
HAL Id: hal-03525711
https://hal.science/hal-03525711

Submitted on 14 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular, compositional, and executable formal
semantics for LLVM IR

Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, Steve
Zdancewic

To cite this version:
Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, et al.. Modular, compo-
sitional, and executable formal semantics for LLVM IR. Proceedings of the ACM on Programming
Languages, 2021, 5 (ICFP), pp.1-30. �10.1145/3473572�. �hal-03525711�

https://hal.science/hal-03525711
https://hal.archives-ouvertes.fr

67

Modular, Compositional, and Executable Formal Semantics
for LLVM IR

YANNICK ZAKOWSKI, Inria, France

CALVIN BECK, University of Pennsylvania, USA

IRENE YOON, University of Pennsylvania, USA

ILIA ZAICHUK, Taras Shevchenko National University of Kyiv, Ukraine

VADIM ZALIVA, Carnegie Mellon University, USA

STEVE ZDANCEWIC, University of Pennsylvania, USA

This paper presents a novel formal semantics, mechanized in Coq, for a large, sequential subset of the LLVM IR.
In contrast to previous approaches, which use relationally-specified operational semantics, this new semantics
is based on monadic interpretation of interaction trees, a structure that provides a more compositional approach
to defining language semantics while retaining the ability to extract an executable interpreter. Our semantics
handles many of the LLVM IR’s non-trivial language features and is constructed modularly in terms of event
handlers, including those that deal with nondeterminism in the specification. We show how this semantics
admits compositional reasoning principles derived from the interaction trees equational theory of weak
bisimulation, which we extend here to better deal with nondeterminism, and we use them to prove that
the extracted reference interpreter faithfully refines the semantic model. We validate the correctness of the
semantics by evaluating it on unit tests and LLVM IR programs generated by HELIX.

CCS Concepts: • Software and its engineering→ Semantics; Compilers; • Theory of computation→

Program verification; Denotational semantics.

Additional Key Words and Phrases: Semantics, Monads, Coq, LLVM, Verified Compilation

ACM Reference Format:

Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic. 2021. Modular,
Compositional, and Executable Formal Semantics for LLVM IR. Proc. ACM Program. Lang. 5, ICFP, Article 67
(August 2021), 30 pages. https://doi.org/10.1145/3473572

1 INTRODUCTION

The CompCert [Leroy 2009] C compiler was pivotal to the history of verified compilation, paving
the way to large-scale software verification of real-world programming languages [Ringer et al.
2019]. Its introduction provided the backbone for a variety of innovative technologies [Appel
2011; Barthe et al. 2020; Gu et al. 2016; Ševčík et al. 2013; Song et al. 2019] and energized similar
verification efforts for other programming languages [Bodin et al. 2014; Jung et al. 2017; Kumar
et al. 2014; Zhao et al. 2012].
Most of these projects define the semantics of the programming language using relationally-

specified transition systems given by small-step operational semantics. Roughly speaking, such

Authors’ addresses: Yannick Zakowski, Inria, France, yannick.zakowski@inria.fr; Calvin Beck, University of Pennsylvania,
USA, hobbes@seas.upenn.edu; Irene Yoon, University of Pennsylvania, USA, euisuny@cis.upenn.edu; Ilia Zaichuk, Taras
Shevchenko National University of Kyiv, Ukraine, zoickx@knu.ua; Vadim Zaliva, Carnegie Mellon University, USA, vzaliva@
cmu.edu; Steve Zdancewic, University of Pennsylvania, USA, stevez@cis.upenn.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/8-ART67
https://doi.org/10.1145/3473572

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-4585-6470
HTTPS://ORCID.ORG/0000-0002-3469-7219
HTTPS://ORCID.ORG/0000-0003-3388-1257
HTTPS://ORCID.ORG/0000-0003-1617-3259
HTTPS://ORCID.ORG/0000-0002-9145-3288
HTTPS://ORCID.ORG/0000-0002-3516-1512
https://doi.org/10.1145/3473572
https://orcid.org/0000-0003-4585-6470
https://orcid.org/0000-0002-3469-7219
https://orcid.org/0000-0003-3388-1257
https://orcid.org/0000-0003-1617-3259
https://orcid.org/0000-0002-9145-3288
https://orcid.org/0000-0002-3516-1512
https://doi.org/10.1145/3473572

67:2 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

semantics are defined by a predicate step : config→ config→ P, where P is the type of propositions
and step c1 c2 means that configuration c1 can transition to configuration c2. Importantly, the
relationship between c1 and c2 is typically not expressed as a function that computes c2 from
c1, so this relation isn’t "executable" in the sense that there is no way to extract code that would
implement this step behavior. To say how a program evolves over time, one needs to consider many
small steps: step c1 c2 then step c2 c3, etc., to finally halt at some configuration or go on stepping
forever. From a proof-technique standpoint, these approaches often rely on (backward) simulations
that connect the behavior of one step relation to another relation step′, which requires carefully
crafting elementary simulation diagrams and stitching them together co-inductively to obtain
termination-sensitive results.

These techniques have had widespread success; however, they also have some drawbacks. First,
they often lack compositionality: the desired small-step operational semantics is not usually definable
purely by induction on syntax . Second, and relatedly, they often lack modularity: side effects of
the language become reified in the step relation, often leading to additional components such
as program counters, heaps, or pieces of program text that are needed to define the relation but
complicate the invariants needed to reason about it. Finally, because a relational model is not
executable, it is difficult to test the language semantics during its development, which is a useful
way to validate the model’s correctness. Lack of executability also precludes the use of tools like
QuickChick [Lampropoulos and Pierce 2018]. An alternative is to write painstakingly hand-crafted
interpretersÐCompCert [Leroy 2009], Vellvm [Zhao et al. 2012], and JSCert [Bodin et al. 2014]
went to significant lengths in this regardÐbut that incurs the additional burden of proving (and
maintaining) the correspondence between the operational semantics and the interpreter.
Compositionality, modularity, and executability are critical to ease the design, development,

and upkeep of a formal language semantics, especially for large łreal worldž languages whose
features are complex and evolving over time. In this paper, we demonstrate how to achieve these
properties simultaneously and at scale: we formalize in Coq a large and expressive subset of the
sequential portion of the LLVM. To do so, we draw on classic ideas about how to structure monadic
interpreters [Steele 1994] and make heavy use of interaction trees [Xia et al. 2020], a recent Coq
formalism that provides (1) expressive monadic combinators for defining compositional semantics,
(2) effect handlers for the modular interpretation of effectful programs, and (3) a coinductive
implementation that can be extracted into an executable definitional interpreter. These features
allow for a strong separation of concerns: each syntactic sub-component can be given a self-
contained meaning, and each effect of the language can be defined in isolation via an effect handler.

