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ℓ1-CONTRACTIVE MAPS ON NONCOMMUTATIVE Lp-SPACES

CHRISTIAN LE MERDY AND SAFOURA ZADEH

Abstract. Let T : Lp(M) → Lp(N ) be a bounded operator between two noncommu-
tative Lp-spaces, 1 ≤ p < ∞. We say that T is ℓ1-bounded (resp. ℓ1-contractive) if
T ⊗ Iℓ1 extends to a bounded (resp. contractive) map from Lp(M; ℓ1) into Lp(N ; ℓ1).
We show that Yeadon’s factorization theorem for Lp-isometries, 1 ≤ p 6= 2 < ∞, applies
to an isometry T : L2(M) → L2(N ) if and only if T is ℓ1-contractive. We also show that
a contractive operator T : Lp(M) → Lp(N ) is automatically ℓ1-contractive if it satisfies
one of the following two conditions: either T is 2-positive; or T is separating, that is, for
any disjoint a, b ∈ Lp(M) (i.e. a∗b = ab∗ = 0), the images T (a), T (b) are disjoint as well.

1. Introduction

Let M and N be two semifinite von Neumann algebras. For any 1 ≤ p < ∞, consider
the associated noncommutative Lp-spaces Lp(M) and Lp(N ). A remarkable theorem of
Yeadon [26] (see Theorem 3.1 below) asserts that if p 6= 2 and T : Lp(M) → Lp(N ) is a
linear isometry, then there exist a normal Jordan homomorphism J : M → N , a positive
operator B affiliated with N and a partial isometry w ∈ N such that w∗wB = B, J(a)
commutes with B for all a ∈ M, and

(1) T (a) = wBJ(a),

for all a ∈ M∩ Lp(M).

This striking factorization property is the noncommutative version of the celebrated
description of isometries on classical (=commutative) Lp-spaces due to Banach [1] and
Lamperti [13]. We refer to the books [3] and [4] for details on these results, complements
and historical background.

The work presented in this paper was originally motivated by the following question,
concerning the case p = 2: what are the linear isometries T : L2(M) → L2(N ) which
admit a Yeadon type factorization, that is, isometries for which there exist J,B,w as
above such that (1) holds true for any a ∈ M∩ L2(M)?

This issue leads us to introduce a new property, called ℓ1-boundedness, which is defined
as follows. Consider the ℓ1-valued noncommutative Lp-space Lp(M; ℓ1) introduced by
Junge [7] (see also [20] and [9]). Let T : Lp(M) → Lp(N ) be a bounded operator. We say
that T is ℓ1-bounded if T ⊗ Iℓ1 extends to a bounded map

T⊗Iℓ1 : L
p(M; ℓ1) −→ Lp(N ; ℓ1).

We further say that T is ℓ1-contractive if the map T⊗Iℓ1 is a contraction. The main
result of this paper (Theorem 4.2 below) is that an isometry T : L2(M) → L2(N ) is
ℓ1-contractive if and only if it admits a Yeadon type factorization.
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2 C. LE MERDY AND S. ZADEH

To explain the relevance of Theorem 4.2 we note that ℓ1-boundedness is a noncom-
mutative analogue of regularity for maps acting on commutative Lp-spaces. (We refer
to [18, Chapter 1] for definitions and background on regular maps.) It follows that The-
orem 4.2 is a noncommutative extension of the well-known result stating that a linear
isometry between commutative L2-spaces is a Lamperti operator if and only if it is con-
tratively regular, if and only if it is a subpositive contraction (see e.g [15]).

The proof of Yeadon’s theorem heavily relies on the fact that for p 6= 2, any linear
isometry T : Lp(M) → Lp(N ) has the following property: if a, b ∈ Lp(M) are disjoint,
that is a∗b = ab∗ = 0, then T (a) and T (b) are disjoint as well. Such maps are called
separating in the present paper. We show that a bounded operator Lp(M) → Lp(N ) is
separating if and only if it admits a Yeadon type factorization.

The concept of ℓ1-boundedness is interesting in its own sake and this paper aims at
studying some of its main features. We show in particular that a contractive operator
T : Lp(M) → Lp(N ) is automatically ℓ1-contractive either if T is separating (see Theorem
3.15) or if T is 2-positive (see Proposition 5.1).

2. Notion of ℓ1-boundedness and background

In this section, we provide some background on noncommutative Lp-spaces and on
the ℓ1-valued spaces Lp(M; ℓ1). Then we introduce the notions of ℓ1-boundedness and
ℓ1-contractivity and establish some preliminary results.

Let M be a semifinite von Neumann algebra equipped with a normal semifinite faithful
trace τM. We briefly recall the noncommutative Lp-spaces Lp(M), 0 < p ≤ ∞, associated
with (M, τM) and some of their basic properties. The reader is referred to the survey [16]
and references therein for details and further properties.

If M ⊂ B(H) acts on some Hilbert space H, the elements of Lp(M) can be viewed
as closed densely defined (possibly unbounded) operators on H. More precisely, let M′

denote the commutant of M in B(H). A closed densely defined operator a is said to
be affiliated with M if a commutes with every unitary of M′. An affiliated operator a
is called measurable (with respect to (M, τM)) if there is a positive number λ > 0 such
that τM(ελ) < ∞, where ελ = χ[λ,∞)(|a|) is the projection associated with the indicator

function of [λ,∞) in the Borel functional calculus of |a|. Then the set L0(M) of all
measurable operators forms a ∗-algebra (see e.g. [24, Chapter I] for a proof and also for
the definitions of algebraic operations on L0(M)). We proceed with defining Lp(M) as a
subspace of L0(M). First note that for any a ∈ L0(M) and any 0 < p <∞, the operator

|a|p = (a∗a)
p

2 belongs to L0(M). If L0(M)+ denotes the positive cone of L0(M), that
is the set of all positive operators in L0(M), the trace τM extends to a positive tracial
functional on L0(M)+, taking values in [0,∞], also denoted by τM. For any 0 < p < ∞,
the noncommutative Lp-space, Lp(M), associated with (M, τM), is

Lp(M) :=
{
a ∈ L0(M) : τM(|a|p) <∞

}
.

For a ∈ Lp(M), let ‖a‖p := τM(|a|p)
1

p . For 1 ≤ p <∞, ‖·‖p defines a complete norm, and
for p < 1, a complete p-norm. We let L∞(M) := M, equipped with its operator norm
‖ · ‖∞.

For any 0 < p ≤ ∞ and any a ∈ Lp(M), the adjoint operator a∗ belongs to Lp(M)

and ‖a∗‖p = ‖a‖p. Furthermore, we have that a∗a ∈ L
p

2 (M) and |a| ∈ Lp(M), with
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‖|a|‖p = ‖a‖p. More generally, for any 0 < p, q, r ≤ ∞ with 1
p + 1

q = 1
r , we have that

ab ∈ Lr(M) if a ∈ Lp(M) and b ∈ Lq(M), with Hölder’s inequality

(2) ‖ab‖r ≤ ‖a‖p‖b‖q.

For any 1 ≤ p <∞, let p′ := p
p−1 be the conjugate number of p. Then by (2), ab belongs

to L1(M) for any a ∈ Lp(M) and b ∈ Lp′(M). Further the duality pairing

〈a, b〉 = τM(ab), a ∈ Lp(M), b ∈ Lp′(M),

yields an isometric isomorphism Lp(M)∗ = Lp′(M). In particular, we may identify L1(M)
with the (unique) predual M∗ of M. These duality results will be used without further
reference in the paper.

We let Lp(M)+ := L0(M)+ ∩ Lp(M) denote the positive cone of Lp(M). A bounded
operator T : Lp(M) → Lp(N ) between two noncommutative Lp-spaces is called positive if
it maps Lp(M)+ into Lp(N )+ .

If M = B(H), the algebra of all bounded operators on H, and τM = tr, the usual trace
on B(H), then the associated noncommutative Lp-space is the Schatten class Sp(H). If
M = L∞(Ω,F , µ) is the commutative von Neumann algebra associated with a measure
space (Ω,F , µ), then Lp(M) coincides with the classical Lp-space Lp(Ω,F , µ).

Let tr denote the usual trace on B(ℓ2) and consider the von Neumann algebra tensor
product B(ℓ2)⊗M, equipped with the normal semifinite faithful trace tr⊗τM (see [23,
Chapter V, Proposition 2.14]). Any element of Lp(B(ℓ2)⊗M) can be regarded as an
infinite matrix (bij)i,j≥1, with bij ∈ Lp(M). We let Lp(M; ℓ2c) denote the subspace of
Lp(B(ℓ2)⊗M) consisting of all matrices whose entries off the first column are all zero. We
regard this space as a sequence space by saying that a sequence (bn)n≥1 of Lp(M) belongs
to Lp(M; ℓ2c) if the infinite matrix




b1 0 . . . 0 . . .
...

