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Abstract—Terrain-aided navigation provides a drift-free navi-
gation approach for autonomous underwater vehicles. However,
velocity is often tricky to estimate with conventional bathymetry
(mono or multi-beam telemetry) sensors. Cold atom gravimetry
is a promising absolute and autonomous additional sensor that is
seldom considered for this kind of application. We investigate a
multi-beam telemeter and gravimeter centralized fusion scenario
and the resulting observability gain on velocity. To do so,
an Adaptive Approximate Bayesian Computation Regularized
Particle Filter is implemented and compared to conventional
Regularized Particle Filter. Numerical results are presented and
the robustness of the bathymetry and gravimetry fusion strategy
is demonstrated, yielding less non-convergence cases and more
accurate position and velocity estimation.

I. INTRODUCTION

The autonomy of underwater vehicles is a broad and exten-
sive field of study [2]. The autonomy depends on the ability
to perform long-term and long-range missions without the
need for human intervention. The navigation of Autonomous
Underwater Vehicles (AUV [2]) is often based on Inertial Mea-
surements Unit (IMU). Although IMU are autonomous and
reliable, they provide imperfect measurements (e.g., subject
to bias, noises) that result a drifting error in the navigation
solution. To correct the navigation drift, IMU can be combined
with other external sensors. A common aiding source is the
Global Positioning System (GPS) but resurfacing for GPS is
often excluded for discretion requirements and also because
it can easily be jammed. This is especially true for military-
grade AUVs. Terrain Aided Navigation (TAN) provides a drift-
free navigation tool for underwater operations. TAN aims to
retrieve the vehicle current state (e.g., position or velocity)
by matching a terrain profile obtained from a sensor with a
profile reconstructed from an embedded map of the operation
area.

Usually, the multi-beam telemeter is used for underwa-
ter navigation applications [2], [18]. This sensor provides
a series of depth measurements along the AUV trajectory.
In the past few years, another technology was introduced:
the atomic gravimeter. The atomic gravimeter is a promising
absolute sensor for underwater navigation. In particular, the
quantum gravimetry concept developed by ONERA (cold atom
gravimeter [3]) provides an absolute and accurate gravity
measurement. The atomic gravimeter is starting to be used
in underwater navigation [16] but, to the best of the authors
knowledge, has not been combined with other TAN sensors.

Performing sensor fusion makes it necessary to resort to ro-
bust nonlinear filtering algorithms. State estimation problem is
particularly challenging for TAN applications. Indeed, the use
of embedded maps involves severe measurement ambiguities
(i.e. when a measurement may correspond to several areas on
the map). In the presence of strong nonlinearities and multi-
modality due to terrain map ambiguities, the Extended Kalman
Filter (EKF [4]) is known to be unreliable. The linearization of
terrain areas where abrupt changes in seabed elevation occur
generates numerical instabilities that may result in estimation
divergence. In order to avoid linearization, several stochastic
filters were proposed such as the Particle Filter (a.k.a. Monte
Carlo methods [5]).

The idea of this paper is to improve the AUV state es-
timation by fusing the classic multi-beam telemeter with a
gravimeter. The fusion is performed by an Adaptive Approx-
imate Bayesian Computation Particle Filters (A2BC-PF, [6]).
A2BC-PF are designed to tackle estimation problems where
the law of the measurement noise (likelihood) is unknown.
This is often the case in TAN applications that use embed-
ded numerical terrain maps, which can lead to uncontrolled
measurements errors. Maps are not exempt from uncertainty,
they may not be fully representative of the field that a local
sensor would measure. Furthermore, the multi-beam telemeter
measurements model cannot be put into an explicit form
linking the state to the measurements, which can lead to
numerical approximations resulting in uncontrolled errors. In
this context, neither the measurement error (involving both the
sensor noise and the map modeling error), nor its probabilistic
law (likelihood) can be analytically determined. The A2BC
method consists of approximating the actual likelihood by a
probability density kernel with an adaptive bandwidth. A2BC
makes the Monte Carlo methods more robust to measurement
ambiguities as the number of estimation non-convergences is
significantly reduced [6].