Moving away from traditional small-step operational semantics to an ITrees-based semantics not
only simplifies the language definition, but also allows us to explore alternative means of proving
compiler and optimization correctness properties. In particular, ITrees support a rich theory of
refinement that facilitates relational reasoning proofs, much in the style of Maillard et al.’s Dijkstra
monads [Maillard et al. 2020], Swierstra and Baanen’s predicate transformers [Swierstra and Baanen
2019] or Benton’s relational Hoare logic [Benton 2004], letting us prove program equivalences
largely by induction and elementary rewriting. Though some of the relevant theory was presented
in the paper by Xia et al. [Xia et al. 2020], nondeterminism in the LLVM IR prompted us to develop
new machinery for working with łpropositional interpreters,ž a key ingredient needed to establish
the proof of adequacy of the extracted interpreter.

We focus on the LLVM framework [Lattner and Adve 2004] because it is an attractive target for
formal verification: it is a widely used, industrial-strength codebase; its intermediate representation
(IR) provides a comparatively small and reasonably well-defined core language; and many of its
analyses, program transformations, and optimizations, operate entirely at the level of the LLVM
IR itself. Since the LLVM ecosystem supports many source languages and target platforms, it is a

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:3

natural fulcrum to amplify the impact of formal modeling and verification efforts. Moreover, there
is ample existing work that aims to build formal semantics for (oftentimes just parts of) the LLVM
IR. Notable examples include the Vellvm [Zhao et al. 2012, 2013], Alive [Lopes et al. 2015; Menendez
and Nagarakatte 2017], Crellvm [Kang et al. 2018], and K-LLVM [Li and Gunter 2020] projects,
as well as attempts to characterize LLVM’s undefined behaviors [Lee et al. 2017], its concurrency
semantics [Chakraborty and Vafeiadis 2017], and memory models [Kang et al. 2015; Lee et al. 2018].
As witnessed by research activity surrounding it, LLVM IR’s semantics isn’t straightforward to
specify, or even necessarily well-defined. Features like poison, undef, and integerśpointer casts, are
complicated to model independently, and even more so together. We believe LLVM IR’s complexities
make it all the more important to formalize. While the semantics we present here is not the final
word on the subjectÐmost notably, the current memory model is not adequate for justifying some
useful LLVM IR optimizationsÐwe believe that we have developed the semantic ingredients needed
to (eventually) define a łcompletež model. Moreover, the emphasis we have put into the modularity
of our semantics shall allow us to improve its quality over time to better approach (and react to
changes in) łthež LLVM IR semantics.
The new VIR (Verified IR) development described here aims to fill the same niche as Vellvm,

sharing that project’s goal of being a platform for verified LLVM optimizations and compilers, but
incorporating the insights of the works mentioned above and built using modern proof engineering-
techniquesÐin particular, ITree-based monadic semantics form its core specification technology.
While the work by Xia, et al. demonstrated ITrees in a łtoyž setting, here we aim to use them at
scaleÐour treatment of LLVM’s phi-nodes, mutually recursive functions, undef values, pointers,
and other rich data types is all new in comparison. As such, our results also provide a novel and
useful recipe for how to formalize large, complicated language semantics in theorem provers based
on dependent type theory. In summary, this paper makes several contributions:

VIR Design. We present VIR, a compositional, modular and executable formal semantics in Coq
for a realistic sequential subset of LLVM IR. The semantics exhibits a principled structure, easing its
development. VIR’s syntax is structurally represented as interaction trees that distinguish different
effects: local environment, stack, global identifiers, memory model, nondeterminism, external
function calls, etc.. These effects are implemented by independent event handlers in the style of
algebraic effects [Plotkin and Power 2003] and composed together with no additional syntax. We
give a novel semantic model that is defined in terms of a fully łpropositionalž specification to
capture the nondeterministic quirks of the language, but we also implement an executable reference
interpreter that shares almost all of the code with the propositional semantics. Sections 2ś4 describe
this design, introducing the requisite background about ITrees along the way.

Metatheory. We demonstrate how the compositional semantics gives rise to a primitive, but
very expressive relational proof method, enabling termination-sensitive refinements of programs
to be established without the use of explicit simulation diagrams or coinduction. The model
justifies a definition of łcorrect program transformationž that can be proved at different levels of
abstraction, leveraging the modularity of the semantics. In particular, programs that do not involve
non-deterministic features can be reasoned about from the perspective of a deterministic semantics.
This general-purpose proof infrastructureÐmany of our metatheoretic results apply to interaction
tree semantics broadly and are not specific to VIRÐalso lets us prove the correctness of the VIR
executable interpreter with respect to the model almost for free. Section 5 covers these results.

VIR Validation. We validate VIR in two ways: First, Section 6 describes HELIX [Zaliva et al.
2020], a verified compiler that targets VIR. This case study that demonstrates the utility of VIR,
and our metatheory, for proving compiler correctness results. Second, the use of ITrees allows us

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:4 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

𝜏 ::= i64 | i1 | [𝜏] | 𝜏∗

id, bid ::= string

exp ::= @id | %id | i64 | i1 | undef𝜏 | exp op exp

| GEP (𝜏1, exp, 𝑙𝑖𝑠𝑡 exp)

instr ::= exp | call (exp, 𝑙𝑖𝑠𝑡 exp) | alloca (𝜏)

| load (𝜏, exp) | store (exp, exp)

term ::= branch (exp, bid, bid) | return (exp) | . . .

phi ::= Φ (𝑙𝑖𝑠𝑡 (bid, exp))

block ::= {entry : bid; phis : 𝑙𝑖𝑠𝑡 (id, phi);

code : 𝑙𝑖𝑠𝑡 (id, instr); term : term}

cfg ::= {name : id; args : 𝑙𝑖𝑠𝑡 bid; entry : id; body : 𝑙𝑖𝑠𝑡 block}

mcfg ::= mrec (cfg , . . . , cfg)

Fig. 1. A minimal subset of VIR’s syntax

to extract an executable interpreter that can be used to experiment with the VIR semantics and,
invaluably, cross-validate against LLVM IR implementations. We compare the semantics against
the expected LLVM IR behaviors over a suite of more than 140 test cases. This interpreter is also
used for properties-based testing with QuickChick, where we randomly generate simple programs
to validate our interpreter against other LLVM IR implementations. For larger end-to-end tests, we
also run code generated by HELIX. Section 7 describes these experiments.

