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Abstract. Bending actuators represent a popular class of artificial muscles for which efficient closed-

loop control is a remarkable challenge, due to the complexity of physico-chemical phenomena 

occurring during dynamic contraction. In this study, we investigate an electro-thermally actuated, 

bilayer bending actuator based on spin crossover molecules. While these artificial muscles can open-

loop contract in several tens of seconds, we show that a simple closed-loop PID-control is able to 

reduce the response time to ca.1.5 s, even with loads up to 5 times the actuator weight (i.e. a maximal 

load of about 343 mg). We demonstrate also satisfactory sine wave tracking performance. The 

relevance of this linear control approach applied to a nonlinear actuator is the consequence of the 

high sensibility of the actuator to the current, responsible for the Joule effect. Notably, the actuator 

roughly behaves like a second-order linear system, whose time “constants” decrease with current. 

Consequently, the natural speed improvement peculiar to the PID-controller is further amplified by 

this nonlinear effect, without any loss in stability of the closed-loop system. 
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Graphical abstract 

 

 

  

Highlights 

 

• Closed-loop control by means of a simple PID makes possible to diminish the 

open-loop response time by a factor of 10, for reaching a mean response time in 

closed-loop equal to about 1.5 second, when no load is embedded, 

• Load robustness is emphasized with similar response time for loads up to 350 mg, 

which corresponds to ca. 5 times the own weight of the actuator, 

• Very satisfying sine wave tracking is observed for a typical sine wave period of 20 

seconds.  
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1. Introduction 

Multilayer bending actuators are a class of actuating devices, whose bending movement results from 

a difference of strain between the constitutive layers. They can be controlled by various external 

stimuli, but electrical current or tension are the most relevant due to their ease of use. Such actuator 

devices can be considered as artificial muscles if, by analogy with skeletal muscle, their change of 

dimension can be controlled in open-loop [1]. In particular, the development of Ionic Polymer-Metal 

Composite (IPMC) artificial muscles opened the way towards practical applications especially in 

biomedical devices [2]-[4] and micro-robotics [5]-[11]. However, whatever the chemical composition 

of multilayer bending actuators, their control remains a considerable problem due to the complex 

nature of physical phenomena occurring during the bending movements of their multilayer structure. 

Attempts have been made for proposing physical models of the multilayer bending of conductive 

polymers [12]-[14]. Such models are particularly interesting for understanding the bending 

phenomenon, but their direct use for control is not obvious. Moreover, although open-loop control is 

feasible, closed-loop control is essential for using such artificial muscle as an actuator: trajectory to 

be tracked can be directly specified, time-response of the actuator can be quicker, and physical 

phenomena peculiar to the materials used can be mastered, such as the so-called “drift”-phenomenon, 

which is a slow convergence towards the steady-state position [15]. In this context, open-loop 

positioning stability offers the advantage of making possible an open-loop identification of the 

dynamic contraction in order to use the identified model as a feedforward element of the closed-loop 

controller [16], [17]. The nonlinear nature of multilayer bending actuators often calls for sophisticated 

nonlinear approaches such as sliding mode control [18], adaptive control [19], [20], self-tuning 

control [21], [22], fuzzy or other intelligent-like control [23]. These sophisticated control approaches 

have for disadvantage their low efficiency. They can be very accurate, but the complex model has to 

be re-verified if a new sample is used and a high number of parameters (or rules) must be tuned. 

When the actuator is considered alone, this long process of control development can be admissible. 

It is, however, less obvious if we consider applications involving several actuators acting together as 

it is the case in robotics. For this reason, although we have a long experience in nonlinear control of 

pneumatic artificial muscles [24], [25], we also tried to promote simple ways for controlling artificial 

muscles. Linear PID (proportional-integral-derivative) control is particularly easy to put into work, 

whatever the linear or nonlinear character of the system to be controlled. This approach was naturally 

applied to bending actuators with parameters chosen using customary approaches, such as the Ziegler-

Nichols rules [26]. Here we discuss an alternative, phenomenological approach of the PID-control 

applied to artificial muscles: an open-loop linear identification stage is used for highlighting peculiar 

properties of the dynamic contraction of the artificial muscle, from which simple, linear closed-loop 

control schemes can be derived. For example, in the case of pneumatic McKibben muscles, we 
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recently proposed an unusual linear I-controller based on the fact that any artificial muscle has its 

own stiffness and damping, which can respectively play the role of the P and D-actions of the PID 

[27].  

