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A robust whitness test for the identification of discrete-time

linear models: Use of orthonormal transfer functions

Bernard Vau, Henri Bourlès

SATIE, Ecole normale supérieure de Paris-Saclay, 4 avenue des sciences, 91190 Gif-sur-Yvette, France

Abstract

A novel whiteness test of residuals is proposed, which makes use of generalized bases of orthonormal transfer functions. It
can be viewed as a robustified version of the classical whiteness test in the sense that it reduces the risk of type II errors, by
introducing a frequency weighting in the assessment of the flatness in the residual power spectrum density. This frequency
weighting, which depends on the basis poles, can be employed for the validation of reduced order models, when the flatness
of the residual power spectrum density is evaluated over a limited frequency band.

Key words: Identification, validation methods for identification, whiteness test

1 Introduction

In the field of automatic control and signal processing,
the necessity of assessing the whiteness of a signal is
often encountered in practice. In particular, this is the
case when one wants to validate a model resulting from
identification (see [11], [7]), by checking the whiteness
of the residual between the true system output and
the predicted one. The issue of determining residual
whiteness has been of the utmost importance in the
identification field for decades, since it is related to
the question of model order selection 1 . A simple way
consists in evaluating the residual autocorrelation func-
tions which are asymptotically null in case of whiteness
(for a time lag different from 0). The squares sum of
these functions obey to a chi-square distribution, and
the null hypothesis H0 asserting that the residual is
white can be rejected with a risk α, if this sum is larger
than a threshold depending on the degrees of freedom.
This is the principle of the Box-Pierce test [3]. In any
statistical test two kinds of errors can occur: The type I
error corresponds to the risk of rejecting H0 when it is
true (and is measured by α), the type II error is the risk
of accepting H0 when it is false (which depends on the

Email address: bernard.vau@satie.ens-cachan.fr
(Bernard Vau, Henri Bourlès).
1 However, in more recent developments stemming from the
machine learning community, the model order is no longer
the key tuning parameter of identification algorithms, see [9].

statistical power of the test and is unknown in general).
However, from a practical point of view this second risk
is far more crucial in many situations.

In Section 2 it is shown by a simple example, that the
classical whiteness test can entail a large proportion of
type II errors, if the flatness defect in the residual power
density spectrum occurs in low frequency. That leads
to propose in Section 3 a more robust whiteness test by
assessing the cross-correlation of outputs resulting from
generalized orthonormal basis functions (GOBF) (in-
troduced by Heuberger et al., see [6]), fed with the resid-
ual. The statistical properties of these cross-correlation
functions are detailed, allowing for a chi-square based
whiteness evaluation. The use of GOBF induces a fre-
quency weighting depending on the basis pole selection.
As shown in [12], this selection yields a dilatation or a
compression of the frequency scale which can be used
for a robust evaluation of the residual whiteness over
a large frequency band, or on the contrary to validate
reduced-order models, as shown in Section 4.

2 The classical whiteness test and its limitation

At first, let us recall briefly the principle of the clas-
sical whiteness test of a residual sequence {ε(t)}. De-

fine r
(N)
εε (0) = 1

N

∑N
t=1 ε

2(t), an estimation of the
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residual variance over N samples, and r
(N)
εε (k) =

1
N

∑N
t=1 ε(t)ε(t− k) an estimation of the cross-correlation

function with a time lag k, where k = 1, 2, · · · , kmax.