As alluded to above, there is a large body of prior work from which we draw inspiration. Section 8
compares our approach to the closest.

2 VIR: A FORMALIZATION OF LLVM IR

The primary focus of this paper is the use of monadic interpretation of interaction trees to define
and reason about a compositional, modular, and executable semantics for a łreal-worldž program-
ming language as exemplified by LLVM IR. Our formal development1 covers most features of
the core sequential fragment of LLVM IR 11.0.0 as per its informal specification2, including: the
basic operations on 1-, 8-, 32-, and 64-bit integers, Doubles, Floats, structs, arrays, pointers, and
casts; undef and poison; SSA-structured control-flow-graphs, global data, mutually-recursive
functions, and support for intrinsics. The main features that are currently unsupported are: some
block terminators (switch, resume, indirect branching, invoke), the landing_pad and va_arg
instructions, architecture-specific floats and opaque types. The list of supported intrinsics is small,
but user-extensible. From a semantics perspective, the main limitation of VIR has to do with the
interaction between undefined values and the memory model: our implementation is sound, but
prohibits the verification of some LLVM IR optimizations. See the discussions in Section 4.3 and 8
for more about these considerations.
For expository purposes, we restrict our presentation to a representative subset of VIR.

2.1 Syntax

VIR’s syntax is shown on Figure 1. At the top-level, a VIR program is a mutually recursive cfg (mcfg)
defined as a set of mutually recursive functions. Each function is a single control-flow-graph (cfg),
which is a record that holds a name, formal variables binding its arguments, a block identifier as its
entry point, and a list of blocks as its operational content.

1Available at https://github.com/vellvm/vellvm
2https://llvm.org/docs/LangRef.html

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

https://github.com/vellvm/vellvm
https://llvm.org/docs/LangRef.html

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:5

Blocks are records holding an entry label, Φ−nodes, a list of instructions, and a terminator. The
Φ−nodes are used to maintain SSA form [Cytron et al. 1991], dynamically assigning different values
to a variable depending on the identity of the predecessor block in the control flow. The 𝑐𝑜𝑑𝑒
field contains a list of instructions (instr) paired with registers (id) destined to receive the value
computed by the associated instruction. The code is set in a three-address-style format and intended
to be executed sequentially after the Φ−nodes are set. The instructions we consider here are the
evaluation of expressions, function calls, and memory operations such as allocation, loads, and
stores. Finally, a terminator determines how the control flow should continue after a block. We
include conditional branches and return statements as terminators.
We consider a subset of expressions (exp) supported by VIR: global (@𝑖) and local (%𝑖) iden-

tifiers, 64-bit integers, 1-bit integers, basic arithmetic operators (ranged over by op), and łget
element pointerž (GEP) operations, used to access components in array-like data structures. As a
consequence, VIR types 𝜏 include: i64, i1, arrays [𝜏], and pointers 𝜏∗.

2.2 Dynamic Values

The semantics of VIR relies upon the domain of dynamic values that the language can manipulate.
The core of these dynamic values are the so-called defined values.

𝑑𝑣 ∈ V ::= none | 𝑖 | 𝑔 | 𝑎 | [list (V)] | poison

The void value, none, is a placeholder for operations with no meaningful return values. VIR supports
1, 8, 32 and 64 bit integers3, but in this paper we only consider 64-bit integers (𝑖) and 1-bit integers
(𝑔). Memory addresses (𝑎) are given an abstract type Addr to allow for plugging memory models
with different pointer representations into our semantics, a feature facilitated by the modularity of
our semanticsÐSection 4.3 describes the implementation of our main memory model. VIR supports
all of LLVM IR’s structured values, but for simplicity we present only arrays, noted as [_].
Infamously, LLVM IR supports poisoned values (poison) representing a deferred undefined

behavior [Lee et al. 2017]. Deferred UB is instrumental for aggressive optimizations, but a semantic
subtlety. The poison value is a tainting mark: it propagates to all values that depend on it, so
equations such as poison + poison ≡ 2 ∗ poison ≡ poison hold true. Although accounting for
poison entails numerous semantic peculiarities, poison is modeled as its own defined value.
In contrast, the undef𝜏 value, a different model for deferred undefined behaviors supported by

LLVM IR, admits a set semantics, representing all defined values of a given type 𝜏 . Operations
that need to know the specific defined value at play behave non-deterministically over the set
of values when acting upon undef. However, łreadingž the same instance of an undef𝜏 value
twice is not guaranteed to return the same value: undefi64 + undefi64 ≡ undefi64 holds true, but
undefi64 + undefi64 . 2 ∗ undefi64 is an inequality, as the right hand side cannot be odd.
To account for these peculiarities, we introduce under-defined values (uv):

uv ∈ V𝑢 ::= ↑ V | undef𝜏 | opV𝑢 V𝑢

Under-defined values are a superset of defined valuesÐwe write ↑ for the corresponding injectionÐ
but they also contain the special value undef𝜏 (we omit the subscript 𝜏 when the type is unimportant).
Extending the semantics of arithmetic operations to a set interpretation of undef𝜏 would prevent
us from interpreting two successive łreadsž to an under-defined value differently. Instead, we can
manipulate łsymbolicž values built from any supported VIR arithmetic operator overV𝑢 .

3We use CompCert’s finite integers in our development.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:6 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

3 INTERACTION TREES: BACKGROUND

Interaction Trees [Xia et al. 2020] (ITrees) are a data structure that represents effectful and poten-
tially divergent computations. ITrees let us define (in Coq) domains for building compositional
(denotational) semantics of languages; they modularize the effects of such a semantics while still
retaining executability.

Formally, the type itree E R is a coinductive variant of the free monad, parameterized by a set
of events E of kind Type→ Type and a return type R. Events characterize the impure interactions
of a computation with its environment, and each event of type E A carries with it the response
type A expected from the environment. ITrees computations can be constructed by: (1) Ret 𝑟 ,
returning a pure value of type R, (2) a silent step, represented as Tau 𝑡 , where 𝑡 is the rest of the
computation, or (3) a visible event 𝑒 followed by the continutation 𝑘 , given by Vis 𝑒 𝑘 . In this last
case, 𝑘: A→ itree E R is a function of the value (of answer type A) returned by the environment
in response to the event.

As a Coq library, ITrees come with a rich equational theory of equivalences up-to-tau, i.e. up-to
the weak bisimulation that observes the uninterpreted events performed by the computations,
the pure values they returned, and their potential divergence. This notion of weak equivalence is
central to the verification of correctness of program transformations, as described in Section 5.