The paper is organized as follows. The underwater terrain-
aided navigation, the multi-beam telemeter and the gravimeter
are introduced in Section II. Section III states the estimation
problem formulation and the sensor fusion methodology. Two
particle filters schemes are introduced to perform the sensor
fusion. Section IV illustrates the performance of multi-beam
and gravimeter fusion applied to underwater TAN. Section V
concludes the paper.



II. UNDERWATER TERRAIN-AIDED NAVIGATION

Autonomous underwater vehicles (AUV) need to navigate
without resurfacing to correct their drifting IMU navigation
solution. Therefore, IMU needs to be hybridized with one or
several additional sensors to bring position-related information
into the system.

Multi-beam telemeter is a widely used underwater sensor.
If the terrain contains sufficient information, this sensor can
be used to retrieve the state of the vehicle using an embedded
numerical seabed map (see, Section II-A and Fig. 2). Although
multi-beam telemeter aided navigation is able to accurately
retrieve the AUV position, the velocity is often challenging to
be precisely estimated. In order to enhance the accuracy of ve-
locity estimation, we propose to fuse the multi-beam telemeter
measurements with an atomic gravimeter (see Section II-B).

The atomic gravimeter is a promising absolute sensor for
underwater navigation. It provides an absolute and accurate
gravity measurement. The gravimeter is associated with a
gravity anomalies map (see Fig. 3a).

Multi-beam telemeter and gravimeter sensors, as well as
the resulting measurements equations, are described in Sec-
tions II-A and II-B respectively.

A. Multi-Beam telemeter

The multi-beam telemeter provides a series of depth mea-
surements along the AUV position (see Fig. 1).

Underwater vehicle 

Seabed 

𝑟𝑖 

Fig. 1: Multi-beam telemeter scheme.

At each time-step, the telemeter measurements are com-
prised of m distances between the AUV and the seabed, which
correspond to the number of beams. The measurements vector
is given by:

ybk = [r1, . . . , rm]> (1)

where ri records the distance between the AUV and the
seabed for the i-th beam. The distance equation is constructed
via a projection in the Cartesian coordinate system (see
Meduna [13] for details). For each beam, ri is equal to:

ri =

√
(px − pxi )

2
+ (py − pyi )

2
+ (pz − mapmb(p

x
i , p

y
i ))

2

+ νi (2)
where mapmb is the bathymetric map of the operation

area (see Fig. 2) and νi is the measurements white noise of
covariance Rb. The bathymetric map is a nonlinear function
of R2 in R, taking as input the position in axis x and y and
giving as output the elevation of the terrain. The range ri is
computed by determining the intersection point of the inertial
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Fig. 2: Bathymetric map of the California coast (35°51′ N,
121°27′ W). The colorbar represents the depth levels (m).

beam direction vector with the terrain pi = [pxi , p
y
i , p

z
i ]

>

where pzi = mapmb(p
x
i , p

y
i ) (see Fig. 3.4 in [13]). As

the intersection point is unknown in practice, the multi-beam
telemeter measurements equation (1) is computed through
numerical approximations (e.g., via grid search methods).
The measurements noise accounts for these approximations in
addition to sensor and map errors. However, as the numerical
approximations introduce some unknown sampling noise that
are difficult to control, the law of the measurements noise is
complex to infer.