Let rn
(N)
εε (k) =

r(N)
εε (k)

r
(N)
εε (0)

be the corresponding nor-

malized functions. It is well known that if {ε(t)} is

a white noise sequence, one has E[rn
(N)
εε (k)] = 0

and E[
(
rn

(N)
εε (k)

)2

] = 1
N (see [7] p. 512). Moreover,

rn
(N)
εε (k) converges in distribution towards a Gaussian

stochastic variable as N → ∞, and thus the quan-

tity T (N, kmax) = N
∑kmax
k=1

(
rn

(N)
εε (k)

)2

converges

towards a chi-square distributed variable. Therefore a
threshold Kα(kmax) as a function of the risk α and
the degree of freedom kmax can be defined following
a chi-square table, leading to the rejection of H0 if
T (N, kmax) > Kα(kmax). As said in the introduction,
the risk of type II error is not known and depends on
how much the residual differs from a white noise [11], p.
425. If the purpose of the test is to assess the whiteness
of the residual over a large frequency band (for example
in order to validate a fast sampled system), the classical
whiteness test can entail considerable type II errors, as
shown by the following example: Let us assume that
{ε(t)} results from the filtering of a Gaussian white
noise sequence {e(t)} by a transfer operator G(q) such
that ε(t) = G(q)e(t), the system G having two complex
poles at 0.002Hz with a damping of 0.5, and two ze-
ros at 0.001Hz with a damping of 0.5 too. The sample
time is set to Te = 1s and the corresponding Power
Spectrum Density (PSD) of {ε(t)} is displayed in Fig. 1

Fig. 1. Power spectrum density of ε(t)

The residual sequence {ε(t)} is obviously not white, since
a patent default of flatness of this PSD occurs around
10−2rad/s. However, as shown in Table. 1, the percent-
age of type II errors for α = 0.05 (a value commonly em-
ployed) is considerable, unless N is very large (at least
200 or 400 times the filter dominant modes period). In
order to account for this result, it is useful to consider

the asymptotic expression of rn
(N)
εε (k) in the frequency

domain. One has immediately

lim
N→∞

rn(N)
εε (k) =

∫ +π

−π Φεε(ω)cos(kω)dω∫ +π

−π Φεε(ω)dω
(1)

And since the frequency scale of Fig. 1 is logarithmic, one

must express rn
(N)
εε (k) in the same scale with ω̄ = log(ω),

and one obtains 2

lim
N→∞

rn(N)
εε (k) =

∫ log(π)

−∞ Φεε(ω̄)cos(keω̄)eω̄dω̄∫ log(π)

−∞ Φεε(ω̄)eω̄dω̄
(2)

Owing to the weighting term eω̄, the flatness default of
the PSD that appears clearly in Fig. 1 is severely under-
weighted in (2): if one considers in this example that even
for N = 15000 the limit expression of (2) is a good ap-

proximation of rn
(N)
εε (k), that can explain why the white-

ness test is so insensitive to this low frequency default,
unless a very large amount of data is available such that

the test threshold depending on E[
(
rn

(N)
εε (k)

)2

] = 1
N

becomes very low.

N
kmax 30 50 100 200 500

15000 93% 93% 86% 80% 77%
30000 94% 87% 49% 40% 58%
50000 90% 72% 23% 8% 36%
100000 65% 27% 2% 0% 0%
200000 22% 0% 0% 0% 0%

Table 1
Percentage of type II errors, in function of the sample num-
ber and the max. time lags of the auto-correlation function
(classical whiteness test with α = 0.05 -100 realizations)

3 A whiteness test established on a generalized
orthogonal functions basis

The novel test proposed here uses the generalized bases
of orthonormal transfer functions (GOBF) proposed by
Heuberger et al. in [6], that stem from a balanced real-

ization of an all-pass function Gb(z) =
∏np−1
j=0

−z.p̄j+1
z−pj

where pj (|pj | < 1) are the basis poles and np the basis
poles number. There exists a balanced state space real-
ization such that Gb(z) = Db + Cb (zI −Ab)−1

Bb (for
the construction of the state space matrices see chap.
2 of [6]). The orthonormal transfer function vectors
Vk(z) with k = 1, 2, · · · and of size (np, 1) are given by

the relation Vk(z) = (zI −Ab)−1
BbG

k−1
b (z). Because

2 The bar of ω̄ must not be confounded with the complex
conjugate symbol employed elsewhere
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of the orthonormal state space realisation of Gb(z), or-
thonormality between these functions holds (meaning

that
∮
T
V Tk (z)V

′

k (z−1)dzz = δk,k′ , where T is the unit

circle, and δ = 1 if k = k
′
, δ = 0 otherwise). Particular

configurations of np and pk correspond to well known
cases: np = 1, p0 = 0 is the classical z−1, z−2, · · · basis,
and np = 1, |p0| < 1 correspond to the Laguerre basis.

