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Introduction

In the field of automatic control and signal processing, the necessity of assessing the whiteness of a signal is often encountered in practice. In particular, this is the case when one wants to validate a model resulting from identification (see [START_REF] Söderström | System identification[END_REF], [START_REF] Ljung | System identification, theory for the user[END_REF]), by checking the whiteness of the residual between the true system output and the predicted one. The issue of determining residual whiteness has been of the utmost importance in the identification field for decades, since it is related to the question of model order selection 1 . A simple way consists in evaluating the residual autocorrelation functions which are asymptotically null in case of whiteness (for a time lag different from 0). The squares sum of these functions obey to a chi-square distribution, and the null hypothesis H 0 asserting that the residual is white can be rejected with a risk α, if this sum is larger than a threshold depending on the degrees of freedom. This is the principle of the Box-Pierce test [START_REF] Box | Distribution of residual correlations in autoregressive-integrated moving average time series models[END_REF]. In any statistical test two kinds of errors can occur: The type I error corresponds to the risk of rejecting H 0 when it is true (and is measured by α), the type II error is the risk of accepting H 0 when it is false (which depends on the Email address: bernard.vau@satie.ens-cachan.fr (Bernard Vau, Henri Bourlès). 1 However, in more recent developments stemming from the machine learning community, the model order is no longer the key tuning parameter of identification algorithms, see [START_REF] Pillonetto | Kernel methods in system identification, machine learning and function estimation: A survey[END_REF]. statistical power of the test and is unknown in general). However, from a practical point of view this second risk is far more crucial in many situations.

In Section 2 it is shown by a simple example, that the classical whiteness test can entail a large proportion of type II errors, if the flatness defect in the residual power density spectrum occurs in low frequency. That leads to propose in Section 3 a more robust whiteness test by assessing the cross-correlation of outputs resulting from generalized orthonormal basis functions (GOBF) (introduced by Heuberger et al., see [START_REF] Heuberger | Modelling and identification with rational orthogonal basis functions[END_REF]), fed with the residual. The statistical properties of these cross-correlation functions are detailed, allowing for a chi-square based whiteness evaluation. The use of GOBF induces a frequency weighting depending on the basis pole selection. As shown in [START_REF] Vau | Closed-loop error identification algorithms with predictors based on generalized orthonormal transfer functions: Convergence conditions and bias distribution[END_REF], this selection yields a dilatation or a compression of the frequency scale which can be used for a robust evaluation of the residual whiteness over a large frequency band, or on the contrary to validate reduced-order models, as shown in Section 4. 

εε (k) = 1 N N t=1 ε(t)ε(t -k) an estimation of the cross-correlation function with a time lag k, where k = 1, 2, • • • , k max . Let rn (N ) εε (k) = r (N ) εε (k) r (N ) εε (0)
be the corresponding normalized functions. It is well known that if {ε(t)} is a white noise sequence, one has E[rn

(N ) εε (k)] = 0 and E[ rn (N ) εε (k) 2 ] = 1
N (see [START_REF] Ljung | System identification, theory for the user[END_REF] p. 512). Moreover, rn 2 converges towards a chi-square distributed variable. Therefore a threshold K α (kmax) as a function of the risk α and the degree of freedom k max can be defined following a chi-square table, leading to the rejection of H 0 if T (N, k max ) > K α (kmax). As said in the introduction, the risk of type II error is not known and depends on how much the residual differs from a white noise [START_REF] Söderström | System identification[END_REF], p. 425. If the purpose of the test is to assess the whiteness of the residual over a large frequency band (for example in order to validate a fast sampled system), the classical whiteness test can entail considerable type II errors, as shown by the following example: Let us assume that {ε(t)} results from the filtering of a Gaussian white noise sequence {e(t)} by a transfer operator G(q) such that ε(t) = G(q)e(t), the system G having two complex poles at 0.002Hz with a damping of 0.5, and two zeros at 0.001Hz with a damping of 0.5 too. The sample time is set to T e = 1s and the corresponding Power Spectrum Density (PSD) of {ε(t)} is displayed in Fig. The residual sequence {ε(t)} is obviously not white, since a patent default of flatness of this PSD occurs around 10 -2 rad/s. However, as shown in Table . 1, the percentage of type II errors for α = 0.05 (a value commonly employed) is considerable, unless N is very large (at least 200 or 400 times the filter dominant modes period). In order to account for this result, it is useful to consider the asymptotic expression of rn 