B. Atomic gravimeter

The atomic gravimeter measures the absolute value of
the gravity by monitoring the free-fall acceleration of ultra-
cold atoms thanks to atom interferometry [14], [15]. The
measurements are absolute and accurate, which means that the
sensors does not need any calibration and provides a gravity
evaluation with a very low level noise (on the order of 10−2

mGal, where 1mGal is equal to 10−5 ms−2).
The gravimeter measurements equation is obtained from

the vertical acceleration model expressed in the earth-centered
earth-fixed coordinate system [16]. The vertical acceleration of
the vehicle is neglected as the AUV follows a uniform rectilin-
ear trajectory in our application. To adapt the gravimeter mea-
surements equation to the flat Earth frame, the Eötvös effect
(also known as Coriolis effect) and the nominal gravitational
acceleration are linearized around a reference geographical
point of the map [λ = 35.5°N,φ = 124°W,h = 0 m]. The
equation expressed in the flat Earth frame is given by:

ygk = a pyk + b pzk + c vxk + mapga(p
x
k, p

y
k) + νk

′ (3)

where mapga is the gravity anomalies map (see Fig. 3a) and
νk

′ is the measurements white noise of covariance Rg . The
measurements equation yk is expressed in mGal. The map is
a nonlinear function of R2 in R, taking as input the position
in axis x and y in meters and giving as output the gravity
anomalies in mGal. The measurements noise νk

′ includes
sensor errors. The constants a, b and c in (3) are equal to
7.66×10−4 mGal, −0.3086 mGal, and 3.0542 mGal respec-
tively. The terms a pyk + b pzk and c vxk represent respectively
the standard gravity and the Eötvös effect.
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(a) Gravimetric map. The colorbar represents the gravity anoma-
lies in (mGal)

(b) Cold atom gravimeter GIRAFE 2 and its gyrostabilizing
platform.

Fig. 3: Gravimetric map of the Californian coasts (35°51′ N,
121°27′ W) and quantum gravimeter.

The gravimeter-based navigation does not allow an accurate
estimation of the position of the AUV because of the poor
resolution of the gravity anomalies maps. However, it allows
a better estimation of the velocity than the telemeter-based
navigation as the velocity in the x-axis is directly observable
in the measurements equation (3).

III. ESTIMATION PROBLEM AND SENSOR FUSION
ARCHITECTURE

TAN navigation is related to a state estimation problem.
We consider the following discrete-time dynamical model with
hidden states {xk}k≥0 ∈ Rd and measurements {yk}k≥1 ∈
Rdy : {

xk = fk(xk−1) + ηk
yk = hk(xk) + vk

(4)

where fk and hk are respectively the dynamical model and
the measurements function, and ηk and vk respectively the
process noise and measurements noise. Noises are independent
and identically distributed (i.i.d.), mutually independent and
independent of the initial state x0.

The state xk corresponds to the vehicle state (e.g. position,
velocity). The measurements equation can be for example the
multi-beam telemeter equation (1).

A. Filtering framework

Bayesian filters aim to estimate the posterior density of the
state variables at the time k given the past measurements. State
estimation consists of two steps: prediction and correction.

• The prediction step determines a prior density
p(xk|y1:k−1) with respect to the transition density
p(xk|xk−1) and the previous posterior density
p(xk−1|y1:k−1) via the Chapman-Kolmogorov equation:

p(xk|y1:k−1) =

∫
p(xk|xk−1) p(xk−1|y1:k−1) dxk−1

(5)
• The correction step determines the posterior density of

the state with respect to the prior density (5) and the
likelihood p(yk|xk). From Bayes’ law, one obtains:

p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)∫

p(yk|xk) p(xk|y1:k−1) dxk
(6)

If the state and the measurements functions are linear, the
process and measurements noises are Gaussian, and the initial
density p0 is Gaussian then the Kalman filter provides an
optimal analytic iterative formulation of the posterior density.
The Kalman formulation was extended to nonlinear models,
but it is not robust to severe nonlinearities and non-Gaussian
densities. For highly nonlinear models, several methods based
on Monte Carlo sampling of the filtering law were proposed
to approximate the posterior density.

Two particle filters are presented in the next sections:
the Regularized Particle Filter (RPF) and the Adaptive Ap-
proximate Bayesian Computation - Regularized Particle Filter
(A2BC-RPF). The RPF is based on kernel estimation ap-
proaches which brings more accuracy by considering mixtures
of weighted bounded kernels. The A2BC-RPF is based on
Approximate Bayesian Computation (ABC) methods which
enables to handle cases where the law of the measurements
noise is unknown. This is the case for the bathymetric-based
navigation as discussed in Section II-A. Indeed, the law of the
measurements noise is difficult to infer as the measurements
equation is derived from numerical approximations.