A transform is associated to the basis functions: The
Hambo transform. The Hambo operator λ is given by
λ−1 = Gb(z). The mapping λ 7→ z is multi-valued
in a domain including the unit circle, and the zj
(j = 1, · · · , np) such that Gb(zj) ∈ λ−1 are the eigenval-
ues of N (1/λ) with N (λ) = Ab+(λ−Db)

−1Cb (see [6]
Section 3.3.3). The Hambo frequency ωλ ∈]−npπ;npπ],
with ωλ = β(ω) and e−iωλ = Gb(e

iω) is such that

ωλ =
∑np−1
k=0 ηk + 2 arctan

(
( 1+ρk

1−ρk ) tan(ω−ηk2 )
)

, where

pk = ρke
iηk . Furthermore, one has dωλ = β

′
(ω)dω, with

β
′
(ω) = V T1 (eiω)V1(e−iω) (see [10]). Now define

wk(t) = Vk(q)ε(t)

If {ε(t)} is a white noise with variance λ2, one has im-
mediately E[wT1 (t)wk(t)] = λ2npδ1,k, with δ1,k = 1 for
k = 1, and δ1,k = 0, otherwise. In the following, we eval-
uate the whiteness of {ε(t)} by assessing the cross cor-
relation between {w1} and {wk}. For this purpose, one
defines the normalized cross-correlation functions

rn(N)
ww (k) =

r
(N)
ww (k)

r
(N)
ww (1)

=
1
N

∑N
t=1 w

T
1 (t)wk(t)

1
N

∑N
t=1 w

T
1 (t)w1(t)

(3)

which should be asymptotically null if {ε(t)} is white for
k = 2, 3, · · · , kmax. By shifting in the frequency domain,
one has immediately

lim
N→∞

rn(N)
ww (k) =

∫ +π

−π Φεε(ω)Gk−1
b (eiω)β

′
(ω)dω∫ +π

−π Φεε(ω)β′(ω)dω
(4)

This expression can be rewritten in the Hambo frequency
domain

lim
N→∞

rn(N)
ww (k) =

∫ +npπ

−npπ Φ̃εε(ωλ)cos(kωλ)dωλ∫ +npπ

−npπ Φ̃εε(ωλ)dωλ
(5)

where Φ̃εε(ωλ) = Φεε(ω)|ω=β−1(ωλ). One finds the same

expression as (1), but now in the distorted Hambo fre-
quency scale.

Let us consider again the example in Section 2, and let
us express Φ̃εε(ωλ) in the Hambo scale ωλ for various

Laguerre bases: For p = 0 (the ω scale) the residual
appears very slightly coloured, and this is no longer the
case for p = 0.9 or p = 0.95 as shown in Fig. 2.

Fig. 2. Expression of Φ̃εε(ωλ) in various Hambo frequency
scales, in function of the basis poles (p = 0 blue, p = 0.9
green, p = 0.95 red)

Another manner to consider the problem consists in
expressing (4) in the logarithmic frequency scale ω̄ =
log(ω) (the scale associated to the Bode diagram of Fig.
1) which yields

lim
N→∞

rn(N)
ww (k) =

∫ log(π)

−∞ Φεε(e
ω̄)cos(kβ(eω̄))χ(eω̄)dω̄∫ log(π)