In the present work, we propose to put into work a similar phenomenological control approach in 

the case of a promising, new bilayer bending actuator, based on spin crossover (SCO) particles [28], 

which are loaded into a P(VDF-TrFE), poly(vinylidene fluoride-trifluoroethylene) polymer matrix. 

To form a bilayer, the SCO@P(VDF-TrFE) layer is topped with a Ag@P(VDF-TrFE) (Ag = silver 

flakes) conductive layer [29]. The actuating strain arises from the significant molecular volume 

change that accompanies the electro-thermally induced spin crossover phenomenon in these materials 

[30]. This bending actuator has two key characteristics. First, it is fabricated as a monolithic object 

with a common polymer matrix backbone for the two layers, with consequently no delamination 

process occurring during the bending phenomenon. Second, the resulting monolithic material can be 

easily cut for different shapes and sizes [29]. In our previous work, several samples were developed 

by modifying the composition and microstructure of the SCO@P(VDF-TrFE) active layer – allowing 

us to adjust the actuator properties (strain, transition temperature, response time, etc.) [29]. Despite 

their differences, we have identified several common properties of these samples: They display a high 

sensibility to the control current, their rising time is rather long (several tens of seconds) and exhibit 

a pure delay before the movement begins. The latter phenomenon is a direct consequence of the time 

required to reach the spin transition temperature (see [29]). From the consideration of these properties, 

it is clear that one must privilege a low transition temperature to reduce both the initial pure delay 

and the rising time. For this reason, in the present work, we used a device incorporating 25 wt% of 

the sample [Fe(4-pentyl-1,2,4-triazole)3](tosylate)2 (actuator 1) with spin transition occurring at 67 

°C and 42 °C on heating and cooling, respectively. Although the pure delay was reduced in this 

sample to about 0.5 s, the rising time still largely exceeds 10 s. As a consequence, the 95% response 

time – the time beyond which the response keeps between 0.95 and 1.05 times the steady-state 

position – varies between ~25 s (1.2 A-step) and ~40 s (0.9 A-step). From this rough analysis, one 

might wonder whether our approach is relevant in terms of coming up with a new technology of 

bending actuation.  

In the present paper, therefore we will extend and deepen the preliminary analysis of the control 

of 1 conducted in ref. [29] so as to grasp how a simple PID closed-loop control approach can enable 

this actuator to contract in closed-loop in less than 2 seconds. The originality of our approach consists 

in assuming that a simple linear PID-control can derive benefit from certain nonlinear properties of 

the artificial muscle for largely improving its contraction performances. After a first open-loop 

identification step proposed in Section 3.1, we will justify the choice of a PID-control in Section 3.2, 
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and finally we will emphasize the robustness of the considered actuator when carrying loads and 

highlight its performance during sine-wave tracking in Sections 3.3 and 3.4, respectively.  

2. Experimental 

The bilayer actuators were fabricated as described in ref. [29]. They were cut in a ‘U-shape’ and 

clamped at one end (see Fig. 1). The moving part of the actuator has a lateral dimension of ca. 3 × 1 

cm2, with a 0.2 cm gap in the middle to create a conductive circuit. The thickness of the bilayer is 

roughly 150 µm and the weight of the moving part is ca. 70 mg. We note that this choice of shape 

makes easy to embed a glued load. A computer-controlled current source (Keithley 2420) is used for 

heating the actuator via Joule effect, whereas the resulting bending movement is controlled by means 

of a laser triangulation position sensor (Micro Epsilon OptoNCDT 1750), pointing on the tip of the 

actuator. Open- and closed-loop control is achieved by means of the LabView-software (see Fig. 1). 

 

Fig. 1. Experimental setup: (a) photograph of a sample clamped in its support, b) typical bending of 

an actuator with a payload, (c) bilayer structure and actuator geometry, (d) control scheme. 