B. Regularized Particle Filter

The RPF [1] approximates the empirical state density of
the conventional particle filter with a smoothed density. The
purpose of regularization is to ensure that the assumption of
samples independence is respected by injecting an optimally
designed noise to the signal. The posterior density can be
rewritten as a mixture of weighted kernels:

p(xk|y1:k) ≈
N∑
i=1

wi
kKh(xk − xi

k) (7)

where N is the number of state samples called particles,
(xi

k)i=1,...,N are the particles, and (wi
k)i=1,...,N are the as-

sociated weights such that
∑N

i=1 w
i
k = 1. The RPF equations

are described in Algorithm 1. During the resampling step, the
particles xi

k with high normalized weights wi
k are selected and

low-weighted particles are discarded. The selected particles
are duplicated according to their weights in order to keep a
constant total number of particles. The new set of particles
is called xi

k and the weights are set such that wi
k = 1/N .

The resampling is used to decrease the weight variance and



Algorithm 1 RPF

Initialization: For i = 1, . . . , N , initialize the particles
xi
0 ∼ p0(x0) from a prior distribution and set wi

0 = 1/N .
for k = 1, 2, . . . do
• [Prediction:] Sample the particles using the transition
density: ∀i, xi

k ∼ p(xk|xi
k−1).

• [Correction:] Update the weights ∀i,
w̃i

k = wi
k−1 p(yk|xi

k) and normalized wi
k = w̃i

k/
∑

i w̃
i
k.

• [Estimation:] Compute the state estimate
x̂k =

∑N
i=1 wi

k x
i
k and its covariance

P̂k =
∑N

i=1

(
xi
k − x̂k

) (
xi
k − x̂k

)>
.

• [Regularized resampling:]
if Ñeff ,k (ε) < Nth then

Apply some resampling procedure as described in Sub-
section III-B. Set wi

k = 1/N . Add the regularization
routine described in [1] using the optimal kernel (9)
and the optimal bandwidth (10a).

end if
end for

avoids degeneracy (i.e., when a single weight tends to unity
and all the others tend to zero). See [7] or [8] for a survey on
resampling methods. In practice, resampling is triggered by
monitoring a criterion such as the approximate efficiency [9],
[10]:

N̂eff ,k =
1∑N

i=1 (w
i
k)

2 (8)

The resampling is triggered whenever N̂eff ,k < Nth where Nth
is a given threshold.

When all particles have the same weight (it is the case
immediately after the resampling step), the optimal kernel K
is the Epanechnikov kernel [1] where the optimal bandwidth
parameter h minimizes the Mean Integrated Square Error
criterion.

K(x) =

{
d+2
2cd

(
1− ||x||2

)
if ||x|| < 1

0 otherwise
(9)

where cd is the volume of the unit hypersphere in Rd. The
associated optimal bandwidth is:

h = µ A(K) N− 1
d+4 (10a)

A(K) =
[
8c−1

d (d+ 4)(2
√
π)

d
] 1

d+4

(10b)

where 0 < µ < 1 is a parameter introduced to limit the impact
of the regularization when the assumption of unimodality is
not satisfied.