...
...

bn 0 . . . 0 . . .
...

...
...




represents an element of Lp(B(ℓ2)⊗M). Similarly, we define Lp(M; ℓ2r) as the subspace
of Lp(B(ℓ2)⊗M) consisting of all matrices whose entries off the first row are all zero.

We let Eij , i, j ≥ 1, denote the usual matrix units of B(ℓ2), and regard Sp(ℓ2)⊗Lp(M)
as a subspace of Lp(B(ℓ2)⊗M) in the usual way. For any finitely supported sequence
(an)n≥1 and (bn)n≥1 of Lp(M), we have

(3)
∥∥∥

∞∑

n=1

En1 ⊗ bn

∥∥∥
Lp(M;ℓ2c)

=
∥∥∥

∞∑

n=1

b∗nbn

∥∥∥
1

2

p

2

and

(4)
∥∥∥

∞∑

n=1

E1n ⊗ an

∥∥∥
Lp(M;ℓ2r)

=
∥∥∥

∞∑

n=1

ana
∗
n

∥∥∥
1

2

p

2

.

When 1 ≤ p <∞, elements of Lp(M; ℓ2c) and L
p(M; ℓ2r) can be approximated by finitely

supported sequences, thanks to the following (easy) result.
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Lemma 2.1. Let 1 ≤ p < ∞ and suppose that (bn)n≥1 is a sequence in Lp(M). The
following are equivalent:

(i) (bn)n≥1 belongs to Lp(M; ℓ2c).
(ii) There exists a positive constant K such that for every N ≥ 1,

∥∥∥
N∑

n=1

En1 ⊗ bn

∥∥∥
Lp(M;ℓ2c)

≤ K.

(iii) The series
∑

n≥1En1 ⊗ bn converges in Lp(M; ℓ2c).

Moreover, the same result holds with ℓ2c replaced by ℓ2r and En1 replaced by E1n.

Remark 2.2. By (3) and the Cauchy convergence test, we see that a sequence (bn)n≥1 in
Lp(M) satisfies the assertion (iii) of Lemma 2.1 if and only if the series

∑
n b

∗
nbn converges

in L
p

2 (M). In this case, the identity (3) holds true for (bn)n≥1.

Let 1 ≤ p <∞. In [7], Junge defined Lp(M; ℓ1) as the space of all sequences x = (xn)n≥1

in Lp(M) for which there exist families (ukn)k,n≥1, (vkn)k,n≥1 ∈ L2p(M) and a positive
constant K such that

(5)
∥∥∥

N∑

k,n=1

uknu
∗
kn

∥∥∥
p
≤ K and

∥∥∥
N∑

k,n=1

v∗knvkn

∥∥∥
p
≤ K

for any N ≥ 1, and
∑∞

k=0 uknvkn = xn, for all n ≥ 1. (The convergence of the series is
ensured by (5) and Lemma 2.1.) He showed that this a Banach space when equipped with
the norm

∥∥(xn)n≥1

∥∥
Lp(M;ℓ1)

= inf



sup

N

∥∥∥
N∑

k,n=1

uknu
∗
kn

∥∥∥
1

2

p
sup
N

∥∥∥
N∑

k,n=1

v∗knvkn

∥∥∥
1

2

p



 ,

where the infimum is taken over all families (ukn)k,n≥1 and (vkn)k,n≥1 as above.

The following alternative description is well-known to specialists (and implicit in [17, pp.
537-538]). We give a proof for the sake of completeness.

Lemma 2.3. Suppose that 1 ≤ p < ∞ and that (xn)n≥1 is a sequence in Lp(M). Then
the following are equivalent:

(i) (xn)n≥1 belongs to Lp(M; ℓ1) and ‖(xn)n≥1‖Lp(M;ℓ1) < 1.

(ii) There exist sequences (an)n≥1 and (bn)n≥1 in L2p(M) such that anbn = xn for all
n ≥ 1, the series

∑
n ana

∗
n and

∑
n b

∗
nbn converge in Lp(M), and we have

∥∥∥
∞∑

n=1

ana
∗
n

∥∥∥
p
< 1 and

∥∥∥
∞∑

n=1

b∗nbn

∥∥∥
p
< 1.

Proof. The assertion “(ii) ⇒ (i)” is obvious. Conversely assume (i) and consider ukn, vkn
in L2p(M) satisfying (5) for some K < 1, and such that

xn =

∞∑

k=1

uknvkn, for all n ≥ 1.
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We regard Lp(M) as a subspace of Lp(B(ℓ2)⊗M) by identifying any b ∈ Lp(M) with
E11 ⊗ b. We set

un := (ukn)k≥1 ∈ L2p(M; ℓ2r) and vn := (vkn)k≥1 ∈ L2p(M; ℓ2c)

for all n ≥ 1, that we regard as elements of L2p(B(ℓ2)⊗M). Then xn = unvn for all n ≥ 1.

By polar decomposition, there exist ϕn ∈ L∞(M; ℓ2r) and ψn ∈ L∞(M; ℓ2c) such that

‖ϕn‖∞ ≤ 1, ‖ψn‖∞ ≤ 1, un = |u∗n|ϕn and vn = ψn|vn|.

If we let an = |u∗n| and bn = ϕnψn|vn|, then we have

xn = unvn = |u∗n|ϕnψn|vn| = anbn

for all n ≥ 1. Further an, bn belong to L2p(M). Next we have

ana
∗
n = |u∗n|

2 = unu
∗
n =

∞∑

k=1

uknu
∗
kn,

hence for any N ≥ 1, ‖
∑N

n=1 ana
∗
n‖p ≤ K. By Lemma 2.1 and Remark 2.2, this implies

the convergence of the series of the ana
∗
n in Lp(M), with

∥∥∑∞
n=1 ana

∗
n

∥∥
p
≤ K. Likewise,

since (ϕnψn)
∗(ϕnψn) ≤ 1, we have

b∗nbn = |vn|(ϕnψn)
∗(ϕnψn)|vn|

≤ |vn|
2 = v∗nvn =

∞∑

k=1

v∗knvkn,

from which we deduce that the series of the b∗nbn converges in Lp(M), with
∥∥∑∞

n=1 b
∗
nbn

∥∥
p
≤

K. This proves (ii). �

When dealing with positive sequences, the study of the Lp(M, ℓ1)-norm is simple. We
learnt the following result from [25].

Lemma 2.4. Let 1 ≤ p <∞, let (xn)n≥1 be a sequence of Lp(M) and assume that xn ≥ 0
for any n ≥ 1. The following are equivalent.

(i) (xn)n≥1 belongs to Lp(M; ℓ1).
(ii) The series

∑
n xn converges in Lp(M).

Further in this case, we have

(6)
∥∥(xn)n≥1

∥∥
Lp(M;ℓ1)

=
∥∥∥

∞∑

n=1

xn

∥∥∥
p
.

Proof. It follows from (3) and (4) that for any finitely supported families (an)n≥1 and
(bn)n≥1 in L2p(M), we have

∥∥∥
∞∑

n=1

anbn

∥∥∥
p
≤

∥∥∥
∞∑

n=1

ana
∗
n

∥∥∥
1

2

p

∥∥∥
∞∑

n=1

b∗nbn

∥∥∥
1

2

p
.

The assertion “(i) ⇒ (ii)” and the inequality ≥ in (6) follow at once (here we do not need
any positivity assumption on the xn).

Assume conversely that the series
∑

n xn converges in Lp(M) and set an = bn = x
1

2
n .

Then the convergence of
∑

n ana
∗
n and

∑
n b

∗
nbn are trivial and xn = anbn for all n ≥ 1.

This implies (i), as well as the inequality ≤ in (6). �
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We remark that for any c = (cn)n≥1 ∈ ℓ1 and any x ∈ Lp(M), the sequence (cnx)n≥1

belongs to Lp(M; ℓ1). Further the mapping x⊗ c 7→ (cnx)n≥1 extends to an embedding

Lp(M)⊗ ℓ1 ⊂ Lp(M; ℓ1)

and with this convention, Lp(M)⊗ ℓ1 is a dense subspace of Lp(M; ℓ1).

Let (ek)k≥1 denote the canonical basis of ℓ1. Then we let Lp(M; ℓ12) be the direct sum
Lp(M) ⊕ Lp(M) equipped with the norm ‖(x, y)‖ = ‖x ⊗ e1 + y ⊗ e2‖Lp(M;ℓ1), for any
x, y ∈ Lp(M).

Throughout the paper we will consider two semifinite von Neumann algebras M and
N equipped with normal semifinite faithful traces τM and τN , respectively, and we will
consider various bounded operators Lp(M) → Lp(N ), for 1 ≤ p <∞.