In its actual form, we have not tried to include a force sensor in the experimental set-up. This is 

especially difficult to do in the case of a bending actuator; this is why we preferred to estimate the 

force ability of the actuator by considering known embedded masses at its tip. 

 Results and discussion 

2.1. Linear identification of the artificial muscle 

The stable open-loop positioning character of the artificial muscle points the way towards open-loop 

identification, especially from recording its positioning in response to various step-wise excitations. 

The identification problem can be tackled using various methods such as the ANFIS-NARX 
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paradigm, recently applied to IPMC (Ionic Polymer Metal Composite) [14] to achieve an advanced 

non-linear model of the full bending actuator. In a more conventional way, classical techniques of 

linear system identification applied to the time variation of the sample can be used. In ref. [15], the 

authors propose a sixth-order transfer function with a constant gain to identify their polypyrrole tri-

layer actuator. Our approach differs in the sense that it is based on a preliminary observation of the 

open-loop step-response of the bending actuator. From Figs. 2a and 2b, it appears that the initial slope 

is close to zero and, whatever the control current, no large oscillation can be observed during the 

rising phase towards the steady-state. We remark also that no overshoot of the steady-state value 

occurs. However, a pure delay exists whatever the current value. Since it appears to be limited to less 

than 0.5 second, it will be neglected in our linear identification. As a consequence, a simple 

overdamped second-order model with two real poles will be considered according to the following 

transfer function: ��(�)/�(�) = 	/(1 + ��)(1 + ���), where xM denotes the tip position of the 

bending artificial muscle, I the control current, K the gain of the system, T1 and T2, the time 

“constants” of the system, supposed to be overdamped, and s designates the variable of Laplace 

formalism. 

In our open-loop identification experiments, the control current value is varied in a limited range 

between 0.7 and 1.2 A. We have chosen these values because it makes possible to control the tip 

movement of the sample between ca. 0 and 7 mm, which is just beyond the positioning range we 

considered in the closed-loop experiments. In practice, the sample can be controlled in a much larger 

current range of 0 – 3 A. However, beyond a current value of ca. 1.2 A, the temperature of the sample 

becomes too high (ca. 140 °C) leading to the modification and ultimately to the destruction of the 

sample. The result of the identification of the open-loop step response is shown in Fig. 2. The result 

of the identification of the open-loop step response is shown in Fig. 2. One can depict in Fig. 2a the 

response of the actuator for a positive current step of 1.2A and then its reverse movement when a step 

back to 0 A is applied. The same parameters have been used for the ascending and descending model 

(dashed line). The good agreement between real response and the model emphasizes a similar 

behavior of the actuator bending and unbending. This is a very positive attribute for tracking 

performances requiring movements in each direction. Fig. 2.b shows responses to different positive 

steps whereas Fig. 2.c shows the current dependence of the damping factor � = (� + ��)����/2, 

and the natural frequency �� = 1/���� deduced from the identified values of T1 and T2 [31]. The 

identification accuracy was simply measured by )(/))()(( 0 txtxtxMean LLtt horizon
−≤≤ , where thorizon 

is a ‘time horizon’ we have taken equal to 70 s. Similar accuracy was obtained in the whole 

positioning range (0.11 mm for 0.7 A, 0.07 mm for 0.8 A, 0.08 mm for 0.9 A, 0.06 mm for 1 A, 0.08 

mm for 1.1 A and 0.10 mm for 1.2 A), which suggests a satisfactorily identification. 
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(a) 

 
(b) 

 
(c) 

 

Fig. 2. Open-loop identification: (a) Typical response (full line) and corresponding linear model 

(dashed line) for a 1.2 A step and its return to zero, (b) Step responses for a given input current (full 

line) with corresponding linear identification (dashed line) and (c) the extracted parameters of the 

second-order model.  

 

We must underline the absence of ‘drift’, which often makes the convergence to the steady-state 

slower than expected for a linear system. This phenomenon is frequently observed in multilayer 

bending actuation devices especially for the higher step control values [15]. The fact that T1, T2 and 

the gain K are changing with control current emphasizes the nonlinear character of the actuator. 