Compositional Semantic Combinators. ITrees are monads and they support rich fixed point
combinators, allowing for compositional definitions of a wide range of semantics. We write ret 𝑟
for the pure monadic łreturnž operation; the bind operator composes two ITrees sequentially.
We write 𝑥 ← 𝑡 ;; 𝑘 (𝑥) for bind 𝑡 (𝜆𝑥 . 𝑘 (𝑥)). The trigger 𝑒 operator, defined by trigger 𝑒 ≜

Vis 𝑒 (𝜆𝑥 . Ret 𝑥) invokes the event 𝑒 , yielding the answer from the environment.
The event signatures used by ITrees composeÐa feature we exploit heavily in VIR. Given

two event type 𝐸 and 𝐹 , we can form their disjoint union 𝐸 ⊕ 𝐹 . Intuitively, an ITree of type
itree(E ⊕ F) R can trigger events from either 𝐸 or 𝐹 .
Fixed-point combinators allow for modeling loops and recursive programs. The iter com-

binator allows for conveniently modeling iteration and tail recursive calls. Consider its type:
iter (𝑏𝑜𝑑𝑦 : 𝐴→ itree 𝐸 (𝐴 ⊕ 𝐵)) : 𝐴→ itree 𝐸 𝐵. Here, 𝐴 can be thought of as the type of an
accumulator parameterizing the body of the iterator. Executing the body may result in either a new
accumulator value which signals that the body should be executed again, or in a value of type B,
signaling that the iteration has terminated. For non-tail-recursive calls, ITrees support a general com-
binator for mutually recursive computations, mrec (defs : 𝐷 { itree (D ⊕ E)) : 𝐷 { itree E, 4

where a 𝐷 event represents a call to one of the mutually defined functions whose behaviors are
given by defs. Besides recursive calls in 𝐷 , the functions might trigger other events, 𝐸. The mrec
combinator ties the recursive knot and returns computations only interacting through 𝐸.

Modular Semantics through Event Handlers. ITrees enable a modular semantics because they can
define impure computations while remaining agnostic about the implementation of events. The
first phase of our semantics denotes a VIR program as such an uninterpreted tree (see Section 4.2).

Each event interface 𝐸 can also be associated with a handler of type 𝐸 { 𝑀 that implements the
effects of 𝐸 via operations in a monad 𝑀 . Handlers may be lifted to monadic interpreters [Steele
1994] of interaction trees, which fold over a tree, embedding the whole computation into 𝑀 , so:
interp (ℎ : 𝐸 { 𝑀) : itree 𝐸 { 𝑀. Importantly, since ITrees themselves form a monad, we
do not have to interpret the whole interface at once: for instance, the state monad transformer
StateT 𝑆 allows us to interpret the state events StE𝑆 of an ITree of type itree(E ⊕ StES ⊕ F) A

into StateT 𝑆 (itree (𝐸 ⊕ 𝐹)) AÐthe state events are interpreted in isolation.

4We use 𝐸 { 𝑀 for the polymorphic type ∀𝛼, 𝐸 𝛼 → 𝑀 𝛼 and leave most instantiations of the type parameter implicit.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:7

Global and local state Internal, external, and intrinsic calls
G ≜ GRdV (𝑙) | GWr() (𝑙, 𝑣) C ≜ CallV𝑢 (𝑎,𝑢𝑎𝑟𝑔𝑠)

L ≜ LRdV𝑢 (𝑙) | LWr() (𝑙, 𝑣) CE ≜ CallE
V (𝑎, 𝑑𝑎𝑟𝑔𝑠)

SL ≜ LPush() (𝑎𝑟𝑔𝑠) | LPop() I ≜ IntrinsicV (𝑓 , 𝑑𝑎𝑟𝑔𝑠)

Memory model interactions
M ≜ MPush() | MPop() | LoadV𝑢 (𝜏, 𝑙) | Store() (𝑎, 𝑣) |

AllocaV (𝜏) | GEPV (𝜏, 𝑣, 𝑣𝑠) | PtoIV (𝑎) | ItoPV (𝑖)

Nondeterminism and UB
P ≜ PickV (𝑢𝑣) U ≜ UB∅

Failure and debugging
F ≜ Throw∅ D ≜ Debug() (𝑚𝑠𝑔)

Fig. 2. VIR events. (Superscripts indicate return types.)

The VIR semantics is organized as stages of interpretation, exploiting modularity (see Section 4.3).

Executable Semantics through Coq Extraction. Lastly, ITrees are executable: they can be extracted
to OCaml in order to be run. We exploit this property to derive the reference interpreter for LLVM
described in Section 7.

4 A MODULAR LLVM SEMANTICS

The toolbox provided by ITrees suggests a methodology for building denotational domains for a
wide variety of programming languages. Given a syntax Lang, we proceed in three steps:

(1) Identify the events E a program 𝑝 ∈ Lang may trigger;
(2) By induction on Lang, use the ITree combinators to compute a representation of programs

as elements of itree E 𝐴, where 𝐴 is an appropriate result type;
(3) Define a handler for each family of events in E and use those to interpret the result of step 2.

The first step identifies the effects that programs in Lang may have, and abstracts them via a
typed interface of events. The second step internalizes the control-flow and the potential divergence
of Lang. The last step breathes life into the modular semantics, giving each event meaning, and
completes the picture by combining these interpretations of effects.
This section applies this recipe to build our formal model of VIR. We inventory VIR’s effects

in Section 4.1 and derive from it the sets of events we manipulate. Section 4.2 describes how to
represent each syntactic piece of VIR as an interaction tree, building up to the representation of
mcfgs. Section 4.3 defines the concrete semantics of each category of effects through the definition
of the handler for their corresponding events. Finally, Section 4.4 ties every component together
and tackles the initialization of the memory to obtain the complete semantic model of VIR.

4.1 An Inventory of LLVM’s Events

Figure 2 depicts the eleven categories of events that can be triggered by a VIR program. At this point
we specify the types of the events, which constrain the types of the handlers that will concretely
implement their semantics.