Definition 2.5. We say that a bounded operator T : Lp(M) → Lp(N ) is

(i) ℓ1-bounded if T ⊗ Iℓ1 extends to a bounded map

T⊗Iℓ1 : L
p(M; ℓ1) −→ Lp(N ; ℓ1).

In this case, the norm of T⊗Iℓ1 is called the ℓ1-bounded norm of T and is denoted
by ‖T‖ℓ1 ;

(ii) ℓ1-contractive if it is ℓ1-bounded and ‖T‖ℓ1 ≤ 1;
(iii) ℓ12-contractive if for every x, y ∈ Lp(M), we have

‖ (T (x), T (y)) ‖Lp(N ;ℓ1
2
) ≤ ‖(x, y)‖Lp(M;ℓ1

2)
.

Remark 2.6. In the case p = 1, we note that L1(M; ℓ1) ≃ ℓ1(L1(M)) isometrically. This
implies that any bounded operator T : L1(M) → L1(N ) is automatically ℓ1-bounded, with
‖T‖ℓ1 = ‖T‖.

In the rest of this section, we compare ℓ1-boundedness with Pisier’s notion of complete
regularity. Let us recall that for a hyperfinite von Neumann algebra M and an operator
space E, Pisier [20, Chapter 3] introduced a vector valued noncommutative Lp-space
Lp(M)[E]. Let Max(ℓ1) be ℓ1 equipped with its so-called maximal operator space structure
(see e.g. [19, Chapter 3]). It turns out that

(7) Lp(M ; ℓ1) ≃ Lp(M)[Max(ℓ1)] isometrically,

when M is hyperfinite (see [7, 9]).

Assume that the semifinite von Neumann algebras M,N are both hyperfinite. Let
T : Lp(M) → Lp(N ) be a bounded operator. Following Pisier [21], T is called completely
regular if there exists a constant K ≥ 0 such that for any n ≥ 1,

∥∥T ⊗ IMn : L
p(M)[Mn] −→ Lp(N )[Mn]

∥∥ ≤ K.

In this case the least possible K is denoted by ‖T‖reg and is called the completely regular
norm of T . It is noticed in [21] that if T is completely regular, then for any operator space
E, T⊗IE (uniquely) extends to a bounded operator T⊗IE from Lp(M)[E] into Lp(N )[E],
with ∥∥T⊗IE : Lp(M)[E] −→ Lp(N )[E]

∥∥ ≤ ‖T‖reg.

Combining this fact with (7), we obtain that if T : Lp(M) → Lp(N ) is completely regular,
then T is ℓ1-bounded, with ‖T‖ℓ1 ≤ ‖T‖reg.

The next example shows that the converse is wrong.



ℓ1-CONTRACTIVE MAPS ON NONCOMMUTATIVE Lp-SPACES 7

Example 2.7. We consider the specific case M = B(ℓ2), and we let T : Sp(ℓ2) → Sp(ℓ2)
be the transposition map. This map is ℓ1-contractive. This is an easy fact, which is a
special case of Theorem 3.15 below. Here is a direct argument.

Let (xn)n≥1 be in Lp(M); ℓ1) and let (an)n≥1 and (bn)n≥1 be two sequences belong-
ing to L2p(M; ℓ2r) and L2p(M; ℓ2c), respectively, such that xn = anbn for any n ≥ 1.
Then T (xn) =

tbn
tan for any n ≥ 1, (tan)n≥1 belongs to L2p(M; ℓ2c), (

tbn)n≥1 belongs to
L2p(M; ℓ2r) and we both have

∥∥(tan)n
∥∥
L2p(M;ℓ2c)

=
∥∥(an)n

∥∥
L2p(M;ℓ2r)

and
∥∥(tbn)n

∥∥
L2p(M;ℓ2r)

=
∥∥(bn)n

∥∥
L2p(M;ℓ2c)

.

The result follows at once.

Let us now prove that T is not completely regular. We need a little operator space
technology, in particular we use the Haagerup tensor product ⊗h, the operator spaces
R,C and the interpolation spaces R(θ) = [C,R]θ, 0 ≤ θ ≤ 1, for which we refer to [19].

Let (ek)k≥1 be the canonical basis of ℓ2. As it is outlined in [20, Theorem 1.1 and p.20],
for any operator space E, the mapping ei ⊗ x ⊗ ej 7→ Eij ⊗ x, for i, j ≥ 1 and x ∈ E,
uniquely extends to an isometric isomorphism

(8) Sp[E] ≃ R
(
1
p

)
⊗h E ⊗h R

(
1− 1

p

)
.

Assume that T is completely regular and let K = ‖T‖reg. Apply (8) with E = R. For
any n ≥ 1, we have

(
T ⊗ IR

)( n∑

k=1

ek ⊗ ek ⊗ e1

)
=

n∑

k=1

e1 ⊗ ek ⊗ ek,

hence ∥∥∥
n∑

k=1

ek ⊗ ek

∥∥∥
R⊗hR

(
1−

1
p

) ≤ K
∥∥∥

n∑

k=1

ek ⊗ ek

∥∥∥
R
(

1

p

)
⊗hR

.

It follows from the calculations in [20, Chapter 1] (see also [8]) that

R
(
1
p

)
⊗h R ≃ S2p and R⊗h R

(
1− 1

p

)
≃ S(2p)′

isometrically, where (2p)′ is the conjugate number of 2p. Let Qn ∈ B(ℓ2) be the orthogonal
projection onto Span{e1, . . . , en}. Then

∑n
k=1 ek ⊗ ek = Qn in the above identifications.

Hence we obtain that

‖Qn‖(2p)′ ≤ K‖Qn‖2p.

Since ‖Qn‖q = n
1

q for any 1 < q < ∞, we obtain that n1−
1

2p ≤ Kn
1

2p , equivalently,

n ≤ Kn
1

p , for any n ≥ 1. This yields a contradiction if p > 1. In the case p = 1, the
fact that T is not completely regular is obtained by applying (8) with E = C instead of
E = R.

Remark 2.8. Here we consider the commutative case. Let (Ω,F , µ) be a measure space.
For any operator space E, Lp(L∞(Ω))[E] coincides with the Bochner space Lp(Ω;E).
Thus if (Ω′,F ′µ′) is another measure space and T : Lp(Ω) → Lp(Ω′) is any bounded
operator, then T is completely regular (in the above sense) if and only if T is regular in
the lattice sense (see [18, Chapter 1] for details and background). Moreover in this case,
the completely regular norm of T coincides with its regular norm. It follows from [18,
Paragraph 1.2] that T is regular if (and only if) T ⊗ Iℓ1 extends to a bounded map T⊗Iℓ1
from Lp(Ω; ℓ1) into Lp(Ω′; ℓ1) and in this case, we have ‖T⊗Iℓ1‖ = ‖T‖reg. Consequently,
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T : Lp(Ω) → Lp(Ω′) is ℓ1-bounded if and only if T is regular and in this case, the ℓ1-
bounded norm of T is equal to its regular norm.

3. Disjointness and separating operators

In [12], Kan introduced the concept of Lamperti operators on commutative Lp-spaces,
which include Lp-isometries, 1 ≤ p 6= 2 < ∞, and positive L2-isometries. He then proved
a structural theorem for such operators. In this section we provide a noncommutative
version of this result, as well as a connection with ℓ1-boundedness.

Let us first recall some facts related to Jordan homomorphisms that we require in this
section. (We refer to [22], [5] and [11, Exercices 10.5.21-10.5.31] for general information.)
A Jordan homomorphism between von Neumann algebras M and N is a linear map
J : M → N that satisfies J(a2) = J(a)2 and J(a∗) = J(a)∗, for every a ∈ M. We say that
the Jordan homomorphism J : M → N is a Jordan monomorphism when J is one-to-one.
Any Jordan homomorphism is a positive contraction and any Jordan monomorphism is
an isometry.

Let J : M → N be a Jordan homomorphism and let D ⊂ N be the von Neumann
algebra generated by J(M). Let e := J(1). Then e is a projection and e is the unit of
D. According to [22, Theorem 3.3] (see also [5, Corollary 7.4.9.]), there exist projections
g and f in the center of D such that

(i) g + f = e;
(ii) a 7→ J(a)g is a ∗-homomorphism;
(iii) a 7→ J(a)f is an anti-∗-homomorphism;

Let N1 = gN g and N2 = fN f . We let π : M → N1 and σ : M → N2 be defined by π(a) =

J(a)g and σ(a) = J(a)f , for all a ∈ M. Then, D = D1

∞
⊕D2 and J(a) = π(a) + σ(a), for

all a ∈ M. We will use the suggestive notations

(9) J =

(
π 0
0 σ

)
and J(a) =

(
π(a) 0
0 σ(a)

)

to refer to such a central decomposition. We note that J is normal (i.e. w∗-continuous) if
and only if π and σ are normal.