However, two remarks can be made:  

- The damping factor z is almost constant, approximatively equal to 1. In open-loop, the actuator 

behaves like a critically damped linear system, which means that the system returns to the 

equilibrium as fast as possible without overshooting. This naturally optimal damped character 

of the actuator should make the tuning of a PID closed-loop control easier;  

- The ωn-parameter appears to increase with rising current, from the 0.9 A-step value. This 

means that, above this threshold-value, the higher is the control current, the faster is the 

bending. This is another very positive point for a linear closed-loop control: when the actuator 
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will be far away from its goal, the effect of the PID will be amplified by the natural actuator 

behavior, and this effect will be moderated at the goal’s approach. Moreover, the fact that the 

gain K appears to increase slowly with increasing current intensity also participates in this 

amplification effect of the PID controller. In the next section, we show how we can derive 

benefit of this identification for a simple, but relevant, linear PID-control of this nonlinear 

system.  

 

2.2. PID control 

The pseudo second-order dynamic behavior of the considered actuator, with its two real poles, 

suggests a simple closed-loop control by means of a PI-controller, which we can write as: 

�(�) = �[�(�) + (
��

) � �(�)���
� ]                                                             (1) 

where I is now the closed-loop control current, ε(t) is the desired position minus the real position, and 

�, �� are the corresponding proportional and integral parameters of the PI. The corresponding transfer 

function of the open-loop system can be written as: 

��(�) /�(�)  = 	�(1 + �� �)/[(1 + � �)(1 + �� �)�� �]                                (2) 

It is clear that the choice  �� = � �(�, ��) leads to eliminate the dominant pole of the system to be 

controlled, which is apparently always � in our case. By doing �� = � in Equ. (2), the following 

function transfer of the closed-loop system results - where �! is the desired position: 

�!(�)/��(�)  = 	�/[	� + (1 + �� �)� �]                                            (3) 

It is then possible to choose the G-gain by means of the following relationship: 

� = �"

#$%&�%
                                                                         (4) 

where z is the damping factor of the closed-loop system. Typically, z = 0.7 realizes the best 

compromise between low rising time and overshooting. Fig. 3a shows the simulation of a closed-loop 

step-response for a target position of 5 mm, which is compared to the experimentally measured open-

loop response with a similar target position (5.2 mm). We can observe here the classical speed 

improvement obtained by the PI-controller: the response time is diminished from ~31 s to ~14 s.  

 

     Let us consider now a PID written in the form: 

�(�) = �[�(�) + �!�+ (t) + (
��

) � �(�)���
� ]                                              (5) 

where �! corresponds to the derivative parameter, in complement with the already defined gain and 

integral parameters, applied to the real sample. As shown in Fig. 3a, a simple manual tuning of 

parameters has led to an experimental step-response with a response time of about 1.6 s, which is an 

order of magnitude smaller than the value predicted by the simulated PI-controller. To explain this 

huge difference, we shall examine the electrical energy transmitted to the actuator during its 
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contraction in the case of the real open-loop response and the real closed-loop response (Fig. 3b). 

This energy (Joule heating) has the form RI2, where I is the control current and R is the electrical 

resistance of the actuator, measured by a four-wire measurement setup, simultaneously with the 

actuation of the device. From these measurements, it appears clearly that the real PID-control can 

boost the system response by increasing the current intensity to reach, temporally, its maximum 3 A-

value, which is significantly higher than the one required for maintaining the sample in its steady-

state. This suggests that when the current intensity is high, but limited by the 3 A-bound, the actuator 

response accelerates. In other words, its equivalent natural frequency, which was shown to increase 

between 0.9 A and 1.2 A (Fig. 2b), must continue to increase beyond 1.2 A. To justify this assumption, 

we developed an original identification of the actuator system from the knowledge of its real closed-

loop step response. 

 
(a) 

 
(b) 

   

Fig. 3. (a) Simulation of an optimal PI-control for a 5 mm target position (blue line) compared to the 

experimental open-loop response (green) as well as to the best manually-tuned, experimental PID 

step response (red). (b) Measured electrical power supplied to the actuator in the open-loop and 

closed-loop cases.  