−∞ Φεε(eω̄)χ(eω̄)dω̄

(6)

where, according to [6], p. 222

χ(eω̄) =
1

π
eω̄V̄ T1 (eie

ω̄

)V1(e−ie
ω̄

) =
1

π
eω̄

nj−1∑
j=0

1− |pj |2

|1− p̄jeieω̄ |2

(7)

The function χ 3 is now the weighting term associated
with the proposed whiteness test established on GOBF,
and it substitutes the term eω̄ appearing in (2). This
function χ has been studied in [12] and is directly related
to the reproducing kernel of the Hilbert space associated
with the GOBF. In particular, the following nice prop-
erties exist (the proof can be found in [12]).

• A conservation principle holds:
∫ log(π)

−∞ χ(eω̄)dω̄ = 1
• For a basis pole pj sufficiently close to the unit circle,

the function ω̄ 7→ 1
π e

ω̄ 1−|pj |2

|1−p̄jeieω̄ |2
has a local maximum

roughly at the frequency of the pole pj .

Consequently, the weighting function χ can be modelled
by the selection of the basis poles pj . As an example,

3 This variable should not be confused with that of the chi-
square test
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Fig. 2 shows various functions χ, and are compared with
the weighting term of the classical whiteness test where
p0 = 0.

Fig. 3. Functions χ(eω̄) for Laguerre bases

The following results hold:

Lemma 1 If {ε(t)} is a centered Gaussian white noise
such that E[ε2(t)] = λ2, then for any integer k > 1, one

has E[r
(N)
ww (k)] = 0, and r

(N)
ww (k) converges in distribution

towards a Gaussian variable as N tends to infinity.
Proof: see Appendix ??. 2

Lemma 2 Consider a transfer function basis having
only one (possibly complex) pole, such that

V1(z) =

√
1−|p0|2z−1

1−p0z−1 .

Set r1k(τ) = limN→∞
1
N

∑N
t=1 w̄1(t)wk(t+ τ)

where w̄1(t) is the complex conjugate of w1(t). If the
residual {ε(t)} is a Gaussian centered white noise, for
any τ ≤ 0 the following relation is satisfied

r1k(τ) = 0

Proof: One has wk(t) =

√
1−|p0|2q−1

1−p0q−1

(
−p0+q−1

1−p0q−1

)k−1

ε(t).

Therefore wk(t) = p0wk(t − 1) + v1(t − 1) where

v1(t) =
√

1− |p0|2
(
−p0+q−1

1−p0q−1

)k−1

ε(t). Thus one obtains

r1k(τ) = p0r1k(τ − 1) + limN→∞
1
N

∑N
t=1 w̄1(t)v1(t −

1 + τ). Let Φw̄1v1
(z) be the Cross Power Spec-

tral Density (CPSD) associated to w̄1(t) and v1(t).

Since w̄1(t) =

√
1−|p0|2q−1

1−p̄0q−1 ε(t), by the interference

formula 4 on one has the relation Φw̄1v1(z) =

(1 − |p0|2) z
1−p0z

(
−p0+z−1

1−p0z−1

)k−1

Φεε(z). Therefore

4 If x1 and x2 are two signals, H1(q), H2(q) are two sta-
ble causal operators with complex coefficients, and yj =
Hj(q)xj (j = 1, 2), then according to the interference for-
mula Φy1,y2(z) = H̄1(z−1)H2(z)Φx1,x2(z), see [4] p. 326.