Global state and local state events, G and L respectively, describe reads and writes to the global
and local environments. The global environment is a read-only map that sends global identifiers to
their corresponding memory addresses, and is written to only at its initialization. In contrast, the
local environment represents stack frames for function calls, and is mutated throughout execution.
Local stack events, SL , provide a fresh local environment for each function call. The LPush()

event pushes a fresh local environment initialized with an association list of variables toV𝑢s, the

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:8 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

(↑ poison) ⊕ _ = ↑ poison
_ ⊕ (↑ poison) = ↑ poison
(↑ 𝑑𝑣1) ⊕ (↑ 𝑑𝑣2) = ↑ (𝑑𝑣1 +i64 𝑑𝑣2)

𝑢𝑣1 ⊕ 𝑢𝑣2 = 𝑢𝑣1 +i64 𝑢𝑣2

𝑢𝑣1 ⊘ 𝑑𝑣2 = ret (𝑢𝑣1/i64 (↑ 𝑑𝑣2))
(↑ poison) ⊘ _ = ret (↑ poison)

_ ⊘ poison = raiseUB
(↑ 𝑑𝑣1) ⊘ 𝑑𝑣2 = if 𝑑𝑣2 =i64 0

then raiseUB else ret ↑ (𝑑𝑣1/i64 𝑑𝑣2)

Fig. 3. Binary operations on under-defined values

arguments passed to the function. The LPop() event pops the stack frame when a function returns.
Separating L and SL into two distinct domains of events allows for the denotation of functions to
be oblivious to the existence of this stack of states, as will become apparent in Section 4.3.

Memory events,M, are richer. A program can MPush() or MPop() a (memory) frame within which
new storage can be dynamically allocated via the AllocaV (𝜏) event. Memory cells can be accessed
via Store() (𝑎, 𝑑𝑣) and LoadV𝑢 (𝜏, 𝑙). Note that our model stores defined values in memory, but
loads may return undefined ones (e.g. if an allocated, but uninitialized cell is read). GEPV (𝜏, 𝑑𝑣, 𝑑𝑣𝑠)
computes a pointer within an aggregate structure. Finally, pointerśinteger casts, PtoIV (𝑎), and,
reciprocally, ItoPV (𝑖), are supported.
VIR supports internal calls, external calls, and calls to łintrinsics.ž Internal calls, C, should

be the result of the denotation of the corresponding function: it can therefore return any V𝑢 .
External calls, CE , are not resolved internallyÐthey model invocations of OS or library codeÐand
can be implemented by any external means: they only process and return defined values in V .
Intrinsics are LLVM’s mechanism for lightweight language extensions: their names and semantics
are standardized, but their addresses cannot be taken. VIR’s semantics is parameterized by an
extensible set of supported intrinsics modeled by events of type I.
LLVM IR is a non-deterministic language. The VIR semantics implements the undefined value

undef𝜏 (recall Section 2.2), by manipulating the symbolic under-defined values, V𝑢 , as long as
possible. When the computation nonetheless reaches a point requiring a uniquely determinedV ,
an oracle, modeled by PickV (𝑢𝑣) ∈ P events, is invoked to choose a defined value.
A second source of non-determinism comes from undefined behaviors, which represent excep-

tional circumstances. If execution leads to undefined behavior, the LLVM semantics says that any
behavior may substitute for this execution. 5 Semantically, this means that we need an event to
which we can give any meaning; this polymorphism is achieved through an event, UB∅ ∈ U, whose
returned type is void. We write raiseUB for the polymorphic triggering of UB∅.
Finally, Throw∅ ∈ F and Debug() (𝑚) ∈ D respectively express dynamic errors and dynamic

debug messages. We write fail for the polymorphic triggering of Throw∅.

4.2 Representing VIR Programs as Interaction Trees

The second step of denotation consists of representing the syntax of VIR as an ITree acting over an
interface built from the previously described events. More specifically, let us define the top-level
interface for LLVM programs:

virE ≜ C ⊕ I ⊕ G ⊕ (SL ⊕ L) ⊕ M ⊕ P ⊕ U ⊕ D ⊕ F

The main purpose of this section is hence to define a function

JpKmcfg (𝜏 : dtyp) (𝑓 : V) (𝑎𝑟𝑔𝑠 : list (V)) : itree virEV𝑢

which, given amcfg 𝑝 , a return type 𝜏 , the address of the starting function 𝑓 , and a list of arguments
𝑎𝑟𝑔, internalizes the semantics into a single ITree over the virE interface.

The definition of J_Kmcfg directly follows the structure of the syntax. In particular, our approach
allows us to easily define the meaning of each syntactic sub-component in complete autonomy,
which is a key feature to enable compositional reasoning about the resulting semantics.

5The semantics may interpret an undefined behavior as any computation, but may not alter the past.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:9

Expressions. Expressions are naturally represented as ITrees that return values 𝑢 ∈ V𝑢 . The
representation function, defined inductively over the syntax, is given by:

J%𝑖K𝑒 = trigger (LRdV𝑢 (𝑖))

J@𝑖K𝑒 = 𝑑𝑣 ← trigger (GRdV (𝑖)) ;; ret (↑ 𝑑𝑣)

J𝑒1 + 𝑒2K𝑒 = 𝑢𝑣1 ← J𝑒1K𝑒 ;; 𝑢𝑣2 ← J𝑒2K𝑒 ;; ret (𝑢𝑣1 ⊕ 𝑢𝑣2)

J𝑒1/𝑒2K𝑒 = 𝑢𝑣1 ← J𝑒1K𝑒 ;; 𝑢𝑣2 ← J𝑒2K𝑒 ;;

𝑑𝑣 ← pick(𝑢𝑣2) ;; 𝑢𝑣1 ⊘ 𝑑𝑣

The meaning of a local variable %𝑖 is a computation with the effect of accessing the local environ-
ment to retrieve the value associated to 𝑖 . Thus, at this stage, it is represented by triggering the
LRdV𝑢 (𝑖) event, whose return type is preciselyV𝑢 : once interpreted, this small interaction tree will
return a value of the correct type. A global variable @𝑖 has a similar representation: it triggers
the corresponding GRdV (𝑖) event, whose return type is statically guaranteed to contain defined
values. We bind the triggered result to 𝑑𝑣 ∈ V and inject this bound value into the domain of
under-defined values.

Binary operations, like the addition of integers, are represented by taking the ITree representation
of each subexpression 𝑒1 and 𝑒2, binding the results of these computations to 𝑢𝑣1, 𝑢𝑣2 ∈ V𝑢

respectively, and then performing the basic operation on 𝑢𝑣1 and 𝑢𝑣2 and returning the result.
Division, however, is more complex because division by 0 is undefined behavior. If the denominator
is an under-defined value, we will need to pick a valid concretization, 𝑑𝑣 ∈ V . We use pick for
this purpose, which either injects the denominator intoV if it is already concrete, or triggers a
PickV (𝑢𝑣2) event that acts as an oracle for concretizingV𝑢 values. Note that the basic operations
must account for poison and trigger undefined behavior via raiseUB when division by 0 occurs, as
seen in Figure 3.