C. Adaptive Approximate Bayesian Computation Particle Fil-
ters

Approximate Bayesian Computation (ABC, [11], [12]) fil-
ters were introduced to tackle cases where the likelihood law is
unknown. ABC methods match the measurements yk with sim-
ulated pseudo-measurements ui

k. The N pseudo-measurements
are generated using the particles xi

k from the prediction step

and the measurements function hk: ui
k = hk(x

i
k). The likeli-

hood p(yk|xk) is approximated by a kernel Kεk that reflects
the closeness between the actual and simulated measurements:

p(yk|xi
k) ≈ Kεk(yk − ui

k) (11)

where Kεk : Rdm → R is set by its bandwidth parameter
εk > 0. The choice of the bandwidth parameter is crucial to
avoid the particles degeneracy. Particles degeneracy may arise
when the supports of the likelihood and prior densities do
not overlap. The objective of Adaptive Approximate Bayesian
Computation method (A2BC, [6]) is to expand the likelihood
to increase the consistency with the prior density, as shown in
Fig. 4. The bandwidth parameter is optimized online using a
criterion based on the variance of the weights: the approximate
efficiency (13a).

0
0.4
0.8
1.2
1.6
2 A2BC likelihoods

prior density

εkεk

(a) Consistency between the prior density (black) and a sharp
likelihood (green, εk → 0+) or a non-informative likelihood
(blue, εk → ∞) resulting in filter divergence or inefficient
correction respectively.

0
0.2
0.4
0.6
0.8

prior density A2BC likelihood

εk

(b) Consistency between the prior density (black) and a likeli-
hood (blue) resulting in an efficient correction.

Fig. 4: Scheme of the impact of the choice of the bandwidth
parameter εk on the consistency between the prior density and
the likelihood in the A2BC approach.

At each correction step, the bandwidth εk is chosen to keep
the approximate efficiency above a desired value Nth = θN
where 0 < θ ≤ 1 is a given threshold. The idea is to choose
εk such that the efficiency is greater than the resampling
threshold.

εk = argmin
ε∈D

(
Ñeff ,k (ε)−Nth

)2

(12)

where D ⊂ R+ is a given domain, and Ñeff ,k (ε) is the ap-
proximate efficiency. The approximate efficiency (12) depends
on the ABC kernel Kε(yk − ui

k) (11) via the weights:

Ñeff ,k (ε) =
1∑N

i=1 (w
i
k(ε))

2 (13a)

wi
k(ε) ∝ wi

k−1(ε)Kε(yk − ui
k) (13b)

The previous optimization problem is restricted to domain
D to access the resampling step whenever the particles are
significantly misplaced.



The A2BC method can be coupled with any particle filters.
In the correction step, the likelihood is replaced by its A2BC
kernel approximation. The prediction and resampling steps
are unchanged. In this paper, the A2BC-RPF is used and
is described in Algorithm 2. The objective of A2BC is to

Algorithm 2 A2BC-RPF

Initialization: For i = 1, . . . , N , initialize the particles
xi
0 ∼ p0(x0) from a prior distribution and set wi

0 = 1/N .
for k = 1, 2, . . . do
• [Prediction:] Sample the particles using the transition
density: ∀i, xi

k ∼ p(xk|xi
k−1).

• [A2BC correction:] Compute the pseudo-
measurements using the particles: ∀i, ui

k = hk(x
i
k).

Determine εk using (12). Update the weights
∀i, w̃i

k = wi
k−1Kεk(yk − ui

k) and normalized
wi

k = w̃i
k/

∑
i w̃

i
k.

• [Estimation:] Compute the state estimate
x̂k =

∑N
i=1 wi

k x
i
k and its covariance

P̂k =
∑N

i=1

(
xi
k − x̂k

) (
xi
k − x̂k

)>
.

• [Regularized resampling:]
if Ñeff ,k (ε) < Nth then

Apply some resampling procedure as described in Sub-
section III-B. Set wi

k = 1/N . Add the regularization
routine described in [1] using the optimal kernel (9)
and the optimal bandwidth (10a).

end if
end for

prevent the filter from diverging by optimizing the impact of
the weights correction. A significant decrease was shown in
terms of non-convergences rate [6] (see Section IV-B).

D. Sensor fusion strategy

Bathymetric and gravimetric sensor fusion by a navigation
filter can be formulated as a centralized architecture, see Fig. 5.
Centralized data fusion consists of designing an estimation
filter able to gather information provided by the sensors and
prior knowledge obtained from the dynamical and measure-
ments models.

