 are the parameters that are obtained from the 
experimental results. 
The evolution rate of the gap distance g due to filament 
growth/rupture is given in (7): 

   (7) 

where <g> reflects the average gap distance, ν0 is the velocity 
dependent on the attempt-to-escape frequency, EA is the 
effective activation energy (migration barrier) for vacancy 
generation (oxygen migration), tOX is the thickness of the 
switching material, a0 is the hopping site distance, γ is the 
field local enhancement factor that accounts for the 
polarizability of the material. 

III. MODEL COMPLEXITY REDUCTION 
In order to reduce the complexity, the hyperbolic and 

exponential functions used in the models listed in section II, 
are replaced by polynomials using Taylor series, with a finite 
number of terms. Taylor’s theorem gives quantitative 
estimates on the error introduced by the use of such an 
approximation. The polynomial formed by taking some initial 
terms of the Taylor series is called a Taylor polynomial [21]. 
Taylor's theorem leads to the following polynomial 
approximation of the exponential function within the interval 
[−1,1] while ensuring an error less than 0.1% as presented in 
(8). 

   (8) 

Given the properties of the exponential function: 

   (9) 

It follows that 𝑓!(𝑥) = 𝑒" for all k, and in particular, 𝑓!(0) =
1. Hence the k-th order Taylor polynomial of the function f at 
0 and its remainder terms in the Lagrange form are given by 
(10): 

   (10) 

where ξ is some number between 0 and x. Since ex is a 
monotonically increasing function by (8), we can simply use 
ex ≤ 1 for x ∈ [−1, 0] to estimate the remainder on the sub-
interval [−1, 0]. To obtain an upper bound for the remainder 
on [0,1], we use the property eξ < ex for 0 < ξ < x to estimate 
ex using the second-order Taylor expansion: 

   (11) 

Then, we solve for ex to deduce that: 

   (12) 

simply by maximizing the numerator and minimizing the 
denominator. Combining these estimates for ex we see that: 

   (13) 

so, the required precision is certainly reached, when: 

   (14) 

For instance, as shown in Fig. 5, this approximation provides 
a decimal value for e ≈ 2.718, which is correct up to three 
decimal places. 

 
Fig. 5 Approximation of exponential (blue) by its Taylor polynomials Pk of 

order k = 6 centered at x = 0 (red). 

IV. SIMULATION RESULTS 
To demonstrate the effectiveness of the model reduction 

technique presented in section III,  the three models listed in 
section II are considered. The exponential functions used in 
the models equations are replaced by their 6th order Taylor 
series and all hyperbolic sine functions are replaced by 
polynomials (15) while maintaining a prexision of 10#$. 

                                               (15) 

which follows from: 

                                                     (16) 

The circuit used for simulation to perform this comparison is 
shown in Fig. 6, a 1T1R (one transistor one resistor) cell in 
series with an AC source V(t) (sine of 1.8V amplitude and 
2MHz frequency). The total simulation time is 1.5us. 
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Fig. 6.  Circuit used in simulation setup 

As can be verified in Fig. 7 (a, b and c), the I-V characteristics 
remain almost the same before and after applying the 
complexity reduction technique which means that a precision 
of 10#$ is enough when using the models in memory 
applications. 
Different 1T1R memory array sizes are then simulated (128b, 
256b and 1Kb) and the optimization is evaluated. 
Table I shows a simulation time improvement of around 7%, 
which might appear low for just a single cell. However, as 
presented in Fig. 8, the improvement becomes considerable 
for bigger memory array sizes. According to [6], a 1 Mb 
RRAM 1T1R array simulation takes more than 24 hours of 
CPU time using a main memory of 20 GB for a 64-core 
Intel(R) Xeon(R) (@2.67 GHz) server. Hence, by 
extrapolating the simulation results, the applied technique 
presents a simulation time improvement of around 18% for a 
1Mb memory array. 

 
Fig. 7. (a) I-V characteristic of Simmons model before (black) and after 
optimization (blue), (b) I-V characteristic of Non-linear model before (black) 
and after optimization (red) and (c) I-V characteristic of Stanford model 
before (black) and after optimization (green) 

TABLE I.  SIMULATION TIME IMPROVEMENT AT CELL LEVEL 

Model Sim. time (ms) 
original 

Sim. time (ms) 
modified 

Improvement at cell 
level (%) 

Nonlinear model 188.34 173.95 7.64 

Simmons model 234.56 215.96 7.93 

Stanford model 166.97 154.97 7.18 

 
V. CONCLUSION 

In this paper, various memristor models have been 
surveyed—nonlinear ion drift, Simmons tunnel barrier, 
Stanford model—and a new technique that reduces 
complexity and improves simulation time compared to 
existing models has been presented. By applying this 
technique, the simulation time can be reduced by around 20% 
while maintaining good accuracy of the model. 
 

 
Fig. 8.  Simulation time improvement for different 1T1R memory array sizes  
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