Instructions. LLVM instructions are represented by a pair (id, 𝑖𝑛𝑠) of a side-effectful instruction
𝑖𝑛𝑠 and an identifier id destined to receive the result of the operation. Their representation function
builds upon J_K𝑒 , as defined in Figure 4.
Representing an operation (id, 𝑒) reduces to calling J𝑒K𝑒 and binding its result with the trigger

of the local write LWr() (𝑖𝑑,𝑢𝑣). Memory operations require extra care. Consider load (𝜏, 𝑒), that
reads from an address expression 𝑒 of type 𝜏 . The address 𝑢𝑎 resulting from J𝑒K𝑒 should be used to
trigger the appropriate memory event. However the memory model can be indexed only by defined
memory addresses, and stores defined values. We therefore resolve any under-definedness in 𝑢𝑎
by picking a valid concretization, 𝑑𝑎 ∈ V , of the under-defined value. After getting the concrete
address, we need to take care of one last subtlety: defined values can be poisoned, and attempting
to load from such an address is an undefined behavior. This can be handled with a simple case
analysis on the V , which raises a U event if the V is poison. Stores and allocations follow a
similar pattern.

We next turn to call instructions. The distinction between internal and external calls is a property
of the ambient mcfg, and is not relevant to individual cfgs. They are hence both represented as
a CallV𝑢 (_, _) event at the level of instructions, and will be distinguished at the level of mcfgs,
as described at the end of this section. In contrast, the list of supported intrinsics is a parameter
of our semantics; they can always be resolved statically. Hence, a call (𝑓 , 𝑎𝑟𝑔𝑠) instruction is
represented by first sequentially interpreting the list of arguments (𝑎𝑟𝑔𝑠) using a monadic map,
mapm . If the function is an intrinsic, arguments are concretized to defined values and passed to the
dedicated I event. Otherwise, the address of the function is retrieved from its name and passed to
a call event. In both cases, the resulting value is bound to the associated local variable 𝑖𝑑 , as usual.

Denoting straight line code, J_K𝑐 , simply sequences the denotation of its instructions using mapm .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:10 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

J(id, 𝑒)K𝑖 = 𝑢𝑣 ← J𝑒K𝑒 ;; trigger (LWr() (id, 𝑢𝑣))

J(id, load (𝜏, 𝑒))K𝑖 =
𝑢𝑎 ← J𝑒K𝑒 ;; 𝑑𝑎 ← pick(𝑢𝑎) ;;
match 𝑑𝑎 with
| poison⇒ raiseUB
| _⇒ 𝑢𝑣 ← trigger (load (𝜏, 𝑑𝑎)) ;;
trigger (LWr() (id, 𝑑𝑣))

J(_, Store() (𝑒𝑣, 𝑒𝑎))K𝑖 =
𝑢𝑣 ← J𝑒𝑣K𝑒 ;; 𝑑𝑣 ← pick(𝑢𝑣) ;;
𝑢𝑎 ← J𝑒𝑎K𝑒 ;; 𝑑𝑎 ← pick(𝑢𝑎) ;;
match 𝑑𝑎 with
| poison⇒ raiseUB

| _⇒ trigger (Store() (𝑑𝑎,𝑑𝑣))

J(id, alloca (𝜏))K𝑖 = 𝑑𝑣 ←
trigger (AllocaV (𝜏)) ;;
trigger (LWr() (↑ id, 𝑑𝑣))

J(id, call (𝑓 , 𝑎𝑟𝑔𝑠)K𝑖 =
𝑢𝑣𝑠 ← mapm J_K𝑒 𝑎𝑟𝑔𝑠 ;;
𝑟𝑒𝑡𝑣 ← [

match is_intrinsics (𝑓) with
| Some 𝑠 ⇒

𝑣𝑠 ← mapm (𝜆𝑢𝑣 . pick(𝑢𝑣)) 𝑢𝑣𝑠 ;;
𝑑𝑣 ← trigger (IntrinsicV (𝑠, 𝑣𝑠)) ;;
ret (↑ 𝑑𝑣)

| None⇒

𝑓 ← J𝑓 K𝑒 ;; trigger (CallV𝑢 (𝑢𝑓 ,𝑢𝑣𝑠))] ;;
trigger (LWr() (𝑖𝑑, 𝑟𝑒𝑡𝑣))

Fig. 4. Denoting instructions as ITrees

Terminators. Terminators either return the identity of the next block to be evaluated, or signal the
end of the current function call by returning a value. This dichotomy is reflected in the ITree’s return
type, a disjoint sum of block identifiers and under-defined values (see below). The representation is
otherwise as expected: return (𝑒) evaluates 𝑒 and returns its right injection. A branch (e, 𝑏𝑙 , 𝑏𝑟)
evaluates 𝑒 and performs a case analysis on its result. In the first case, the result is a 1-bit integer,
and the value is treated as a boolean to decide which branch to take and thus a block identifier
is returned. Branching on a poisoned value is considered an undefined behavior, so a raiseUB is
returned. All other cases are considered erroneous.

Jreturn (𝑒)K𝑡 = 𝑢𝑣 ← J𝑒K𝑒 ;; ret (inr 𝑢𝑣)
Jbranch (𝑒, 𝑏𝑙 , 𝑏𝑟)K𝑡 =

𝑢𝑣 ← J𝑒K𝑒 ;; 𝑑𝑣 ← pick(𝑢𝑎) ;;
match 𝑑𝑣 with
| 𝑔 ⇒ if 𝑔 =1 1 then ret (inl 𝑏𝑙) else ret (inl 𝑏𝑟)
| poison ⇒ raiseUB

| _ ⇒ fail

Control-flow graphs. We next consider the representation of VIR functions, i.e., of cfgs. More
generally, we want to be able to denote open functionsÐa subgraph of mutually referential, la-
beled control-flow-graph blocks that might refer to block labels not in the subgraphÐin order to
reason compositionally about them. Therefore, we define the representation of a list of blocks:
JbksKbks (𝑏 𝑓 , 𝑏𝑠) as a function that takes as an argument the label 𝑏𝑠 of the source block at which to
start the computation, as well as the label 𝑏 𝑓 of the block visited last. This function loops, using
the iter operator (see Section 3) combinator to resolve the control flow of the mutual references
among the blocks, until it either finds a return statement, or computes the label of a block that does
not belong to the sub-control flow graph.