 

While the second-order open-loop identification suggested the use of a PI-controller for the closed-

loop control, it appeared in practice that a PID with a non-zero value for the derivative term gives a 

better result than a pure PI-controller with, however, a relatively low value for the ‘D’-term. Fig. 4a 

displays the real closed-loop step responses obtained for four target positions (2, 3, 4 and 5 mm). The 

three parameters of the PID were manually tuned in order to get the best achievable 95% response 

time. For each target position, the optimized PID values (�, �! , ��) are very similar: (2.5, 0.1, 0.7), 

(2.2, 0.15, 0.4), (1.8, 0.1, 0.5) and (1.8, 0.1, 0.4) for �!= 2, 3, 4 and 5 mm, respectively. We can notice 

that the value ‘�!��’, representing the ratio between the derivative component ‘��!’ and the integral 



 

10 

 

component ‘�/��’ varies between 0.04 and 0.07 (s2), indicating much greater influence of the integral 

component over the derivative component. In practice, a first real PI-controller was tuned in order to 

get the best response time of the closed-loop system, before adding a slight derivative component in 

order to reduce the observed oscillating behavior of the actuator during its rising movement. For 

reasons of clarity, the presentation was limited to the sole best PID results.  In these conditions, it 

appears that the overshooting can be kept under control in such a way that the step-response does not 

leave the range [0.95�! , 1.05�!] as soon as it is inside. On the other hand, the 95% response times 

are very similar, with values between 1.3 and 1.6 s. These two findings suggest that, despite the pure 

delay, which now cannot be neglected, the whole closed-loop system globally behaves like a linear 

system. Consequently, since the PID is a linear controller, the actuator system alone behaves as a 

linear system, but with a much faster response than the open-loop system. This is this “equivalent” 

linear system of the actuator, brought about by the PID-controller, which we decided to identify. For 

doing that, we consider the following transfer function: 

/(�) = 	0(1 − �s)/(1 + �s)(1 + �0�)(1 + ��0�)                                    (6) 

This model now considers four parameters: 	0 , �0 , ��0 , � . The first three parameters have the same 

meaning that the initial parameters K, �, �� of the previously considered linear model of the actuator. 

On the other hand, the τ-parameter is supposed to take into account the pure delay of the “equivalent” 

actuator in the form of the sub-system, inspired by the first-order Padé-approximation [31]:               

(1 − �s)/(1 + �s). It is however important to note that the τ-parameter cannot be considered as an 

estimation of the pure delay of the global system due to the too close values for�, �0 and ��0. This 

linear identification was deduced from the comparison between the simulated step-response of the 

transfer function /(�)6�7(�)/(1 + /(�)6�7(�)), where PID(s) is the transfer function of the PID, 

whose parameters are the real parameters considered for each desired position. The resulting 

simulated PID-control of the identified, “equivalent” actuator linear model is drawn in dashed lines 

in Fig. 4a and compared to the real PID-response. Fig. 4b shows the corresponding model parameters 

compared to the parameters of the original model of the actuator that we used for open-loop 

identification. Two main points result from this comparison. First of all, the time “constants” 

(�0, ��0) of the equivalent actuator linear model are more than one order of magnitude lower than 

the initial ones (�, ��). Furthermore, the parameters 	0 , �0 , ��0 do not significantly differ for 

different target positions (between 2 – 5 mm). These findings lead us to the surprising conclusion that 

the PID control is able to derive benefit from the nonlinear character of the actuator for considerably 

improving its response time. When going from the open-loop to the closed-loop, this response time 

can be diminished by a factor of 10. This phenomenon seems to be the consequence of the 

improvement in the responsiveness of the actuator itself when the control current increases. 