N →∞ rn (N ) εε (k) = log(π) -∞ Φ εε (ω)cos(ke ω )e ω dω log(π) -∞ Φ εε (ω)e ω dω (2) 
Owing to the weighting term e ω , the flatness default of the PSD that appears clearly in Fig. 1 is severely underweighted in (2): if one considers in this example that even for N = 15000 the limit expression of ( 2) is a good approximation of rn 

(z) = (zI -A b ) -1 B b G k-1 b (z). Because
of the orthonormal state space realisation of G b (z), orthonormality between these functions holds (meaning

that T V T k (z)V k (z -1 ) dz z = δ k,k
, where T is the unit circle, and δ = 1 if k = k , δ = 0 otherwise). Particular configurations of n p and p k correspond to well known cases: n p = 1, p 0 = 0 is the classical z -1 , z -2 , • • • basis, and n p = 1, |p 0 | < 1 correspond to the Laguerre basis.

A transform is associated to the basis functions: The Hambo transform. The Hambo operator λ is given by λ -1 = G b (z). The mapping λ → z is multi-valued in a domain including the unit circle, and the z j

(j = 1, • • • , n p ) such that G b (z j ) ∈ λ -1 are the eigenval- ues of N (1/λ) with N (λ) = A b + (λ -D b ) -1 C b (see [6] Section 3.3.3). The Hambo frequency ω λ ∈] -n p π; n p π], with ω λ = β(ω) and e -iω λ = G b (e iω ) is such that ω λ = np-1 k=0 η k + 2 arctan ( 1+ρ k 1-ρ k ) tan( ω-η k 2 )
, where

p k = ρ k e iη k . Furthermore, one has dω λ = β (ω)dω, with β (ω) = V T 1 (e iω )V 1 (e -iω
) (see [START_REF] Shipp | Identification in generalized orthogonal basis-a frequency domain approach[END_REF]). Now define

w k (t) = V k (q)ε(t) If {ε(t)} is a white noise with variance λ 2 , one has im- mediately E[w T 1 (t)w k (t)] = λ 2 n p δ 1,k , with δ 1,k = 1 for k = 1,
and δ 1,k = 0, otherwise. In the following, we evaluate the whiteness of {ε(t)} by assessing the cross correlation between {w 1 } and {w k }. For this purpose, one defines the normalized cross-correlation functions

rn (N ) ww (k) = r (N ) ww (k) r (N ) ww (1) = 1 N N t=1 w T 1 (t)w k (t) 1 N N t=1 w T 1 (t)w 1 (t) (3) 
which should be asymptotically null if {ε(t)} is white for k = 2, 3, • • • , k max . By shifting in the frequency domain, one has immediately lim

N →∞ rn (N ) ww (k) = +π -π Φ εε (ω)G k-1 b (e iω )β (ω)dω +π -π Φ εε (ω)β (ω)dω (4) 
This expression can be rewritten in the Hambo frequency domain lim

N →∞ rn (N ) ww (k) = +npπ -npπ Φεε (ω λ )cos(kω λ )dω λ +npπ -npπ Φεε (ω λ )dω λ (5) 
where Φεε (ω λ ) = Φ εε (ω)| ω=β -1 (ω λ ) . One finds the same expression as [START_REF] Anderson | On asymptotic distributions of estimated parameters of stochastic difference equations[END_REF], but now in the distorted Hambo frequency scale.