JbksKbks = iter 𝑏𝑜𝑑𝑦

𝑏𝑜𝑑𝑦 (𝑏 𝑓 , 𝑏𝑠) = try 𝑏𝑘𝑠 ←↪ 𝑏𝑘𝑠 [𝑏𝑠] with ret (inr (inl (𝑏 𝑓 , 𝑏𝑠))) in

𝑟𝑒𝑠 ← (Jbks .(Φ)K
𝑏𝑓

Φ𝑠
;; J𝑏𝑘𝑠 .(𝑐)K𝑐 ;; J𝑏𝑘𝑠 .(𝑡)K𝑡)

match 𝑟𝑒𝑠 with

| inr 𝑑𝑣 ⇒ ret (inr (inr 𝑑𝑣))

| inl 𝑏𝑡 ⇒ ret (inl (𝑏𝑠 , 𝑏𝑡))

Above, we write try 𝑥 ←↪𝑚𝑣 with 𝑡 in 𝑘 to bind the content of an option value,𝑚𝑣 to 𝑥 in 𝑘 if it
is a Some 𝑐onstructor, and return 𝑡 otherwise. When the partiality is simply internalized in the tree,
we also abbreviate 𝑥 ←↪𝑚𝑣 in 𝑘 for try 𝑥 ←↪𝑚𝑣 with fail in 𝑘 .

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:11

One wrinkle is that we need to account for Φ−nodes, which assign to local variables based on
the label of the previously visited block. Additionally, all Φ−nodes need to be executed łin parallelž,
due to cycles in the control flow graph allowing for the right-hand side expressions to depend
on the (previous) values of variables being assigned. Thus, given the label 𝑏𝑖𝑑𝑓 of the previously
visited block, we can represent the computation returning the value to be bound at a given Φ−node:

J(id,Φ(args))K
𝑏𝑖𝑑𝑓

Φ
= 𝑜𝑝 ←↪ 𝑎𝑟𝑔𝑠 [𝑏𝑖𝑑𝑓] in 𝑢𝑣 ← J𝑜𝑝K𝑒 ;; ret (𝑖𝑑,𝑢𝑣)

A list of Φ−nodes then retrieves the association list of identifiers to under-defined values, before
performing the writes.

JΦsK
𝑏𝑖𝑑𝑓

Φ𝑠
= 𝑑𝑣𝑠 ← mapm (J_K

𝑏𝑖𝑑𝑓

Φ
) Φ𝑠 ;;

mapm (𝜆 (𝑖𝑑, 𝑑𝑣) . trigger (LWr() (𝑖𝑑, 𝑑𝑣))) 𝑑𝑣𝑠

JcfgKcfg =

𝑟 ← Jcfg.(body)Kbks (·, cfg.(entry)) ;;
match 𝑟 with
| inr 𝑢𝑣 ⇒ ret 𝑢𝑣

| inl 𝑏𝑖𝑑 ⇒ fail

Defining the representation of a closed cfg (right) is simply a matter of representing its blocks
and interpreting a final label as an error (an invalid jump).6

Mutually Recursive Control-Flow Graphs. Lastly, we representmcfgs, i.e. sets of mutually recursive
cfgs. The main task is tying the recursive knot of function calls, similar to the cfg blocks. However,
the iter combinator falls short this time: calls are not necessarily tail recursive. We therefore
rely on a more general mrec combinator, to tie the knot for us by dynamically unrolling function
calls. Conveniently, LLVM IR is a first order language: all (internal) functions are defined at the
top-level, as part of the mcfg. We can therefore statically know their global identifiers, and build
an association list7 of type fundefs : list (V ∗ (list (V𝑢) → itree virE V𝑢)) mapping each
function address to its ITree representation. As shown below, the body passed to mrec can therefore
simply query this list to know if the function being called is internal, in which case it returns its
representation. Otherwise, it triggers back the call, this time explicitly classified as external. As
alluded to in Section 4.1,

JmcfgKmcfg fundefs 𝑓 𝑎𝑟𝑔𝑠 = mrec 𝑏𝑜𝑑𝑦 (CallV𝑢 (𝑓 , 𝑎𝑟𝑔𝑠))

𝑏𝑜𝑑𝑦 (CallV𝑢 (𝑢𝑓 , 𝑎𝑟𝑔𝑠)) =

𝑑 𝑓 ← pick(𝑢𝑓) ;;
match fundefs [𝑑 𝑓] with

| Some 𝑓 _𝑑𝑒𝑛 ⇒ 𝑓 _𝑑𝑒𝑛 (𝑎𝑟𝑔𝑠)
| None⇒ 𝑑𝑎𝑟𝑔𝑠 ← mapm (𝜆 𝑣 . pick(𝑣)) 𝑎𝑟𝑔𝑠 ;;

trigger (CallE
V (𝑢𝑓 , 𝑑𝑎𝑟𝑔𝑠))

4.3 Handling Events

Section 4.2 introduced a compositional representation of VIR in terms of ITrees. The effects captured
by the events contained in these trees do not have a presupposed implementation: we now define
their meaning in a modular way through independent handlers.
As shown in Figure 5, the full VIR semantic model is given by a łtower of interpretersž which

interpret events to different levels. Level 0 corresponds to the uninterpreted ITree. Each subsequent
level handles some events using an appropriate instance of interp. For example, the interpreter
from Level 0 to Level 1 handles intrinsic events only, whereas by Level 2 both intrinsic events
and global events have been handled. As will be developed in Section 5, we want to be able to

6Note that it is safe to provide a łdummyž origin block as LLVM IR explicitely prohibits entry blocks of functions to contain
Φ−nodes.
7Constructing this list happens when initializing the global, top-level state. See Section 4.4.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:12 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

intrinsics

propositional model

VIR

global environment

local environment

memory model

structural representation

itree E4 (* (* (*))) → Pℙ itree E4 (* (* (*)))

itree E5 (* (* (*))) → Pℙ

executable interpreter

Env
G

∋

Level 0

Level 1

Level 2

Level 3

Level 4

stateT (itree E1
)

itree E0

Env
L

stateT (itree E2
)

MemstateT (itree E3
)