Performing data fusion from bathymetry and gravimetry
yields several relevant advantages. Bathymetry equation (1)
depends on the vehicle position and on the seabed elevation
profile. The multi-beam telemeter can thus provide information
explicitly depending on position. However, velocity, which is
not explicitly involved in the measurement model, can only
be retrieved by the filter in an indirect way. The gravity
measurement equation (3) depends on geographical position
and x-axis velocity. The geographical position dependency
brings additional information to bathymetric data. In addition,
the explicit dependency of gravity measurement equation on
x-axis velocity combined with the high accuracy of the atomic
sensor brings a significant observability gain.

Observability level can be quantified by the Fisher infor-
mation matrix [19]. The deterministic recursive Tichavsky

formulation [20] of Fisher information matrix is:

J+ = HTR−1H +
(
FJ−1FT +Q

)−1
(14)

where J is the prior Fisher information matrix, J+ the
posterior Fisher information matrix, F the dynamics Jacobian
matrix, Q the process covariance, H the Jacobian matrix of
the measurements equation and R the measurements noise
covariance matrix. The two additive terms of the above equa-
tion respectively quantify the measurement and the dynamics
contributions to the Fisher information matrix. For both sensor
configurations (bathymetry only, or gravimetry and bathymetry
fusion) the dynamics contribution is the same and allows non
explicitly observed variables (e.g. velocity) to be indirectly
observed by integration correlation.

Let us focus on the measurement contribution to Fisher
information matrix:

Jm = HTR−1H (15)

In this paragraph only, for the sake of simplicity, the
bathymetry equation is approached as a single-beam telemeter
pointing towards the local vertical direction:

yb = pz − mapmb(p
x, py) + v (16)

By applying (15), the bathymetry contribution to informa-
tion can then be expressed as:

Jbathy =



(∇x
b )

2

σ2
b

∇x
b∇

y
b

σ2
b

−∇x
b

σ2
b

0 0 0

∇x
b∇

y
b

σ2
b

(
∇y

b

)2
σ2
b

−∇y
b

σ2
b

0 0 0

−∇x
b

σ2
b

−∇y
b

σ2
b

1
σ2
b

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(17)

where ∇x
b and ∇y

b are respectively the East and North gradi-
ents of the seabed elevation map (mapmb(p

x, py)) and σb is
the standard deviation of the telemeter measurement error v.

By adding the gravity field measurement, the measurements
equation becomes:

yk = [ybk, y
g
k]

> (18)

The contribution of both sensors to information can be
expressed by Jfusion equals to:
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b
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0 0
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(
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σ2
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σ2
g

c2

σ2
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0 0
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0 0 0 0 0 0


(19)

where ∇x
g and ∇y

g are respectively the East and North local
gradients of the gravimetry anomaly map (mapga(p

x, py))
and σg is the standard deviation of the atomic gravimeter
measurement error.
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Fig. 5: IMU hybridization with a multi-beam telemeter and an atomic gravimeter in a centralized data fusion architecture.

This matrix expression (19) shows, compared to equa-
tion (17), that gravimetry contributes to the observability of
the following states:

• Position information is enhanced by complementary pos-
itive terms depending on the local gravity field gradient
(∇x

g ,∇y
g)

T ;
• x-axis velocity information becomes explicitly observ-

able;
• Non diagonal terms bring cross information that will

benefit to the whole state estimation.
All non-zero diagonal terms of the bathymetric Fisher in-
formation matrix are enhanced with positive (square) terms.
These terms represent the theoretical impact of sensor fusion
on expected estimation accuracy.

y-axis and z-axis velocities information remains the same,
i.e., only depending on indirect estimation via information
brought by the dynamics. A significant improvement is then
expected on position estimation and x-axis velocity estimation.
The estimation error reduction of these variable may also
benefit to the others velocities estimation accuracy. Further-
more, atomic gravimeter offers a very low level noise σg [3],
which increases the impact of the gravimeter’s contribution to
information (proportional to 1

σ2
g

).
The next section illustrates these theoretical aspects with

numerical simulations.