Assume that M ⊂ B(H) acts on some Hilbert space H and let x be a closed densely
defined operator on H, affiliated with M. If x is self-adjoint, with polar decomposition
x = w|x|, we let s(x) denote the projection w∗w (= ww∗), called the support of x.

The following remarkable characterization of Lp-isometries, 1 ≤ p 6= 2 < ∞, is at the
root of our investigations.

Theorem 3.1 (Yeadon [26]). For 1 ≤ p <∞, p 6= 2, a bounded operator

T : Lp(M) −→ Lp(N )

is an isometry if and only if there exist a normal Jordan monomorphism J : M → N ,
a partial isometry w ∈ N , and a positive operator B affiliated with N , which verify the
following conditions:

(a) T (a) = wBJ(a) for all a ∈ M∩ Lp(M);
(b) w∗w = J(1) = s(B);
(c) every spectral projection of B commutes with J(a), for all a ∈ M;
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(d) τM(a) = τN (BpJ(a)) for all a ∈ M+.

This motivates the introduction of the following concept. Since we would like to consider
maps T : Lp(M) → Lp(N ) that are not necessarily isometries we drop part (d) of Theorem
3.1 in our definition.

Definition 3.2. We say that a bounded operator T : Lp(M) → Lp(N ), 1 ≤ p ≤ ∞,
has a “Yeadon type factorization” if there exist a normal Jordan homomorphism
J : M → N , a partial isometry w ∈ N , and a positive operator B affiliated with N , which
verify the following conditions:

(a) T (a) = wBJ(a) for all a ∈ M∩ Lp(M);
(b) w∗w = J(1) = s(B);
(c) every spectral projection of B commutes with J(a), for all a ∈ M.

Remark 3.3. The argument in the last paragraph of the proof of [26, Theorem 2] shows
that for an operator T : Lp(M) → Lp(N ) with a Yeadon type factorization, w, B and J
from Definition 3.2 are uniquely determined by T . We call (w,B, J) the Yeadon triple of
the operator T .

The crucial property that allowed Yeadon to describe Lp-isometries is that they map
disjoint elements to disjoint elements. This property is shared by operators other than
isometries and as we show in Proposition 3.11, it characterizes operators with a Yeadon
type factorization. We introduce the relevant concepts and supply a few preparatory
results.

Definition 3.4. Let a and b be elements in Lp(M), 1 ≤ p ≤ ∞. We say a and b are
disjoint if ab∗ = a∗b = 0.

Lemma 3.5. The elements a and b in Lp(M) are disjoint if and only if |a| and |b| are
disjoint and |a∗| and |b∗| are disjoint.

Proof. Let a, b ∈ Lp(M). First we note that a and b are disjoint if and only if

Im(b) ⊆ Im(a)⊥ and Ker(a)⊥ ⊆ Ker(b).

This implies that |a| and |b| are disjoint if and only if Ker(a)⊥ = Ker(|a|)⊥ ⊆ Ker(|b|) =
Ker(b). Then |a∗| and |b∗| are disjoint if and only if Ker(a∗)⊥ ⊂ Ker(b∗), which is itself
equivalent to Im(b) ⊆ Im(a)⊥. Therefore, a and b are disjoint if and only if |a| and |b| are
disjoint and |a∗| and |b∗| are disjoint. �

Remark 3.6. Consider the special case p = 2 and let a, b be two positive elements in
L2(M). Then a and b are disjoint if (and only if) τM(ab) = 0, that is, if and only if
a and b are orthogonal in the Hilbertian sense. Indeed assume that τM(ab) = 0. Then

0 = τM(ab) = τM((a
1

2 b
1

2 )(b
1

2 a
1

2 )) and a
1

2 b
1

2 is the adjoint of b
1

2 a
1

2 . Since the trace τM is

faithful, this implies that a
1

2 b
1

2 = 0. Therefore, ab = a
1

2 (a
1

2 b
1

2 )b
1

2 = 0. Hence a and b are
disjoint.

Definition 3.7. We say that a bounded operator T : Lp(M) → Lp(N ), 1 ≤ p ≤ ∞, is
separating if whenever a, b ∈ Lp(M) are disjoint, then T (a) and T (b) are disjoint.

Lemma 3.8. Any Jordan homomorphism J : M → N is separating.
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Proof. Let J : M → N be a Jordan homomorphism and consider a decomposition J =(
π 0
0 σ

)
as in (9).

Suppose that a and b are disjoint elements of M. Then we have

J(a)∗J(b) =

(
π(a)∗π(b) 0

0 σ(a)∗σ(b)

)

=

(
π(a∗b) 0

0 σ(ba∗)

)
= 0.

Similarly, we can show that J(a)J(b)∗ = 0, and therefore J is separating. �

Lemma 3.9. Suppose that a bounded operator T : Lp(M) → Lp(N ), 1 ≤ p < ∞, is
separating on M∩Lp(M), that is, T (a) and T (b) are disjoint for any disjoint a and b in
M∩ Lp(M). Then T is separating.

Proof. Let a, b ∈ Lp(M) with a∗b = ab∗ = 0. We let a = v|a| and b = w|b| be the polar
decompositions of a and b, respectively. By Lemma 3.5, we have |a||b| = 0.

For any n ≥ 1, let pn := χ[−n,n](|a|) be the projection associated with the indicator
function of [−n, n] in the Borel functional calculus of |a|, and similarly let qn := χ[−n,n](|b|).
Let an := apn and bn := bqn. We have

pn|a| = |a|pn → |a| and qn|b| = |b|qn → |b|

in Lp(M). This implies that an → a and bn → b in Lp(M).

Note that for any n ≥ 1, an and bn belong to M∩ Lp(M). Further we have

a∗nbn = pna
∗bqn = 0

and

anb
∗
n = v|a|pnqn|b|w

∗ = vpn|a||b|qnw
∗ = 0.

Thus an and bn are disjoint.

By assumption this implies that T (an)
∗T (bn) = 0 and T (an)T (bn)

∗ = 0. Passing to the
limit, we deduce that T (a)∗T (b) = 0 and T (a)T (b)∗ = 0. �

From now on, we consider

E :=
{
e ∈ M : e is a projection and τM(e) <∞

}
and A :=

⋃

e∈E

eMe.

For any x ∈ M, exe → x in the w∗-topology of M, when e → 1. Further for any
1 ≤ p < ∞ and any x ∈ Lp(M), exe → x in Lp(M). Thus A is a w∗-dense subspace of
M and a norm dense subspace of Lp(M), for any 1 ≤ p < ∞. Lemma 3.10 below is a
w∗-extension result of independent interest, which will be used in the proof of Proposition
3.11.

Given any w ∈ M∗ and a, b ∈ M, we let awb ∈ M∗ be defined by

awb(x) := w(bxa), for all x ∈ M.

Recall e.g. from [23, pp 126-128] the decomposition

(10) M∗ = M∗

1
⊕M∗

s,
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where M∗
s denotes the space of singular functionals on M, and M∗ is the predual of

M, which coincides with the space of normal functionals on M. It is well-known that
if w = wn + ws is the aforementioned decomposition of w, then awnb and awsb are the
normal part and the singular part of awb, respectively.

Lemma 3.10. Let Y be a dual Banach space. For any bounded operator u : A → Y , the
following are equivalent:

(i) For every e ∈ E, the restriction u|eMe : eMe→ Y is w∗-continuous.
(ii) There exists a w∗-continuons extension û : M → Y of u.

Proof. The implication “(ii) ⇒ (i)” is trivial. For the converse, we assume (i).

We first consider the case when Y = C. Suppose that α ∈ A∗ is such that α|eMe is
w∗-continuous for each e ∈ E . Using Hahn-Banach, we let w : M → C be a bounded
extension of α to M and we consider its decomposition w = wn + ws according to (10).

For every e ∈ E , ewe is w∗-continuous. We noticed that ewe = ewne + ewse is the
decomposition of ewe. Since ewe and ewne are w∗-continuous, the singular part ewse of
ewe must be zero, and consequently, ewe = ewne, for every e ∈ E . This implies that the
restriction of wn to A coincides with α. Thus α̂ = wn is a w∗-continuous extension of α.

For the general case, let v = u∗|Y∗
: Y∗ → A∗ be the restriction of the adjoint of u to

the predual of Y . Let

κ : M∗ −→ A∗

denote the restriction map taking any ν ∈ M∗ to ν|A. This is an isometry (by Kaplansky’s
theorem, say), whose range coincides with the space of all functionals A → C which admit
a w∗-continuous extension to M.

For each η ∈ Y∗, η ◦ u|eMe is w∗-continuous, for every e ∈ E . By our argument for the
case Y = C, this implies that η ◦u ∈ Im(κ). This means that v is valued in Im(κ). We can
therefore consider w = κ−1 ◦ v : Y∗ → M∗ and define û = w∗ : M → Y . By construction,
û is w∗-continuous.