Φw̄1v1
(z) = (1 − |p0|2) (−p0+z−1)k−2

(1−p0z−1)k−1 Φεε(z). Now set

v
′

1(t) = (1 − |p0|2)
(−p0+q−1)

k−2

(1−p0q−1)k−1 ε(t). Consequently

Φw̄1v1
(z) = Φεv′1

(z). By shifting in the time domain one

gets r1k(τ) = p0r1k(τ −1) + limN→∞
1
N

∑N
t=1 ε(t)v

′

1(t−
1 + τ). Thus if {ε(t)} is white, r1k(0) = 0 by
the orthogonality of functions Vk, and for τ ≤ 0

limN→∞
1

2N+1

∑N
t=−N ε(t)v

′

1(t − 1 + τ) = 0. Combin-

ing this last result with r1k(0) = 0, one concludes that
r1k(−1) = 0. Now let us assume that for τ ≤ 0 one

has r1k(τ) = 0. Since limN→∞
1

2N+1

∑N
t=−N ε(t)v

′

1(t −
1 + τ) = 0 and owing to the expression of r1k(τ) above,
one has necessarily r1k(τ − 1) = 0, and therefore by
induction r1k(τ) = 0 ∀ τ ≤ 0 .

Theorem 1 Consider a transfer function basis having
only one (possibly complex) pole, such that V1(z) =√

1−|p0|2z−1

1−p0z−1 . If the residual {ε(t)} is a Gaussian cen-

tered white noise such that E[ε2(t)] = λ2, then for any
integer k > 1, the following results hold

(1)

E[
(
r

(N)
ww)

)2

(k)] = E[g2
0(t)]

λ4

N
(8)

where g0(t) is given by g0(t) =

(√
(1−|p0|2

1−|p0|q−1

)2

en(t),

in function of a centered white noise {en(t)} with
variance equal to 1.

(2)

E[
(
r(N)
ww

)2

(k)] =
λ4

N

1 + |p0|2

1− |p0|2
(9)

Proof: Proof of 1. One has limN→∞NE[
(
r

(N)
ww

)2

(k)] =

limN→∞
1
N

∑N
t=1

∑N
s=1 E[w̄1(t)wk(t)w̄1(s)wk(s)] =

limN→∞
1
N

∑N
t=1

∑t−1
s=1 E[w̄1(t)wk(t)w̄1(s)wk(s)]+

limN→∞
1
N

∑N
t=1

∑N
s=t+1 E[w̄1(t)wk(t)w̄1(s)wk(s)]+

limN→∞
1
N

∑N
t=1 E[w̄1(t)wk(t)w̄1(t)wk(t)].

Now, owing to Lemma 2 one obtains

limN→∞
1
N

∑N
t=1

∑t−1
s=1 E[w̄1(t)wk(t)w̄1(s)wk(s)] = 0

Similarly

limN→∞
1
N

∑N
t=1

∑N
s=t+1 E[w̄1(t)wk(t)w̄1(s)wk(s)] = 0.

Moreover, E[w̄k(t)wk(t)] = E[w̄1(t)w1(t)]. Therefore,
by shifting in the frequency domain and by considering

p0 = |p0|eiϕ, one obtains limN→∞NE[
(
r

(N)
ww

)2

(k)] =

limN→∞NE[(w̄1(t)w1(t))2] =

λ4

2π

∫ π
−π

(
1−|p0|2

1+|p0|2−2|p0|cos(ω+ϕ)

)2

dω =

λ4

2π

∫ π
−π

(
1−|p0|2

1+|p0|2−2|p0|cos(ω)

)2

dω.

But
(

1−|p0|2
1+|p0|2−2|p0|cos(ω)

)2

is the spectral density of a

4



signal that is the output of the filter

(√
(1−|p0|2

1−|p0|q−1

)2

fed by

a white noise {e(t)} with variance 1.
Proof of 2. It is known (see for example [2]) that the co-
variance associated to the output of the ARMA process

1
(1−|p0|z−1)2 driven by a white noise with variance equal

to 1 is 1+|p0|2
(1−|p0|2)3 , therefore by combining with the result

of 1, one gets E[
(
r

(N)
ww

)2

(k)] = λ4

N
1+|p0|2
1−|p0|2 . 2

Let us now consider the general case of basis func-
tions having several (possibly complex) poles pj (j =
1, · · · , np)