IV. SIMULATION EXAMPLE

The reference trajectory is located in an ambiguous area of
the map (see Fig. 6). The spatial resolution of the bathymetric
map is about 200m. The gravimetric map has a spatial
resolution of about 2000m. Measurements and predicted mea-
surements of the filters are obtained by bilinear interpolations.

A. State-space model

The vehicle state x is comprised of the position p and the
velocity v, where p = [px, py, pz]

> is expressed in meter and
v = [vx, vy, vz]

> is expressed in meter per second. The state
dynamical model is written in the following discrete way:

xk =

[
pk
vk

]
=

(
I3 ∆k I3
03 I3

)
xk−1 + ηk (20)
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Fig. 6: Bathymetric map of the California coast with the true
trajectory.

where I3 and 03 are respectively the identity matrix and the
zeros matrix of dimension 3 by 3, ∆k is the discretization
time-step and ηk a Gaussian process noise i.i.d. of covariance
matrix Qk. Equation (20) models in a simplified way the
position drift of an AUV Inertial Measurement Unit (IMU)
that would start with a position and velocity error (alignment
error) and a negligible velocity drift. This approximation is
meaningful when the IMU gyrometers are sufficiently accurate
for short duration scenarios.

The measurement equation is given by:

yk =



√
(px

k − px
1,k)

2 + (py
k − py

1,k)
2 + (pz

k − mapmb(p
x
1,k, p

y
1,k))

2

...√
(px

k − px
m,k)

2 + (py
k − py

m,k)
2 + (pz

k − mapmb(p
x
m,k, p

y
m,k))

2

a py
k + b pz

k + c vx
k + mapga(p

x
k, p

y
k)



+


ν1,k

...
νm,k

νk
′


(21)

where νi,k and νk
′ are assumed to be white Gaussian noises.

In the present application, the choice of the A2BC kernel
in the A2BC-RPF is a Cauchy kernel, whose scale parameter
is adaptively determined online (12). To compare the filters,
a Cauchy kernel with constant scale parameter is chosen for
the RPF likelihood.



B. Comparison criteria

Comparisons are done using the following criteria evaluated
for Nmc ∈ N∗ Monte Carlo runs.

• The Root Mean Square Error (RMSE) of filters:

RMSEx
k =

√∑Nmc
i=1 ||x̂i

k − xk||22
Nmc

(22)

where x̂i
k is the state estimate for the ith Monte Carlo

simulation. The RMSE of the horizontal position is
calculated as follows:

RMSEph

k =

√
RMSEpx

k

2
+ RMSEpy

k

2
(23)

The horizontal velocity is computed as above by replacing
pk by vk, px by vx and py by vy .

• The number of non-convergent runs:
The filter is said to not converge if, at the end of the
trajectory, during the last 5 consecutive measurement
time-steps, the state estimate x̂k leaves the confidence
ellipsoid Γk given by the covariance P̂k, such that

Γk =
{
xk|(xk − x̂k)

T P̂−1
k (xk − x̂k) ≤ α2

th

}
(24)

where the threshold αth is such that
P(X 2(d) ≤ α2

th) = 0.99 with d the dimension of
the state vector and X 2 the Chi-squared distribution.

C. Navigation scenarios

The simulation parameters are summarized in Table I.

TABLE I: Simulation configuration.