We now claim that û is an extension of u. To see this, recall that for any η ∈ Y∗, the
functional κ−1 ◦ u∗(η) is an extension to M of u∗(η) : A → C. Consequently,

〈û(exe), η〉 = 〈exe,w(η)〉 = 〈exe, κ−1 ◦ u∗(η)〉 = 〈exe, u∗(η)〉 = 〈u(exe), η〉

for any x ∈ M, any e ∈ E and any η ∈ Y∗. This proves the claim. �

Proposition 3.11. For 1 ≤ p <∞, a bounded operator T : Lp(M) → Lp(N ) is separating
if and only if it has a Yeadon type factorization.

Proof. Assume that T is separating. We adapt Yeadon’s argument from [26], taking into
account that our operators are no longer necessarily isometries.

For any e ∈ E , let Be = |T (e)| and let T (e) = weBe be the polar decomposition of T (e).
We have

(11) Bew
∗
ewe = Be = w∗

eweBe.

Set J(e) := w∗
ewe = s(Be). If e and f are in E and ef = 0, then since T is separating we

have

(12) T (e)∗T (f) = T (e)T (f)∗ = 0.
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Using (12), the argument in the proof of [26, Theorem 2] shows that J : E → N extends
to a linear map J : A → N such that

(13) J(a2) = J(a)2, J(a∗) = J(a)∗, and ‖J(a)‖∞ ≤ ‖a‖∞

for all a ∈ A,

(14) T (exe) = weBeJ(exe)

for all e ∈ E and x ∈ M, and

(15) BfJ(e) = J(e)Bf = Be, for any e, f ∈ E , with e ≤ f.

Note that by (13), the restriction of J to eMe is a Jordan homomorphism for any e ∈ E .
Consequently,

(16) J(exe) = J(e)J(x)J(e)

for any e ∈ E and any x ∈ A.

We now show that J admits a normal extension (still denoted by) J : M → N . (Note
that Yeadon’s argument in the isometric case does not apply to our general case.) Accord-
ing to Lemma 3.10 it suffices to show that the restriction of J to eMe is normal for any
e ∈ E . To see this, we fix such an e and we let (exie)i be a bounded net of eMe converging
to exe in the w∗-topology of M. Then exie→ exe in the weak topology of Lp(M), hence
w∗
eT (exie) → w∗

eT (exe) in the weak topology of Lp(N ). By (14) and (11), this implies

that τN (ABeJ(exie)) → τN (ABeJ(exe)) for any A ∈ Lp′(N ), where p′ is the conjugate
number of p. Note that by (16), the restriction of J to eMe is valued in J(e)NJ(e). To
deduce from the above convergence property that J(exie) → J(exe) in the w∗-topology
of N , it therefore suffices to check that

{
ABe : A ∈ J(e)Lp′(N )J(e)

}
is a dense subset of J(e)L1(N )J(e).

This is indeed the case, since Be = |T (e)| ∈ Lp(N ) and s(Be) = J(e).

We note that since J is w∗-continuous and A is w∗-dense in M, (16) holds true for any
e ∈ E and any x ∈ M.

We now use the increasing net E and we recall that e→ 1 in the w∗-topology ofM. Since
J is normal, J(1) is the w∗-limit of J(e). Then using (11) and (15), the same argument
as in [10, Theorem 3.1] can be implemented to obtain extensions B (as supremum of the
Be) and w (as strong limit of the we) which satisfy properties (b) and (c) of Definition 3.2.
By (15) we further have

(17) BJ(e) = J(e)B = Be and wJ(e) = we,

for any e ∈ E .

We now aim at showing property (a) of Definition 3.2. For any y ∈ M+∩L1(M), using
spectral projections, we find a sequence (en)n≥1 in E such that enyen is increasing to y
when n → ∞. Since J is normal, this implies that BpJ(enyen) is increasing to BpJ(y)
when n→ ∞. Consequently, using the normality of τN , we obtain that

(18) τN
(
BpJ(y)

)
= lim

n→∞
τN

(
BpJ(enyen)

)
.
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Let x ∈ M∩ Lp(M). Consider a decomposition J =

(
π 0
0 σ

)
as in (9). Then we have

(19) J(|x|p) =

(
|π(x)|p 0

0 |σ(x∗)|p

)
.

Then by a well-known argument (see the proof of the easy implication of [26, Theorem
2]), this implies that

(20) ‖wBJ(x)‖pp = τN
(
Bp|J(x)|p

)
= τN

(
BpJ(|x|p)

)
.

Using (18) with y = |x|p, we deduce that for some sequence (en)n≥1 in E , we have

‖wBJ(x)‖pp = lim
n→∞

τN
(
BpJ(en|x|

pen)
)
.

Fix e ∈ E . Combining (14) and (16), we have T (exe) = weBeJ(x)J(e) from which we
deduce as in (20) that

‖T (exe)‖pp = τN
(
Bp

e |J(x)|
p
)
.

Using (16) again, and (17), we have

τN
(
BpJ(e|x|pe)

)
= τN

(
BpJ(e)J(|x|p)J(e)

)
= τN

(
Bp

eJ(|x|
p)
)
.

Consequently, using (19), we have

τN
(
BpJ(e|x|pe)

)
= τN

(
Bp

e |π(x)|
p
)
+ τN

(
Bp

e |σ(x
∗)|p

)

≤ τN
(
Bp

e |J(x)|
p
)
+ τN

(
Bp

e |J(x
∗)|p

)

≤ ‖T (exe)‖pp + ‖T (ex∗e)‖pp

≤ 2‖T‖p‖x‖pp.

Applying this with e = en and passing to the limit, we deduce that wBJ(x) ∈ Lp(N )
for any x ∈ M ∩ Lp(M), with ‖wBJ(x)‖p ≤ 2‖T‖‖x‖p. This shows the existence of a
(necessarily unique) bounded operator T ′ : Lp(M) → Lp(N ) such that T ′(x) = wBJ(x)
for any x ∈ M ∩ Lp(M). By (14) and (17), T and T ′ coincide on A. Since the latter is
dense in Lp(M), we obtain that T = T ′, hence property (a) of Definition 3.2 is satisfied.

For the converse suppose that T : Lp(M) → Lp(N ) has a Yeadon type factorization,
with Yeadon triple (w,B, J), and let us show that T is separating. By Lemma 3.9, it is
enough to show that T is separating on M∩ Lp(M). Let a and b be disjoint elements in
M∩ Lp(M), then

T (a)∗T (b) = J(a)∗Bw∗wBJ(b) by (a) in Definition 3.2

= J(a)∗B2J(b) by (b) in Definition 3.2

= B2J(a)∗J(b) by (c) in Definition 3.2

= 0 by Lemma 3.8.

Similarly we can show that T (a)T (b)∗ = 0, and hence T (a) and T (b) are disjoint. �

After a first version of this paper was circulated, we were informed that the ‘only if’
part of Proposition 3.11 was proved independently in [6].

We now give a series of remarks on this statement.

Remark 3.12.

(a) In Proposition 3.11, the proof that a separating map T admits a Yeadon type
factorization only uses the separation property on positive elements (even on projections
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with finite trace). Hence a bounded operator T : Lp(M) → Lp(N ) is separating if and
only if for any a, b ∈ Lp(M)+, ab = 0 implies that T (a)∗T (b) = T (a)T (b)∗ = 0.

(b) Let us say that a separating map T : Lp(M) → Lp(N ) is 2-separating if the tensor
extension ISp

2

⊗ T : Lp(M2(M)) → Lp(M2(N )) is separating. Combining Proposition 3.11

and the argument in the proof of [10, Proposition 3.2], we obtain that T : Lp(M) → Lp(N )
is 2-separating if and only if the Jordan homomorphism in the Yeadon factorisation of T
is multiplicative. This fact was also observed in [6, Theorem 3.4].

Remark 3.13. Here we discuss the commutative case. Let (Ω,F , µ) and (Ω′,F ′, µ′) be

two σ-finite measure spaces. Let F̃ be the set of classes of F modulo the null sets (i.e.

E ∈ F such that µ(E) = 0). We identify any element of F with its class in F̃ . We define

F̃ ′ similarly.

Recall that a regular set morphism (RSM) from (Ω,F , µ) into (Ω′,F ′, µ′) is a map

ϕ : F̃ → F̃ ′ satisfying the following two properties:

(i) For any E1, E2 ∈ F , E1
⋂
E2 = ∅ ⇒ ϕ(E1)

⋂
ϕ(E2) = ∅.

(ii) For any sequence (En)n≥1 of pairwise disjoint sets in F , ϕ
(⋃

n≥1En

)
=

⋃
n≥1 ϕ(En).

Following [13], Kan [12, Theorem 4.1] showed that a bounded operator T : Lp(Ω) →
Lp(Ω′) is separating if and only if there exist a measurable function h and a regular set
morphism ϕ from (Ω,F , µ) into (Ω′,F ′, µ′) such that for every set of finite measure E, we
have

T (χE) = h · χϕ(E).