Let us consider again the example in Section 2, and let us express Φεε (ω λ ) in the Hambo scale ω λ for various Laguerre bases: For p = 0 (the ω scale) the residual appears very slightly coloured, and this is no longer the case for p = 0.9 or p = 0.95 as shown in Fig. 2. 

rn (N ) ww (k) = log(π) -∞ Φ εε (e ω )cos(kβ(e ω ))χ(e ω )dω log(π) -∞ Φ εε (e ω )χ(e ω )dω (6) 
where, according to [START_REF] Heuberger | Modelling and identification with rational orthogonal basis functions[END_REF], p. 222

χ(e ω ) = 1 π e ω V T 1 (e ie ω )V 1 (e -ie ω ) = 1 π e ω nj -1 j=0 1 -|p j | 2 |1 -pj e ie ω | 2 (7)
The function χ3 is now the weighting term associated with the proposed whiteness test established on GOBF, and it substitutes the term e ω appearing in (2). This function χ has been studied in [START_REF] Vau | Closed-loop error identification algorithms with predictors based on generalized orthonormal transfer functions: Convergence conditions and bias distribution[END_REF] and is directly related to the reproducing kernel of the Hilbert space associated with the GOBF. In particular, the following nice properties exist (the proof can be found in [START_REF] Vau | Closed-loop error identification algorithms with predictors based on generalized orthonormal transfer functions: Convergence conditions and bias distribution[END_REF]).

• A conservation principle holds:

log(π) -∞
χ(e ω )dω = 1 • For a basis pole p j sufficiently close to the unit circle,

the function ω → 1 π e ω 1-|pj | 2
|1-pj e ie ω | 2 has a local maximum roughly at the frequency of the pole p j .

Consequently, the weighting function χ can be modelled by the selection of the basis poles p j . As an example, Fig. 2 shows various functions χ, and are compared with the weighting term of the classical whiteness test where p 0 = 0. Lemma 2 Consider a transfer function basis having only one (possibly complex) pole, such that

V 1 (z) = √ 1-|p0| 2 z -1 1-p0z -1 . Set r 1k (τ ) = lim N →∞ 1 N N t=1 w1 (t)w k (t + τ )
where w1 (t) is the complex conjugate of w 1 (t). If the residual {ε(t)} is a Gaussian centered white noise, for any τ ≤ 0 the following relation is satisfied

r 1k (τ ) = 0 Proof: One has w k (t) = √ 1-|p0| 2 q -1 1-p0q -1 -p0+q -1 1-p0q -1 k-1 ε(t). Therefore w k (t) = p 0 w k (t -1) + v 1 (t -1) where v 1 (t) = 1 -|p 0 | 2 -p0+q -1 1-p0q -1 k-1 ε(t). Thus one obtains r 1k (τ ) = p 0 r 1k (τ -1) + lim N →∞ 1 N N t=1 w1 (t)v 1 (t - 1 + τ ).
Let Φ w1v1 (z) be the Cross Power Spectral Density (CPSD) associated to w1 (t) and v 1 (t).

Since w1 (t) = √ 1-|p0| 2 q -1 1-p0q -1 ε(t), by the interference formula 4 on one has the relation Φ w1v1 (z) = (1 -|p 0 | 2 ) z 1-p0z -p0+z -1 1-p0z -1 k-1 Φ εε (z).
Therefore 4 If x1 and x2 are two signals, H1(q), H2(q) are two stable causal operators with complex coefficients, and yj = Hj(q)xj (j = 1, 2), then according to the interference formula Φy 1 ,y 2 (z) = H1(z -1 )H2(z)Φx 1 ,x 2 (z), see [4] p. 326. 

Φ w1v1 (z) = (1 -|p 0 | 2 ) (-p0+z -1 ) k-2 (1-p0z -1 ) k-1 Φ εε (z). Now set v 1 (t) = (1 -|p 0 | 2 ) (-p0+q -1 ) k-2 (1-p0q -1 ) k-1 ε(t). Consequently Φ w1v1 (z) = Φ εv 1 (z).
V 1 (z) = √ 1-|p0| 2 z -1
1-p0z -1 . If the residual {ε(t)} is a Gaussian centered white noise such that E[ε 2 (t)] = λ 2 , then for any integer k > 1, the following results hold ( 1)

E[ r (N ) ww) 2 (k)] = E[g 2 0 (t)] λ 4 N (8) 
where g 0 (t) is given by g 0 (t) =

√ (1-|p0| 2 1-|p0|q -1 2 e n (t),
in function of a centered white noise {e n (t)} with variance equal to 1.