Stace-space model parameters Value

Number of Monte Carlo runs 100
Sampling period ∆k = 1 s
Number of bathymetric measurements 600
Number of gravimetric measurements 40
Trajectory duration 10 min
Number of beams m = 5
Number of particles N = 1000
Resampling threshold Nth = 0.75 N
Regularization bandwidth parameter µ = 0.3

Initial position [110000, 140000,−100]> m
Initial velocity [5, 5, 0.05]> ms−1

Initial uncertainty in position (st.d.) [1000, 1000, 100] m
Initial uncertainty in velocity (st.d.) [0.5, 0.5, 0.05] m s−1

Process noise in position (st.d.) [3, 3, 0.3] m
Process noise in velocity (st.d.) [0.015, 0.015, 0.0015] m s−1

Measurements

Error of each beam range (st.d.) σmb = 10 m
Gravimeter error (st.d.) σga = 0.3 mGal

A2BC parameter

Domain of the bandwidth parameter D = [1 : 0.5 : 5]

Fig. 7 shows the position RMSEs for both filters using the
simulation conditions described above. The velocity RMSEs
are illustrated in Fig. 8 and Fig. 9. Only convergent Monte
Carlo runs are used to plot the RMSEs curves. The number
of non-convergent runs for each filter is provided in Fig. 10.
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Fig. 7: Plot of the RMSEs for the horizontal (upper plot) and
vertical position (lower plot). ”Bathymetric” corresponds to the
bathymetric-aided navigation and ”Fusion” to the bathymetry
and gravimetry fusion scenario.

In Fig. 7 and Fig. 8, the RMSEs curves decrease with
time for both the simple bathymetry, and the bathymetry and
gravimetry fusion scenarios. Overall, the RMSEs curves in
the fusion scenario (red and blue curves) are lower than in
the bathymetric situation (black and green curves). The fusion
strategy presented in Section III-D improves the quality of
filter estimates. We note a significant difference between the
RMSEs curves of the horizontal velocity in Fig. 8 which
is due to the presence of the x-axis velocity directly in the
measurement equation (3) and can be observed in Fig. 9 for
the RPF.

The A2BC-RPF increases the accuracy of the filter esti-
mates. This is particularly visible on the figures in the case
of sensor fusion. For the bathymetric scenario, the A2BC-RPF
RMSEs curves are higher than the RPF RMSEs curves. This is
due to the removal of non-convergent runs (see Fig. 10). Still in
the bathymetric scenario, we observe on the position RMSEs
curves the presence of jumps around 1.5 s and 4 s. These jumps
are due to the ambiguity of the navigation trajectory. Since
A2BC filters waits until the terrain is more informative to
remove the ambiguity, it is normal to observe more jumps at
the beginning of the trajectory than classic filters. A2BC filters
are therefore more robust as shown by the diminution of the
number of non-convergent runs in Fig. 10.

For 100 Monte Carlo runs, the number of non-convergences
is shown in Fig. 10. Overall, fewer non-convergent runs
are observed when the multi-beam telemeter is fused to the
gravimeter. Indeed, for the RPF, the number of non-convergent
runs decreases from 16 to 9 with the gravimeter fusion. A
decrease is also observed for the A2BC-RPF: the number of
non-convergent runs drops from 5 to 3. A significant decrease
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Fig. 8: Plot of the RMSEs for the horizontal (upper plot) and
vertical velocity (lower plot). ”Bathymetric” corresponds to the
bathymetric-aided navigation and ”Fusion” to the bathymetry
and gravimetry fusion scenario.
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Fig. 9: Plot of the RMSEs for the velocity on the x-axis.
”Bathymetric” corresponds to the bathymetric-aided naviga-
tion and ”Fusion” to the bathymetry and gravimetry fusion
scenario.

in the number of non-convergent runs was expected as the
A2BC method optimizes the impact of the weights correction.
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Fig. 10: Histogram of the number of non-convergences for 100
Monte Carlo runs.

V. CONCLUSION

This paper focuses on a sensor fusion strategy between a
multi-beam telemeter and an atomic gravimeter, in an under-

water terrain-aided navigation application. We demonstrated
that the multi-beam telemeter and gravimeter fusion provides
more accurate estimates through the direct observation of
the x-axis velocity in the gravimeter measurement equation.
The A2BC filters are more robust to nonlinearities and mea-
surement ambiguities than classical filters, as the number of
non-convergences is significantly reduced. Bathymetry and
gravimetry fusion by A2BC particle filters is thus a promising
way to perform embedded underwater navigation.
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