(See [12] and [3, Chapter 3] for more on this factorization property.)

There is a well-known correspondence between RSM and normal ∗-homomorphisms on
L∞-spaces. Namely, let π : L∞(Ω,F , µ) → L∞(Ω′,F ′, µ′) be a normal ∗-homomorphism.
Then for any E ∈ F , π(χE) is a projection, hence an indicator function. We may therefore

define ϕ : F̃ → F̃ ′ by π(χE) = χϕ(E). It is easy to check that ϕ is a RSM. It turns out

that any regular set morphism is of this form. Indeed let ϕ : F̃ → F̃ ′ be a RSM. For any
g ∈ L1(Ω′,F ′, µ′), define νg : F → C by

νg(E) =

∫

ϕ(E)
g(t) dµ′(t), for any E ∈ F .

By (ii) and Lebegue’s theorem, νg is a complex measure, whose total variation is less than
or equal to ‖g‖1. By (i), ϕ(∅) = ∅ hence ν is absolutely continuous with respect to µ.
Hence by the Radon-Nikodym theorem, there exists a necessarily unique hg ∈ L1(Ω,F , µ)
such that

νg(E) =

∫

E
hg(s) dµ(s), for any E ∈ F .

Moreover ‖hg‖1 ≤ ‖g‖1. It is clear that the mapping u : L1(Ω′,F ′, µ′) → L1(Ω,F , µ)
defined by u(g) = hg is linear. The above estimate shows that u is contractive. Set

π = u∗ : L∞(Ω,F , µ) −→ L∞(Ω′,F ′, µ′).

By construction, π is w∗-continuous. Further it is easy to check that π is a ∗-homomorphism
and that π(χE) = χϕ(E) for any E ∈ F .
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We finally note that all Jordan homomorphisms on L∞-spaces are ∗-homomorphisms.
Thereby, through the aforementioned correspondence, Proposition 3.11 reduces to Kan’s
theorem in the case when M and N are commutative.

Remark 3.14.

(a) In general, separating operators may not be one-to-one (contrary to isometries).
We observe however that if a bounded operator T : Lp(M) → Lp(N ) is separating, with
Yeadon triple (w,B, J), then T is one-to-one if and only if J is a Jordan monomorphism.

Indeed if T is one-to-one, then J(e) = s
(
|T (e)|

)
6= 0 for any e ∈ E \ {0}. This implies

that for any pairwise disjoint non zero e1, . . . , em in E and any α1, . . . , αm in C, we have
∥∥∥
∑

k

αkJ(ek)
∥∥∥ = max

{
|αk| : k = 1, . . . ,m

}
=

∥∥∥
∑

k

αkek

∥∥∥.

Hence the restriction of J to E is an isometry. This readily implies that J is an isometry,
and hence J is one-to-one.

Assume conversely that J is one-to-one and let x ∈ Lp(M) such that T (x) = 0. Let x =
u|x| be the polar decomposition of x and for any integer n ≥ 1, let pn = χ[−n,n](|x|). Then
consdider x′n = xpn and x′′n = x(1− pn). We have x = x′n + x′′n hence T (x′n) + T (x′′n) = 0.
Further we have

x′n
∗
x′′n = pn|x|u

∗u|x|(1− pn) = pn|x|
2(1− pn) = 0,

whereas x′nx
′′
n
∗ = xpn(1− pn)x

∗ = 0. Hence x′n and x′′n are disjoint. Since T is separating
this implies that T (x′n) and T (x

′′
n) are disjoint. Since these elements are opposite to each

other, this implies that T (x′n) = 0. For any n ≥ 1, x′n ∈ Lp(M) ∩M hence T (x′n) =
wBJ(x′n). Since w∗w = s(B) = J(1), this implies that J(x′n) = 0, hence x′n = 0 by
our assumption. Since x′n → x in Lp(M), we deduce that x = 0. This shows that T is
one-to-one.

(b) We also observe that a separating operator T : Lp(M) → Lp(N ) with Yeadon triple
(w,B, J) is positive if and only w is positive (if and only if w is a projection). The
verification is left to the reader.

The following theorem shows that separating bounded operators are ℓ1-bounded. The
converse does not hold true, this can be easily seen on commutative Lp-spaces (see Remark
2.8).

Theorem 3.15. Suppose that T : Lp(M) → Lp(N ) is a separating bounded operator, with
1 ≤ p <∞. Then T is ℓ1-bounded and ‖T‖ℓ1 = ‖T‖.

Proof. We apply Proposition 3.11. We let (w,B, J) be the Yeadon triple of the operator

T . Next according to (9), we let J =

(
π 0
0 σ

)
be a central decomposition of J and we let

e, f be the central projections such that π = J( · )e and σ = J( · )f .

Let T1 : L
p(M) → Lp(N ) and T2 : L

p(M) → Lp(N ) be defined by

T1(x) = T (x)e and T2(x) = T (x)f

for any x ∈ Lp(M). Then, T = T1 + T2 and for all u, v ∈ Lp(M), we have

(21) ‖T1(u) + T2(v)‖
p
p = ‖T1(u)‖

p
p + ‖T2(v)‖

p
p.
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Let (xn)n≥1 ∈ Lp(M; ℓ1), with ‖(xn)‖Lp(M;ℓ1) < 1. By Lemma 2.3, there exist factoriza-

tions xn = anbn, n ≥ 1, with an, bn ∈ L2p(M), such that

∥∥∥
∞∑

n=1

ana
∗
n

∥∥∥
p
< 1 and

∥∥∥
∞∑

n=1

b∗nbn

∥∥∥
p
< 1.

The identity (20) and its proof show that for any a ∈ M∩ L2p(M), we have

‖B
1

2π(a)‖2p2p = τN (Bpπ(|a|2p)) ≤ τN (BpJ(|a|2p)) = ‖T (|a|2)‖pp.

Similarly, ‖B
1

2σ(a)‖2p2p ≤ ‖T (|a|2)‖pp. Hence there exist two bounded operators

S1 : L
2p(M) −→ L2p(N ) and S2 : L

2p(M) −→ L2p(N )

such that

S1(a) = B
1

2π(a) and S2(a) = B
1

2σ(a),

for all a in M∩ L2p(M). It is clear from above that for any a and b in L2p(M) we have

S1(a)S1(b) = w∗T1(ab), S2(a)S2(b) = w∗T2(ba) and S1(a)S2(b) = S2(b)S1(a) = 0.

We will use this repeatidly in the rest of the proof.

For any n ≥ 1, we have

T (xn) = T (anbn) = T1(anbn) + T2(anbn) = wS1(an)S1(bn) + wS2(bn)S2(an).

Hence T (xn) = cndn, with

cn = w (S1(an) + S2(bn)) and dn = S1(bn) + S2(an).

With a similar computation, we obtain

cnc
∗
n = w (S1(an) + S2(bn)) (S1(a

∗
n) + S2(b

∗
n))w

∗

= (T1(ana
∗
n) + T2(b

∗
nbn))w

∗.

Let N ≥ 1 and set uN =
∑N

n=1 ana
∗
n and vN =

∑N
n=1 b

∗
nbn. Summing up we obtain

N∑

n=1

cnc
∗
n = (T1(uN ) + T2(vN ))w∗

Appealing to (21), we deduce that

∥∥∥
N∑

n=1

cnc
∗
n

∥∥∥
p

p
≤ ‖T1(uN )‖pp + ‖T2(vN )‖pp.

Similarly,
∥∥∥

N∑

n=1

d∗ndn

∥∥∥
p

p
≤ ‖T1(vN )‖pp + ‖T2(uN )‖pp.

Consequently,

∥∥∥
N∑

n=1

cnc
∗
n

∥∥∥
p

p

∥∥∥
N∑

n=1

d∗ndn

∥∥∥
p

p
≤

(
‖T1(uN )‖pp + ‖T2(vN )‖pp

) (
‖T1(vN )‖pp + ‖T2(uN )‖pp

)
.

Let α = ‖T1(uN )‖pp and β = ‖T1(vN )‖pp. Since,

‖T1(uN )‖pp + ‖T2(uN )‖pp = ‖T (uN )‖pp ≤ ‖T‖p‖uN‖pp,



ℓ1-CONTRACTIVE MAPS ON NONCOMMUTATIVE Lp-SPACES 17

by (21), and ‖uN‖p < 1, we have ‖T2(u)‖
p
p ≤ ‖T‖p − α. Similarly, ‖T2(v)‖

p
p ≤ ‖T‖p − β.