Theorem 2 If {ε(t)} is a centered Gaussian white
noise, then for any integer k > 1, one has:

E[
(
r(N)
ww

)2

(k)] =
λ4

N

np−1∑
j=0

1 + |pj |2

1− |pj |2
(10)

Proof: The Transfer function V1(z) can be chosen such
that:

V1(z) =



√
1−|p0|2z−1

1−p0z−1√
1−|p1|2z−1

1−p1z−1
−p̄0+z−1

1−p0z−1

...√
1−|pnp−1|2z−1

1−pnp−1z−1

∏np−2
k=0

−p̄k+z−1

1−pkz−1

 (11)

the entries of which are Takenaka-Malmquist trans-
fer functions (see [6], chap. 2, p. 18). If {ε(t)} is a
Gaussian white noise, {w1(t)} and {wk(t)} are Gaus-
sian signal vectors and one has: E[(w̄T1 (t)wk(t))2] =∑np
l=1 E[(w̄1(l)(t)wk(l)(t))

2] for l ∈ [1, np] (wk(l) is the lth

entry of wk, and Vk(l) is the lth entry of Vk). And from

Result 1 of Theorem 1, one has E[(w̄1(l)(t)wk(l)(t))
2] =

λ4

N E[g2
i (t)], with gi(t) = (V1(l)(z))

2en(t), {en(t)} be-
ing a centered Gaussian white noise with variance 1.
But according to the choice of V1(z) that has been
done above, and to result 2 of Theorem 1, one gets

E[g2
i (t)] = 1+|pi|2

1−|pi|2 , thus for this choice of V1(z), one

obtains E[(w̄T1 (t)wk(t))2] = λ4

N

∑np−1
j=0

1+|pj |2
1−|pj |2 . If an-

other basis vector V
′

1 (z) is chosen instead of V1(z), as

pointed out in [5], V
′

1 (z) can be obtained from V1(z)
by a premultiplication of V1(z) with a square com-

plex unitary matrix Mu so that V
′

1 (z) = MuV1(z).

Define w
′

1(t) = V
′

1 (z)ε(t), w
′

k(t) = V
′

k (z)ε(t). We

get E[(w̄1(t)w
′

k(t))2] = E[(w̄1(t)M̄T
uMuwk(t))2] =

E[(w̄1wk(t))2]. 2

Consequently if {ε(t)} is white, one has for k > 1

E[
(
rn(N)

ww

)2

(k)] =
1

Nnp

np−1∑
j=0

1 + |pj |2

1− |pj |2
(12)

Now a chi-square test with kmax degrees of freedom can
be performed on the normalized quantity

T (N, kmax) =
Nnp∑np−1

j=0
1+|pj |2
1−|pj |2

kmax∑
k=1

(
rn(N)

ww (k + 1)
)2

(13)
Let us go back to the example of section 2: The white-
ness test is now performed with a Laguerre basis where
p0 = 0.9. Table. 2 shows that the percentage of type II
errors is dramatically reduced, even for a low amount
of data (N = 15000 or N = 30000). This can be ex-
plained by the frequency weighting induced by the test
(see the corresponding function χ for p0 = 0.9 in Fig.
3), in the frequency area where the defect of flatness oc-
curs in the PSD of {ε(t)}. In low frequency, the all-pass
function −p0z+1

z−p0
can be considered approximately as a

delay (called the Laguerre shift, see [6], chap. 3), equal
to 1+p0

1−p0
, and the present test remains reliable provided

1+p0

1−p0
kmax � N , which is a generalization for a Laguerre

basis of the condition kmax � N in the classical white-
ness test. In this example, one has 1+p0

1−p0
kmax = 950 for

kmax = 50, and 1+p0

1−p0
kmax = 1900 for kmax = 100.