(2)

E[ r (N ) ww 2 (k)] = λ 4 N 1 + |p 0 | 2 1 -|p 0 | 2 (9) 
Proof: Proof of 1. One has lim N →∞ N E[ r

(N ) ww 2 (k)] = lim N →∞ 1 N N t=1 N s=1 E[ w1 (t)w k (t) w1 (s)w k (s)] = lim N →∞ 1 N N t=1 t-1 s=1 E[ w1 (t)w k (t) w1 (s)w k (s)]+ lim N →∞ 1 N N t=1 N s=t+1 E[ w1 (t)w k (t) w1 (s)w k (s)]+ lim N →∞ 1 N N t=1 E[ w1 (t)w k (t) w1 (t)w k (t)]. Now, owing to Lemma 2 one obtains lim N →∞ 1 N N t=1 t-1 s=1 E[ w1 (t)w k (t) w1 (s)w k (s)] = 0 Similarly lim N →∞ 1 N N t=1 N s=t+1 E[ w1 (t)w k (t) w1 (s)w k (s)] = 0. Moreover, E[ wk (t)w k (t)] = E[ w1 (t)w 1 (t)].
Therefore, by shifting in the frequency domain and by considering

p 0 = |p 0 |e iϕ , one obtains lim N →∞ N E[ r (N ) ww 2 (k)] = lim N →∞ N E[( w1 (t)w 1 (t)) 2 ] = λ 4 2π π -π 1-|p0| 2 1+|p0| 2 -2|p0|cos(ω+ϕ) 2 dω = λ 4 2π π -π 1-|p0| 2 1+|p0| 2 -2|p0|cos(ω) 2 dω. But 1-|p0| 2 1+|p0| 2 -2|p0|cos(ω) 2
is the spectral density of a signal that is the output of the filter

√ (1-|p0| 2 1-|p0|q -1 2
fed by a white noise {e(t)} with variance 1. Proof of 2. It is known (see for example [START_REF] Boshnakov | Bartlett's formulae-closed form and recurrent equations[END_REF]) that the covariance associated to the output of the ARMA process 1 (1-|p0|z -1 ) 2 driven by a white noise with variance equal to 1 is 1+|p0| 2

(1-|p0| 2 ) 3 , therefore by combining with the result of 1, one gets E[ r

(N ) ww 2 (k)] = λ 4 N 1+|p0| 2 1-|p0| 2 . 2
Let us now consider the general case of basis functions having several (possibly complex) poles

p j (j = 1, • • • , n p )
Theorem 2 If {ε(t)} is a centered Gaussian white noise, then for any integer k > 1, one has:

E[ r (N ) ww 2 (k)] = λ 4 N np-1 j=0 1 + |p j | 2 1 -|p j | 2 (10) 
Proof: The Transfer function V 1 (z) can be chosen such that:

V 1 (z) =         √ 1-|p0| 2 z -1 1-p0z -1 √ 1-|p1| 2 z -1 1-p1z -1 -p0+z -1 1-p0z -1 . . . √ 1-|pn p -1| 2 z -1 1-pn p -1z -1 np-2 k=0 -pk +z -1 1-p k z -1         (11)
the entries of which are Takenaka-Malmquist transfer functions (see [START_REF] Heuberger | Modelling and identification with rational orthogonal basis functions[END_REF], chap. 2, p. 18). If {ε(t)} is a Gaussian white noise, {w 1 (t)} and {w k (t)} are Gaussian signal vectors and one has: E[( wT