Therefore,
(
‖T1(uN )‖pp + ‖T2(vN )‖pp

) (
‖T1(vN )‖pp + ‖T2(uN )‖pp

)
≤ (α+ (‖T‖p − β))(β + (‖T‖p − α))

= (‖T‖p − (β − α)) (‖T‖p + (β − α))

= (‖T‖2p − (β − α)2) ≤ ‖T‖2p,

and hence
∥∥∥

N∑

n=1

cnc
∗
n

∥∥∥
1

2

p

∥∥∥
N∑

n=1

d∗ndn

∥∥∥
1

2

p
≤ ‖T‖.

This implies that (T (xn))n≥1 belongs to Lp(N ; ℓ1) and that its norm in Lp(N ; ℓ1) is less
than or equal to ‖T‖. This yields the boundedness of T ⊗ Iℓ1 , as well as the equality
‖T‖ℓ1 = ‖T‖. �

4. Isometries on L2-spaces with a Yeadon type factorization

As it is outlined in Section 3, the crucial property that allowed Yeadon to describe isome-
tries between noncommutative Lp-spaces, p 6= 2, is that they are separating. To show that
every isometry is indeed separating he relied on the property that when 1 ≤ p 6= 2 <∞, the
equality condition in Clarkson’s inequality, ‖a+ b‖p + ‖a− b‖p = 2(‖a‖p + ‖b‖p), holds
true if and only if a and b are disjoint. However, this equality always holds true when
p = 2 and this is why the study of disjointness on L2-spaces requires a different approach.
This is the purpose of Lemma 4.1 below and as a consequence, we will characterize isome-
tries between noncommutative L2-spaces which admit a Yeadon type factorization.

Lemma 4.1. Suppose that a, b ∈ L2(M). Then, a and b are disjoint if and only if we
have

‖(a, b)‖L2(M;ℓ1
2
) ≤

(
‖a‖22 + ‖b‖22

)1/2
.

Proof. First suppose that for disjoint elements a, b ∈ L2(M) the polar decompositions are
given by a = u|a| and b = v|b|. Define

a1 = u|a|1/2, a2 = |a|1/2, b1 = v|b|1/2 and b2 = |b|1/2.

These elements belong to L4(M) and we have a = a1a2 and b = b1b2. Further we have

a1a
∗
1 + b1b

∗
1 = u|a|u∗ + v|b|v∗ and a∗2a2 + b∗2b2 = |a|+ |b|.

Consequently,
‖(a, b)‖2L2(M;ℓ1

2
) ≤ ‖u|a|u∗ + v|b|v∗‖2 ‖|a|+ |b|‖2.

Now, since a and b are disjoint we have that |a||b| = 0, by Lemma 3.5, and so

‖|a| + |b|‖22 = ‖|a|‖22 + ‖|b|‖22 + 2τ
M
(|a||b|)

= ‖a‖22 + ‖b‖22.

Similarly, since a and b are disjoint, we have ua∗bv∗ = 0, and so

‖u|a|u∗ + v|b|v∗‖22 = ‖u|a|u∗‖22 + ‖v|b|v∗‖22 + 2τ
M

(u|a|u∗v|b|v∗)

= ‖u|a|u∗‖22 + ‖v|b|v∗‖22 + 2τ
M

(ua∗bv∗)

= ‖u|a|u∗‖22 + ‖v|b|v∗‖22

≤ ‖a‖22 + ‖b‖22.
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This implies that ‖(a, b)‖L2(M;ℓ1
2
) ≤

(
‖a‖22 + ‖b‖22

)1/2
.

Conversely, suppose that a, b ∈ L2(M) satisfy ‖(a, b)‖L2(M;ℓ1
2
) ≤

(
‖a‖22 + ‖b‖22

)1/2
. Let

(εk)k be a sequence of positive real numbers with limk εk = 0. By Lemma 2.3,

‖(a, b)‖L2(M;ℓ1) = inf

{
‖uu∗ + ww∗‖

1

2

2 ‖v
∗v + z∗z‖

1

2

2

}
,

where the infimum is taken over all factorizations a = uv and b = wz, with u, v, w, z ∈
L4(M). Thus for any k ≥ 1, we can find uk, vk, wk, zk ∈ L4(M) such that a = ukvk,
b = wkzk,

(22) ‖uku
∗
k +wkw

∗
k‖

1

2

2 ≤ (1 + εk)
1

8

(
‖a‖22 + ‖b‖22

) 1

4 ,

and

(23) ‖v∗kvk + z∗kzk‖
1

2

2 ≤ (1 + εk)
1

8

(
‖a‖22 + ‖b‖22

) 1

4 .

This implies that

(24) ‖uku
∗
k‖

2
2 + ‖wkw

∗
k‖

2
2 + 2τ

M
(uku

∗
kwkw

∗
k) ≤ (1 + εk)

1

2

(
‖ukvk‖

2
2 + ‖wkzk‖

2
2

)

and

(25) ‖v∗kvk‖
2
2 + ‖z∗kzk‖

2
2 + 2τ

M
(v∗kvkz

∗
kzk) ≤ (1 + εk)

1

2

(
‖ukvk‖

2
2 + ‖wkzk‖

2
2

)
.

We claim that

(26)
(
‖ukvk‖

2
2 + ‖wkzk‖

2
2

)2
≤

(
‖u∗kuk‖

2
2 + ‖w∗

kwk‖
2
2

)(
‖vkv

∗
k‖

2
2 + ‖zkz

∗
k‖

2
2

)
.

Indeed

‖ukvk‖
2
2 = τM

(
(ukvk)

∗(ukvk)
)
= τM

(
vkv

∗
ku

∗
kuk

)
=

〈
u∗kuk, vkv

∗
k

〉
L2(M)

and similarly, ‖wkzk‖
2
2 = 〈w∗

kwk, zkz
∗
k

〉
L2(M)

. Hence (26) follows by applying the Cauchy-

Schwarz inequality in the Hilbertian direct sum L2(M)
2
⊕L2(M).

Multiplying inequalities (24) and (25) and using the fact that τ
M

(v∗kvkz
∗
kzk) ≥ 0, we

obtain that

(27)
(
‖uku

∗
k‖

2
2 + ‖wkw

∗
k‖

2
2 + 2τ

M
(uku

∗
kwkw

∗
k)
)(
‖v∗kvk‖

2
2 + ‖z∗kzk‖

2
2

)

is less than or equal to (1 + εk)
(
‖ukvk‖

2
2 + ‖wkzk‖

2
2

)2
. Now using (26) we deduce that

(27) is less than or equal to

(1 + εk)
(
‖u∗kuk‖

2
2 + ‖w∗

kwk‖
2
2

)(
‖vkv

∗
k‖

2
2 + ‖zkz

∗
k‖

2
2

)
.

Now we observe that ‖uku
∗
k‖

2
2 = ‖uk‖

4
4 = ‖u∗kuk‖

2
2 and similarly for wk, vk and zk. Hence

the above inequality reads
(
‖uk‖

4
4 + ‖wk‖

4
4 + 2τ

M
(uku

∗
kwkw

∗
k)
)
≤ (1 + εk)

(
‖uk‖

4
4 + ‖wk‖

4
4

)
.

This yields

τ
M

(uku
∗
kwkw

∗
k) ≤ εk

(
‖uk‖

4
4 + ‖wk‖

4
4

2

)
.

It follows from (22) that (‖uk‖4)k and (‖wk‖4)k are bounded sequences. Hence we have
that τ

M
(uku

∗
kwkw

∗
k) → 0 as k → ∞. Writing

τ
M
(uku

∗
kwkw

∗
k) = τ

M
(u∗kwkw

∗
kuk) = τ

M
((u∗kwk)(u

∗
kwk)

∗) = ‖u∗kwk‖
2
2,

we deduce that ‖u∗kwk‖2 → 0 as k → ∞.
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We have a∗b = v∗ku
∗
kwkzk, hence

‖a∗b‖1 ≤ ‖vk‖4‖u
∗
kwk‖2‖zk‖4.

By (23), (‖vk‖4)k and (‖zk‖4)k are bounded sequences, hence the right hand side in the
above inequality tends to 0 as k → ∞. We deduce that a∗b = 0.

Finally using τ
M

(v∗kvkz
∗
kzk) instead of τ

M
(uku

∗
kwkw

∗
k), we show as well that ab∗ = 0

and therefore, a and b are disjoint. �

Theorem 4.2. For a linear isometry T : L2(M) → L2(N ), the following statements are
equivalent:

(i) T has a Yeadon type factorization.
(ii) T is ℓ12-contractive.
(iii) T is ℓ1-contractive.

Proof. In the light of Proposition 3.11 and Theorem 3.15, we only need to establish that
if (ii) holds true, then T is separating.

Suppose that T is ℓ12-contractive. Let a, b ∈ L2(M) be disjoint elements. By Lemma
4.1,

‖(Ta, T b)‖L2(N ;ℓ1
2
) ≤ ‖(a, b)‖L2(M;ℓ1

2
) ≤ (‖a‖22 + ‖b‖22)

1

2 .