Remarkably, to some extent, the PID gives rise to the linearization of the actuator, denoted by the fact 
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that the response time becomes roughly independent of the desired position, albeit in a limited range 

between 2 - 5 mm. It is however to be noted that the about 0.5 s muscle delay still exists. Most 

artificial muscles exhibit a pure delay, which can be reduced by the use of nonlinear control methods 

[32], but at the price of greater complexity in the number and the tuning of controller parameters. In 

the case of this study, we voluntarily limit our closed-loop controller to a sole linear PID. Neglecting 

the muscle delay in the closed-loop controller is also motivated by the fact that, in the case of an 

actuation device, tracking performances are often more important than step response performances, 

and that initial delay has less effect in tracking performances than in step response performances. 

(a) (b) 

 

Fig. 4. Step-responses in closed-loop control and derived identification of the actuator: (a) Time 

response for desired positions 2, 3, 4 and 5 mm (in full line) and corresponding simulated PID-control 

applied to the equivalent identified actuator linear model (in dashed line), (b) Comparison between 

parameters of the initial identified open-loop linear model and those of the equivalent linear model. 

 

Crucially, the tuning of the PID for a rapid step-response does not deteriorate the stability. A 

simple way for evaluating the stability and the robustness in the case of our closed-loop system can 

consist in determining the corresponding couple (phase margin, gain margin). We propose to derive 

these two parameters from the knowledge of the “equivalent” actuator linear model. We obtained, 

respectively, for the target positions 2, 3, 4 and 5 mm the following couples: (55°, 7 dB), (57°, 10 

dB), (58°, 9 dB) and (58°, 10 dB). One must note that a satisfactory phase margin is supposed to be 

greater than 45° and the gain margin is supposed to be equal to ca. 10 dB [31]. In particular, the phase 

margin of 55°-58° in the case of the equivalent actuator model, largely beyond the usual “comfort 

value” of 45°, suggests a robustness of the proposed control. In the following, this point will be 

verified for movements with embedded loads. 
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2.3. Performance with embedded loads 

From a practical point of view, any actuator must be able to embed a load [16], [33]. Yet, most studies 

dealing with the control of multilayer bending actuators do not report experiments with loads. In the 

case of a bending actuator, the load can be placed at the tip of the cantilever, as shown in Fig. 1d. It 

is important to note that the ability of lifting a load is made possible by the relative stiffness of the 

proposed actuator. We have analyzed this ability both in step response and trajectory tracking. The 

relevance of our control approach is the most evident when we consider the same step responses with 

embedded load by keeping, in the full range of loads, the same values for the PID-parameters than 

those tuned for the controller without any load (see Fig. 5). As it can be seen, in all reported 

experimental step responses, the maximum value of 3 A for the control current is used during a short 

time, leading to heating of the sample at about 120 °C. Under open-loop conditions, it is impossible 

to use the system to perform rapid motion as overheating occurs very quickly above 140 °C, and leads 

to melting of the material after some seconds. For this reason, as already mentioned, currents above 

1.3 A are never used in open-loop conditions, but in closed-loop, it is possible to use such temporary 

overheating. Moreover, it is important to note that current peaks essentially occur in the case of a step 

response while they are not present during tracking responses, as considered further, due the 

continuous character of the trajectory to be tracked. We have found the actuator to be able to operate 

continuously over 2 weeks and 35000 thermal cycles with no observed change in the actuators 

performance [29] as the PID controller effectively prevents the material from going above 120 °C 

while still allowing access to the fast motion granted by brief use of 3A currents. 
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(a) 

 
(b) 

 

Fig. 5. Closed-loop step response with embedded loads: (a) Position and current versus time for the 

four considered target positions: 2 mm, 3 mm, 4 mm and 5 mm – in each case for 5 different loads. 

(b) Corresponding 95% response time versus load. 