1 (t)w k (t)) 2 ] = np l=1 E[( w1(l) (t)w k(l) (t)) 2 ] for l ∈ [1, n p ] (w k(l)
is the l th entry of w k , and V k(l) is the l th entry of V k ). And from Result 1 of Theorem 1, one has E[( w1(l

) (t)w k(l) (t)) 2 ] = λ 4 N E[g 2 i (t)], with g i (t) = (V 1(l) (z)
) 2 e n (t), {e n (t)} being a centered Gaussian white noise with variance 1. But according to the choice of V 1 (z) that has been done above, and to result 2 of Theorem 1, one gets

E[g 2 i (t)] = 1+|pi| 2 1-|pi| 2 , thus for this choice of V 1 (z), one obtains E[( wT 1 (t)w k (t)) 2 ] = λ 4 N np-1 j=0 1+|pj | 2 1-|pj | 2 . If an- other basis vector V 1 (z) is chosen instead of V 1 (z), as pointed out in [5], V 1 (z) can be obtained from V 1 (z) by a premultiplication of V 1 (z) with a square com- plex unitary matrix M u so that V 1 (z) = M u V 1 (z). Define w 1 (t) = V 1 (z)ε(t), w k (t) = V k (z)ε(t). We get E[( w1 (t)w k (t)) 2 ] = E[( w1 (t) M T u M u w k (t)) 2 ] = E[( w1 w k (t)) 2 ]. 2 Consequently if {ε(t)} is white, one has for k > 1 E[ rn (N ) ww 2 (k)] = 1 N n p np-1 j=0 1 + |p j | 2 1 -|p j | 2 (12) 
Now a chi-square test with k max degrees of freedom can be performed on the normalized quantity

T (N, k max ) = N n p np-1 j=0 1+|pj | 2 1-|pj | 2 kmax k=1 rn (N ) ww (k + 1) 2 
(13) Let us go back to the example of section 2: The whiteness test is now performed with a Laguerre basis where p 0 = 0.9. Table . 2 shows that the percentage of type II errors is dramatically reduced, even for a low amount of data (N = 15000 or N = 30000). This can be explained by the frequency weighting induced by the test (see the corresponding function χ for p 0 = 0.9 in Fig. 3), in the frequency area where the defect of flatness occurs in the PSD of {ε(t)}. In low frequency, the all-pass function -p0z+1 z-p0 can be considered approximately as a delay (called the Laguerre shift, see [START_REF] Heuberger | Modelling and identification with rational orthogonal basis functions[END_REF], chap. 3), equal to 1+p0 1-p0 , and the present test remains reliable provided 1+p0 1-p0 k max N , which is a generalization for a Laguerre basis of the condition k max N in the classical whiteness test. In this example, one has 1+p0 1-p0 k max = 950 for k max = 50, and 1+p0 1-p0 k max = 1900 for k max = 100. 2 Percentage of type II errors (100 realizations, α = 0.05), in function of the sample number N and kmax (whiteness test established on a Laguerre basis and p0 = 0.9)

An application of the frequency weighting to the validation of reduced order models

Another interest of the proposed test is to allow for the evaluation of a reduced order model. For controller synthesis purposes, it is quite common to employ reduced order models valid only in low frequency, the high frequency modes being considered as unstructured uncertainties for which the designed controller must be sufficiently robust. We propose now to show on an example the interest of the whiteness test with frequency weighting of section 3. In this example, the true system has an order equal to 4, its static gain is 1 and its poles and its zeros are given in Table . 3, the sample time being 1 second. Table 3 Poles and zeros of the system to be identified

This system is disturbed by an output (centered and Gaussian) white noise, such that the signal/noise ratio (variance) is equal to 10 dB, and this system is excited with a wide spectrum Pseudo Random Binary Sequence (PRBS). One assumes that a reduced order model (second order) issued from identification has been obtained which fits well with the true system in low frequency, as shown in Fig. 4 a). The test described in Section 3 is performed for various sets of basis poles:

• As expected, the classical whiteness test (test 1) leads systematically to the rejection of H 0 because of the associated function χ, and the discrepancy between the true system and the model that occurs only in high frequency.