N
kmax 30 50 100

15000 0% 3% 23%
30000 0% 0% 0%
50000 0% 0% 0%
100000 0% 0% 0%
200000 0% 0% 0%

Table 2
Percentage of type II errors (100 realizations, α = 0.05), in
function of the sample number N and kmax (whiteness test
established on a Laguerre basis and p0 = 0.9)

4 An application of the frequency weighting to
the validation of reduced order models

Another interest of the proposed test is to allow for the
evaluation of a reduced order model. For controller syn-
thesis purposes, it is quite common to employ reduced
order models valid only in low frequency, the high fre-
quency modes being considered as unstructured uncer-
tainties for which the designed controller must be suffi-
ciently robust. We propose now to show on an example
the interest of the whiteness test with frequency weight-
ing of section 3. In this example, the true system has an
order equal to 4, its static gain is 1 and its poles and
its zeros are given in Table. 3, the sample time being 1
second.
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Poles Zeros
Frequency

(rad/s)
Damping Frequency

(rad/s)
Damping

1.0.10−2 0.5 1.10−2 1
1.0.10−2 0.5 2.1.10−1 0.273
2.4.10−1 0.115 2.1.10−1 0.273
2.4.10−1 0.115

Table 3
Poles and zeros of the system to be identified

This system is disturbed by an output (centered and
Gaussian) white noise, such that the signal/noise ratio
(variance) is equal to 10 dB, and this system is excited
with a wide spectrum Pseudo Random Binary Sequence
(PRBS). One assumes that a reduced order model (sec-
ond order) issued from identification has been obtained
which fits well with the true system in low frequency,
as shown in Fig. 4 a). The test described in Section 3 is
performed for various sets of basis poles:

• Test 1: p = 0 Classical whiteness test
• Test 2: p = 0.99 Frequency weighting centred around

the low frequency modes
• Test 3: p = 0.995±0.0086i Selective frequency weight-

ing centred around the low frequency modes (poles
damping: 0.5)
• Test 4: p = 0.996 ± 0.0091i Very selective frequency

weighting centred around the low frequency modes
(poles damping 0.4)

The functions χ associated with each test are repre-
sented in Fig. 4 b) and Table. 4 displays the percent-
age of acceptance of H0 (in simulation) of each test for
100 realizations, and for various sample data N (the
ratio of N by the period of low frequency modes of
the true system denoted Tm is displayed -here one has
Tm = 1/0.01 = 100s).

Test number
N/Tm 52 104 209 417

1 0% 0% 0% 0%
2 97% 63% 5% 0%
3 100% 100% 98% 98%
4 100% 100% 100% 100%

Table 4
Percentage of acceptance of H0 for the reduced order model
(over 100 realizations), in function of the sample number N
and the period of the low frequency modes Tm

As expected, the classical whiteness test (test 1) leads
systematically to the rejection ofH0 because of the asso-
ciated function χ, and the discrepancy between the true
system and the model that occurs only in high frequency.
On the contrary, Table 4 shows that a sufficiently fre-
quency weighted test (as in tests 3 and 4), leads to the
quasi-systematic acceptance of H0. Other simulations,
where a model misfit occurs in low frequency (the static

Fig. 4. a): True system and reduced order model, b): Function
χ for various basis poles

gain of the reduced order model is 1.1 instead of 1) lead to
100% rejection of H0 whatever the basis poles. This ex-
ample shows that the frequency weighted test proposed
here is able to discriminate reduced order models.