 

2.4. Sine wave tracking performance 

The closed-loop step experiments discussed above are favored by the high sensibility of the actuation 

device to react quickly to temperature changes when it has reached the spin transition temperature 
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[28]. However, a reverse movement requires cooling, which takes more time. In order to determine 

the practical consequences of this non-symmetrical behavior between warming and cooling, peculiar 

to all Joule-effect actuation systems, we have analyzed the dynamic behavior of our artificial muscle 

in response to multiple sine waves. Fig. 6 shows selected sine wave tracking experiments. Two cases 

have been considered. First, a sequence of three sine waves with successive 30s-30s-20s periods and, 

respectively, 2-4 mm, 3-5 mm and 2-5 mm target position changes was programmed. These periods 

are sufficiently long to make possible the cooling of the sample during the reverse movement imposed 

by the sine wave. It is important to note that, in all reported tracking experiments, the same set of 

PID-parameters (� = 1.8, �! = 0.1, �� = 0.5) was used. Through this choice of a constant set of PID-

parameters, we aimed for analyzing the possibility of an efficient trajectory tracking with a pure linear 

control, whatever the frequencies and amplitudes of considered sine waves. As it can be seen, the 

tracking error, defined as the difference between the target and real position, remains between −0.2 

and +0.15 mm when no load is embedded, whereas this range slightly increases [−0.25 mm, +0.2 

mm] for a 204 mg-load. One shall note that the actuator reacts very well when the direction of the 

sine wave is changing, which is remarkable in comparison with other types of artificial muscles 

exhibiting frictional-like phenomena or other adverse effects when the actuator has to move back. 

This phenomenon is consistent with the symmetrical behavior already noticed for ascending and 

descending steps (Fig. 2.a). Moreover, during tracking, control current, not shown in Fig. 6 for 

reasons of clarity, stays at a value close to 1A, which is still in accordance with closed-loop step 

results shown in Fig. 5, where the steady-state current is inside a [0.8 A-1.2 A]-range for all 

considered target positions. 

     In a second type of experiment, we looked for the limits of the actuator when it is submitted to a 

higher frequency. We programmed a sequence of three sine waves, with the same displacements as 

in the previous experiment, but the periods are now reduced to 20 and 15 s. As it can be seen in Fig. 

6, the descending phase in the 15s-period, which requires the fastest cooling of the sample, generates 

a large deviation from the desired sine wave with a maximum tracking error of ~0.55 mm. We believe 

this last result stems from the characteristics of the actuation device itself rather than from the 

limitations of our control approach. 
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Fig. 6. Sine wave tracking experiments in closed-loop for different target periods and displacements 

– either with or without payload. The target (resp. real) positions are plotted using dashed (resp. 

straight) lines. The tracking errors are also shown. 

 

Conclusions  

We investigated the PID control of a new type of bending actuator, based on spin crossover molecules. 

The justification of using a so common linear controller for a highly nonlinear actuator is based on a 

two-step process. We started by an open-loop identification, which led us to propose a second-order 

linear model, whose parameters were shown to vary with the control current. This open-loop 

identification step suggests that the time “constants” of the second-order model decrease 

monotonously from a threshold value, leading to an increasing actuator responsiveness when the 

control current increases. This natural decrease of the actuator response time with increasing current 

intensity was effectively demonstrated in closed-loop PID control experiments. To verify this 

amplification effect, in a second step, we identified an “equivalent actuator” linear model derived 

from the “best-tuned” PID. Time “constants” of this equivalent linear model appear diminished by a 

factor of ~10 in comparison with the original actuator linear model. Overall, the proposed PID-control 

is able to generate, in a current range of 0 - 3 A, step responses of the actuator tip with displacements 
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in the range of 2 – 5 mm associated with a 95% response time between 1.3 and 1.6 s. Remarkably, 

the latter remains virtually unchanged when loads are embedded (up to 350 mg, which corresponds 

to ca. 5 times the own weight of the actuator). The sine wave tracking performance of the actuator is 

also very satisfying with respect to the physical cooling possibilities of the actuator. In a more general 

manner, we believe that such a linear control method proves that a simple PID-control can be adapted 

for nonlinear actuators if the PID can derive benefit of these nonlinear effects. 

     Further work will aim to include a self-sensing process inside the actuator as discussed, for 

example, in [34]. Practical applications of the actuator require a good control of the temperature; this 

can easily be done in closed-loop by a direct control of the current value, and the time during which 

higher values of the current can be imposed. A self-sensing of the actuator position, combined with a 

simple PID closed-loop control, as defended in this article, should make the actuator autonomous and 

safe for future human-friendly applications. Further improvements in this direction could be also 

obtained using an active material with lower spin transition temperature. 
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