On the contrary, Table 4 shows that a sufficiently frequency weighted test (as in tests 3 and 4), leads to the quasi-systematic acceptance of H 0 . Other simulations, where a model misfit occurs in low frequency (the static gain of the reduced order model is 1.1 instead of 1) lead to 100% rejection of H 0 whatever the basis poles. This example shows that the frequency weighted test proposed here is able to discriminate reduced order models. show that the presented test can be employed advantageously in a perspective of identification for control, especially in case of fast sampling, a situation that occurs more and more frequently in practice.

A Appendix: Proof of Lemma 1

The proof is inspired from the first part of the proof of Theorem 9.1 in [START_REF] Ljung | System identification, theory for the user[END_REF], p. 309. Set S N,l = wM 1(l) (t)w M k(l) (t) + w M 1(l) (t) wM k(l) (t) + wM 1(l) (t) wM k(l) (t). One has

E[|w M 1(l) (t)w M k(l) (t)| 2+δ ] ≤ 1 N N -δ/2 E|w M 1(l) (t)| 4+2δ .E|w M k(l) (t)| 4+2δ ≤ 1 N N -δ/2
C, where C is a constant. The terms Z M,l are zero mean and M-dependent in the sense of [START_REF] Orey | A central limit theorem for m-dependent random variables[END_REF]. One has lim N →∞ sup 

2

  The classical whiteness test and its limitation At first, let us recall briefly the principle of the classical whiteness test of a residual sequence {ε(t)}. Define r (N ) εε (0) = 1 N N t=1 ε 2 (t), an estimation of the Preprint submitted to Automatica 26 December 2021 residual variance over N samples, and r (N )

  εε (k) converges in distribution towards a Gaussian stochastic variable as N → ∞, and thus the quantity T (N, k max ) = N

1

 1 

Fig. 1 .

 1 Fig. 1. Power spectrum density of ε(t)

1 )

 1 εε (ω)cos(kω)dω +π -π Φ εε (ω)dω (And since the frequency scale of Fig. 1 is logarithmic, one must express rn (N ) εε (k) in the same scale with ω = log(ω), and one obtains 2

  lim

3 A

 3 whiteness test established on a generalized orthogonal functions basis The novel test proposed here uses the generalized bases of orthonormal transfer functions (GOBF) proposed by Heuberger et al. in [6], that stem from a balanced realization of an all-pass function G b (z) = np-1 j=0 -z. pj +1 z-pj where p j (|p j | < 1) are the basis poles and n p the basis poles number. There exists a balanced state space realization such that G b (z) = D b + C b (zI -A b ) -1 B b (for the construction of the state space matrices see chap. 2 of [6]). The orthonormal transfer function vectors V k (z) with k = 1, 2, • • • and of size (n p , 1) are given by the relation V k

Fig. 2 .

 2 Fig. 2. Expression of Φεε(ωλ) in various Hambo frequency scales, in function of the basis poles (p = 0 blue, p = 0.9 green, p = 0.95 red)

Fig. 3 .

 3 Fig. 3. Functions χ(e ω ) for Laguerre basesThe following results hold: Lemma 1 If {ε(t)} is a centered Gaussian white noise such that E[ε 2 (t)] = λ 2 , then for any integer k > 1, one has E[r (N ) ww (k)] = 0, and r (N ) ww (k) converges in distribution towards a Gaussian variable as N tends to infinity. Proof: see Appendix ??. 2

Theorem 1

 1 By shifting in the time domain one gets r 1k (τ ) = p 0 r 1k (τ -1) + lim N →∞ 1 N N t=1 ε(t)v 1 (t -1 + τ ). Thus if {ε(t)} is white, r 1k (0) = 0 by the orthogonality of functions V k , and for τ ≤ 0 lim N →∞ 1 2N +1 N t=-N ε(t)v 1 (t -1 + τ ) = 0. Combining this last result with r 1k (0) = 0, one concludes that r 1k (-1) = 0. Now let us assume that for τ ≤ 0 one has r 1k (τ ) = 0. Since lim N →∞ 1 2N +1 N t=-N ε(t)v 1 (t -1 + τ ) = 0 and owing to the expression of r 1k (τ ) above, one has necessarily r 1k (τ -1) = 0, and therefore by induction r 1k (τ ) = 0 ∀ τ ≤ 0 . Consider a transfer function basis having only one (possibly complex) pole, such that