5 Concluding remarks

This paper has shown that the classical whiteness test
of residuals is not robust if the whiteness default oc-
curs in low frequency, and this can be accounted for if
one considers the asymptotic expression (2) of the resid-
ual autocorrelation functions in the frequency domain.
That led to propose a novel whiteness test based on the
signals cross-correlation (3) resulting from orthonormal
transfer functions fed by the residual. The asymptotic
expression of these cross-correlation functions (5) in the
distorted Hambo frequency scale reveals to have a form
similar to (2). The frequency distortion from the classi-
cal logarithmic frequency scale to the Hambo frequency
scale is expressed by the function χ given in (7), and
depends on the basis pole selection. The covariance of
these cross-correlation functions is provided in Theorem
2, and it is shown that a proper basis pole selection over-
comes the lack of reliability of the classical whiteness
test, for the detection of whiteness defaults in low fre-
quency. Another interest of the test, as shown in Section
4, is its ability to evaluate the fit of an identified model
over a restricted frequency band, by selecting the basis
poles such that the corresponding function χ presents
a narrow peak around the frequencies of interest. In a
more general way, the simulation examples of this article
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show that the presented test can be employed advanta-
geously in a perspective of identification for control, es-
pecially in case of fast sampling, a situation that occurs
more and more frequently in practice.

A Appendix: Proof of Lemma 1

The proof is inspired from the first part of the
proof of Theorem 9.1 in [7], p. 309. Set SN,l =

1√
N

∑N
t=1 w1(l)(t)wk(l)(t), where l ∈ [1, np]. One

has r
(N)
ww(l)(k) = 1√

N
SN,l. We are going to demon-

strate that r
(N)
ww(l)(k) is Gaussian. One can write

w1(l)(t) = 1√
N

∑∞
l=0 d

(1,l)ε(t − l) and wk(l)(t) =
1√
N

∑∞
l=0 d

(k,l)ε(t− l). Let M be an integer and define

wM1(l)(t) = 1√
N

∑M
l=0 d

(1,l)ε(t−l),wMk(l)(t) = 1√
N

∑M
l=0 d

(k,l)ε(t−
l), w̃M1(l)(t) = 1√

N

∑∞
l=M+1 d

(1,l)ε(t − l) and w̃Mk(l)(t) =
1√
N

∑∞
l=M+1 d

(k,l)ε(t − l) , where d(p,l) is real valued,

|d(x,l)| ≤ βl for x = 1 or x = k, and
∑∞
l=1 βl <∞, since

the transfer functions V1(z) and Vk(z) are stable.
Now set SN,l(N) = ZM,l(N)+TM,l(N), withZM,l(N) =

1√
N

∑N
t=1 w

M
1(l)(t)w

M
k(l)(t), and

TM,l(N) = 1√
N

∑N
t=1 w̃

M
1(l)(t)w

M
k(l)(t)+wM1(l)(t)w̃

M
k(l)(t)+

w̃M1(l)(t)w̃
M
k(l)(t). One has

E[|wM1(l)(t)w
M
k(l)(t)|

2+δ] ≤
1
NN

−δ/2
√
E|wM1(l)(t)|4+2δ.E|wMk(l)(t)|4+2δ ≤ 1

NN
−δ/2C,

where C is a constant. The terms ZM,l are zero mean
and M-dependent in the sense of [8]. One has

limN→∞ sup
∑N
t=1 E|wM1(l)(t)w

M
k(l)(t)|

2 <∞ and

limN→∞
∑N
t=1 E|wM1(l)(t)w

M
k(l)(t)|

2+δ = 0. Therefore

from lemma 9.A1 of [7], derived from [8], one obtains
ZM,l(N)→ AsN (0, Q) withQ = limN→∞E[ZM,l(N)ZM,l(N)T ].

On the other hand, one hasE|TM,l(N)|2 ≤ C
[∑∞

k=M+1 βk
]2

,

and one gets limM→∞E|TM,l(N)|2 = 0. From lemma
9.A.2 of [7] derived from [4], and [1], it follows that

the asymptotic distribution of
√
Nr

(N)
ww(l)k is the same

as the distribution of ZM,l(N), and is therefore Gaus-

sian. Since r
(N)
ww (k), is the sum of the terms r

(N)
ww(l)(k)

for l = [1, np], one concludes that r
(N)
ww (k) converges in

distribution towards a Gaussian variable as N tends to
infinity.
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