Since T is an isometry we have ‖T (a)‖ = ‖a‖ and ‖T (b)‖ = ‖b‖ and hence

‖(Ta, T b)‖L2(N ;ℓ1
2
) ≤ (‖Ta‖22 + ‖Tb‖22)

1

2 .

By Lemma 4.1 again, this implies that Ta and Tb are disjoint. Hence T is separating. �

Remark 4.3.

(a) As mentioned in Remark 2.8, when M = L∞(Ω) and N = L∞(Ω′) are commutative,
a bounded operator T : L2(Ω) → L2(Ω′) is ℓ1-contractive if and only if T is regular, with
‖T‖reg ≤ 1. Hence, Theorem 4.2 implies that in the commutative case, an isometry
T : L2(Ω) → L2(Ω′) is separating if and only if ‖T‖reg ≤ 1. This result is implicit in [15].

(b) Let T : Lp(M) → Lp(N ), 1 ≤ p < ∞, be a separating isometry, with the Yeadon
triple (w,B, J). We show in [14] that when p = 2 and M and N are hyperfinite, then
J is multiplicative (equivalently, J is a ∗-homomorphism) if and only if T is completely
regular with ‖T‖reg = 1. This is an L2-analog of [10, Theorem 3.1] which says that for
1 ≤ p 6= 2 <∞, J is multiplicative if and only if T is a complete isometry.

In [2], Broise showed that every bijective positive isometry between noncommutative
L2-spaces associated with semifinite factors admits a Yeadon type factorization. Using
Proposition 3.11, one can actually obtain the following more general statement.

Corollary 4.4. Suppose that T : L2(M) → L2(N ) is a positive isometry. Then T admits
a Yeadon type factorization.

Proof. Let a, b ∈ L2(M) be positive elements, with ab = 0. They are orthogonal and
isometries preserve orthogonality, hence T (a) and T (b) are orthogonal. Since T (a) and
T (b) are positive, Remark 3.6 ensures that T (a) and T (b) are disjoint.

By Remark 3.12 (a) and Proposition 3.11, the above shows that T admits a Yeadon
type factorization. �
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5. positivity and ℓ1-contractivity

For any n ≥ 2, we let Sp
n = Sp(ℓn2 ) and we let Sp

n[Lp(M)] be the space Sp
n ⊗ Lp(M)

equipped with the norm and the partial order coming from its identification with the space
Lp(Mn(M)), see Section 2.

We say that a bounded operator T : Lp(M) → Lp(N ), 1 ≤ p <∞, is n-positive if

ISp
n
⊗ T : Sp

n[L
p(M)] −→ Sp

n[L
p(N )]

is positive. We say that T is completely positive if it is n-positive for all n ≥ 1.

Proposition 5.1. Suppose that T : Lp(M) → Lp(N ) is a 2-positive contraction, then T

is ℓ1-contractive.

Proof. Let T : Lp(M) → Lp(N ) be a 2-positive contraction and let (xn)n≥1 be a sequence
in Lp(M) such that ‖(xn)n≥1‖Lp(M;ℓ1) < 1. According to Lemma 2.3, we may choose

sequences (an)n≥1 and (bn)n≥1 in L2p(M) such that xn = anbn for any n ≥ 1,

(28)
∥∥∥

∞∑

n=1

ana
∗
n

∥∥∥
p
< 1 and

∥∥∥
∞∑

n=1

b∗nbn

∥∥∥
p
< 1.

For any n ≥ 1, let

zn :=

(
ana

∗
n anbn

b∗na
∗
n b∗nbn

)

in Sp
2 [L

p(M)]. Then zn =

(
an 0
b∗n 0

)(
a∗n bn
0 0

)
, hence zn ≥ 0. Therefore by the 2-positivity

of T ,

(ISp
2

⊗ T )(zn) =

(
T (ana

∗
n) T (anbn)

T (b∗na
∗
n) T (b∗nbn)

)
≥ 0.

Consider the positive square root

(
αn βn
β∗n δn

)
:=

(
(ISp

2

⊗ T )(zn)
) 1

2 .

Then αn, βn, δn belong to L2p(N ), we have αn ≥ 0, δn ≥ 0, and

T (ana
∗
n) = α2

n + βnβ
∗
n,

T (b∗nbn) = β∗nβn + δ2n,

T (anbn) = αnβn + βnδn.

Using the third equation above and Junge’s definition of Lp(N ; ℓ1), we get that

‖ (T (anbn))n≥1 ‖Lp(N ;ℓ1) ≤
∥∥∥

∞∑

n=1

α2
n +

∞∑

n=1

βnβ
∗
n

∥∥∥
1

2

p

∥∥∥
∞∑

n=1

β∗nβn +

∞∑

n=1

δ2n

∥∥∥
1

2

p
.

(The convergence of the series are justified by the next lines.)
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We can now apply the first two equations and (28) to deduce that

‖ (T (xn))n≥1 ‖Lp(N ;ℓ1) ≤
∥∥∥

∞∑

n=1

T (ana
∗
n)
∥∥∥

1

2

p

∥∥∥
∞∑

n=1

T (b∗nbn)
∥∥∥

1

2

p

≤
∥∥∥T

( ∞∑

n=1

ana
∗
n

)∥∥∥
1

2

p

∥∥∥T
( ∞∑

n=1

b∗nbn

)∥∥∥
1

2

p

≤ ‖T‖
∥∥∥

∞∑

n=1

ana
∗
n

∥∥∥
1

2

p

∥∥∥
∞∑

n=1

b∗nbn

∥∥∥
1

2

p

< 1.

This shows that T is ℓ1-contractive. �

Remark 5.2.

(a) An obvious consequence of Proposition 5.1 is that if T is a completely positive
contraction then it is ℓ1-contractive.

(b) Let N op be the opposite von Neumann algebra of N and let Iop : L
p(N ) → Lp(N op)

denote the identity map. We say that T : Lp(M) → Lp(N ) is 2-copositive if the operator
Iop ◦ T : Lp(M) → Lp(N op) is 2-positive. It is easy to check that

Lp(N ; ℓ1) = Lp(N op, ℓ1) isometrically.

Therefore, Proposition 5.1 implies that any contractive 2-copositive map Lp(M) → Lp(N )
is ℓ1-contractive. It therefore follows that if a positive map Lp(M) → Lp(N ) can be written
as a convex combination of a contractive 2-positive map and a contractive 2-copositive
map, then it is ℓ1-contractive.

We do not know if any positive contraction is ℓ1-contractive, however we show below
that positive operators are ℓ1-bounded.

Proposition 5.3. Let T : Lp(M) → Lp(N ) be a bounded operator. If T is positive, then
T is ℓ1-bounded, with ‖T‖ℓ1 ≤ 4‖T‖.

Proof. As in the proof of Proposition 5.1, let (xn)n≥1 be a sequence in Lp(M) such that
‖(xn)n≥1‖Lp(M;ℓ1) < 1, and let (an)n≥1 and (bn)n≥1 in L2p(M) such that xn = anbn for
any n ≥ 1 and (28) holds.

For any n ≥ 1, we use the polarization identity,

anbn =
1

4

3∑

k=0

(−i)k(a∗n + ikbn)
∗(a∗n + ikbn).

For 0 ≤ k ≤ 3 and n ≥ 1, let ykn := (a∗n + ikbn)
∗(a∗n + ikbn). Then y

k
n ≥ 0 hence T (ykn) ≥ 0.

This implies, by Lemma 2.4, that for any k,

‖(T (ykn))n‖Lp(N ;ℓ1) =
∥∥∥

∞∑

n=1

T (ykn)
∥∥∥
p
≤ ‖T‖

∥∥∥
∞∑

n=1

ykn

∥∥∥
p
.

(The convergence of the series are justified by the next lines.)
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Moreover
∥∥∥

∞∑

n=1

ykn

∥∥∥
p
=

∥∥∥
∞∑

n=1

En1 ⊗ (a∗n + ikbn)
∥∥∥
2

L2p(M;ℓ2c)

≤

(∥∥∥
∞∑

n=1

En1 ⊗ a∗n

∥∥∥
L2p(M;ℓ2c)

+
∥∥∥

∞∑

n=1

En1 ⊗ bn

∥∥∥
L2p(M;ℓ2c)

)2

≤ 4

by (3) and (28).

Since

T (xn) =
1

4

3∑

k=0

(−i)kT (ykn),

we deduce that

‖(T (xn))n‖Lp(N ;ℓ1) ≤
1

4

3∑

k=0

‖(T (ykn))n‖Lp(N ;ℓ1) ≤ 4‖T‖.

This shows that ‖T‖ℓ1 ≤ 4‖T‖. �
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E-mail address: clemerdy@univ-fcomte.fr

Department of Mathematics, Federal University of Paráıba, Brazil & Faculty of Grad-
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