  Test 1: p = 0 Classical whiteness test • Test 2: p = 0.99 Frequency weighting centred around the low frequency modes • Test 3: p = 0.995±0.0086i Selective frequency weighting centred around the low frequency modes (poles damping: 0.5) • Test 4: p = 0.996 ± 0.0091i Very selective frequency weighting centred around the low frequency modes (poles damping 0.4) The functions χ associated with each test are represented in Fig. 4 b) and Table. 4 displays the percentage of acceptance of H 0 (in simulation) of each test for 100 realizations, and for various sample data N (the ratio of N by the period of low frequency modes of the true system denoted T m is displayed -here one has T m = 1/0.01 = 100s).

Fig. 4 .

 4 Fig. 4. a): True system and reduced order model, b): Function χ for various basis poles

1 √N

 1 l) (t)w k(l) (t), where l ∈ [1, n p ]. One has r (N ) ww(l) (k) = S N,l . We are going to demonstrate that r(N ) ww(l) (k) is Gaussian. One can write w 1(l) (t) = 1 √ N ∞ l=0 d (1,l) ε(t -l) and w k(l) (t) = 1 √ N ∞ l=0 d (k,l) ε(t -l).Let M be an integer and definew M 1(l) (t) = 1 √ N M l=0 d (1,l) ε(t-l), w M k(l) (t) = 1 √ N M l=0 d (k,l) ε(tl), wM 1(l) (t) = 1 √ N ∞ l=M +1 d (1,l) ε(t -l) and wM k(l) (t) = 1 √ N ∞ l=M +1 d (k,l) ε(t -l) , where d (p,l) is real valued, |d (x,l) | ≤ β l for x = 1 or x = k, and ∞ l=1 β l < ∞, since the transfer functions V 1 (z) and V k (z) are stable. Now set S N,l (N ) = Z M,l (N )+T M,l (N ), with Z M,l (N ) = 1 √ N N t=1 w M 1(l) (t)w M k(l) (t), and T M,l (N ) = 1

N t=1 E|w M 1 (

 1 l) (t)w M k(l) (t)| 2 < ∞ and lim N →∞ N t=1 E|w M 1(l) (t)w M k(l) (t)| 2+δ = 0.Therefore from lemma 9.A1 of[START_REF] Ljung | System identification, theory for the user[END_REF], derived from[START_REF] Orey | A central limit theorem for m-dependent random variables[END_REF], one obtainsZ M,l (N ) → A s N (0, Q) with Q = lim N →∞ E[Z M,l (N )Z M,l (N ) T ]. On the other hand, one has E|T M,l (N )| 2 ≤ C ∞ k=M +1 β k 2 ,and one gets lim M →∞ E|T M,l (N )| 2 = 0. From lemma 9.A.2 of[START_REF] Ljung | System identification, theory for the user[END_REF] derived from[4], and[START_REF] Anderson | On asymptotic distributions of estimated parameters of stochastic difference equations[END_REF], it follows that the asymptotic distribution of √ N r(N )ww(l) k is the same as the distribution of Z M,l (N ), and is therefore Gaussian. Since r (N ) ww (k), is the sum of the terms r (N ) ww(l) (k) for l = [1, n p ], one concludes that r (N ) ww (k) converges in distribution towards a Gaussian variable as N tends to infinity.

Table 4

 4 Percentage of acceptance of H0 for the reduced order model (over 100 realizations), in function of the sample number N and the period of the low frequency modes Tm

The bar of ω must not be confounded with the complex conjugate symbol employed elsewhere

This variable should not be confused with that of the chisquare test