*Env
G

* Env
L * Env

G

MemstateT (itree E4)* Env
L * Env

G

itree E4 (* (* (*))) MemstateT (itree E5)* Env
L * Env

G

MemstateT (itree E4
)* Env

L * Env
G

MemstateT (itree E5)* Env
L * Env

G

itree VellvmE

τundefmodel τundefinterpret = 0τ

Fig. 5. Levels of interpretation

handleI IntrinsicV (𝑓𝑛𝑎𝑚𝑒 , 𝑎𝑟𝑔𝑠) : itree 𝐸0 V =

match is_intrinsics (𝑓𝑛𝑎𝑚𝑒) with
| Some 𝑓 ⇒ 𝑣 ←↪ 𝑓 args in ret 𝑣
| None ⇒ trigger (IntrinsicV (𝑓𝑛𝑎𝑚𝑒 , 𝑎𝑟𝑔𝑠))

handleG 𝑒 𝑒𝑛𝑣 : stateT𝐸𝑛𝑣𝐺 (itree 𝐸1) _ =

𝜆 env . (match 𝑒 with
| GWr() (𝑙, 𝑣) ⇒ ret (Map.add 𝑙 𝑣 𝑒𝑛𝑣, tt)
| GRdV (𝑙) ⇒ 𝑣 ←↪ Map.lookup 𝑙 𝑒𝑛𝑣 in ret (𝑒𝑛𝑣, 𝑣))

handleSL 𝑒 : stateTFrame ∗ 𝑆𝑡𝑎𝑐𝑘 (itree 𝐸3) _ =

𝜆 (env, stack) .
(match 𝑒 with

| LPush() (𝑎𝑟𝑔𝑠) ⇒
ret (foldr (𝜆 (𝑥, 𝑑𝑣) . (Map.add 𝑥 𝑑𝑣))

Map.empty args, env :: stack), tt)
| LPop() ⇒
match 𝑠𝑡𝑎𝑐𝑘 with
| [] ⇒ fail
| 𝑒𝑛𝑣 ′:: 𝑠𝑡𝑎𝑐𝑘 ′ ⇒ ret ((𝑒𝑛𝑣 ′, 𝑠𝑡𝑎𝑐𝑘 ′), tt))

Fig. 6. Handlers for Interpretation Levels

establish that a program 𝑝1 refines a program 𝑝2 in the simplest monad allowing the refinement to
be established.
A second major benefit of using handlers is the ability to use different handlers for the same

events. This łplug-and-playž aspect makes it easier to experiment with semantic features, such
as alternate memory models. We also make crucial use of this feature to define both the full VIR
semantic model (the left path through Figure 5) and an executable VIR interpreter (the right path). As
explained below, the model accounts for nondeterminism in the VIR semantics by interpreting some
events propositionally (i.e., into sets characterized by Coq predicates), making them suitable for
specification but not extraction, whereas the executable interpreter concretizes the nondeterminism,
which is useful for testing and debugging. The two semantics share most of the interpretation
levels, allowing us to easily prove that the implementation refines the model (see Section 5).

The following subsections discuss the successive handlers for VIR’s events. Most of them target
state monads, of which the memory model is the most complex. The handlers for pick events Pand
undefined behaviorsU target the propTE monad of łpropositional sets of computations.ž

I: Intrinsics. VIR, like LLVM, supports intrinsic functions that extend its core semantics (for
instance to allow for the implementation of new łprimitivež arithmetic operations). Such intrinsics
are defined by a map associating each name to a semantic function of type list (V) → V + err,
i.e., a pure Coq function that takes a list of Vs and produces either an error or a V as a result.
The handler for intrinsics looks up the name, and runs the semantic function on the arguments,
returning the result (or raising an error if it fails).8

8If the intrinsic function isn’t handled here, the event is re-triggered, allowing downstream interpreters to handle it. For
instance the memory handler handles the memcpy intrinsics.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:13

G: Globals. Global variables in VIR are given by a state monad that acts on a map 𝑒𝑛𝑣 of type 𝐸𝑛𝑣𝐺
from identifiers to pointers. Handling globals simply involves converting GRdV (𝑘) and GWr() (𝑘, 𝑣,)
events into lookups and insertions into this map, respectively. The map 𝑒𝑛𝑣 is constructed at
initialization time and is constant thereafter.

L: Locals. Local variables are handled analogously to globals, L events being implemented w.r.t.
a map of type 𝐸𝑛𝑣𝐿. The scope of local variables will be handled by SL events.

SL : Stack. SL stack events are triggered when calling a function and returning from a function.
These SL events, LPush() (𝑎𝑠) and LPop() , set up the local environment containing the functions
arguments and pop this environment on function return, respectively. Local variables from an
enclosing scope in VIR are not accessible within the current scope, and so this stack of environments
can simply be a list of unrelated mappings from identifiers to values.

M: Memory. The handler for VIR’s memory events is far more complex than the handlers
described above. Lack of space prohibits us from describing it in full detail. The VIR implementation
is closest to the quasi-concrete model proposed by Kang, et al. [Kang et al. 2015]. Briefly, the quasi-
concrete model has a łlogicalž memory, represented by an integer map to blocks, where each
block is an integer map to symbolic bytes that contain actual bytes or representation information,
including the possibility of undefinedness. Logical addresses are represented as a pair of integers;
the first being the index in the map of blocks, and the second representing the offset of the first
byte of the value within the block.M events are handled by interpreting them into a state monad
containing this map of logical blocks, as well as a list of stack frames.
AllocaV (𝜏) allocates a new empty block with a size matching 𝜏 to the current stack frame.

Store() (𝑎, 𝑣) serializes 𝑣 into symbolic bytes, storing them at address 𝑎 in memory, and triggering
failure if 𝑎 is not allocated. LoadV𝑢 (𝜏, 𝑎) deserializes the symbolic bytes stored at 𝑎 in memory, also
failing on unallocated addresses. The GEPV (𝜏, 𝑑𝑣, 𝑣𝑠) event implements LLVM’s getelementptr
instruction, which is used for indexing into aggregate data structures, where 𝜏 is the type of
the structure, 𝑑𝑣 is the base address of the structure, and 𝑣𝑠 is a list of indices. The final twoM
events are PtoIV (𝑎) and ItoPV (𝑎), which represent pointer-to-integer and integer-to-pointer
casts respectively. To properly handle these casts the model also contains a łconcretež memory,
giving concretized blocks (i.e., blocks referenced by a pointer has been cast to an integer) a concrete
address that can be converted to an integer. Pointer values remain łlogicalž until they participate
in a cast instruction.
This memory model, though sound, is a source of misalignment between our semantics and

LLVM IR’s semantics. Indeed, as described previously, we have taken care of introducing under-
defined values in order to make sure that successive reads to an instance of undef could lead to
different results: it behaves as a random variable. However, this memory model is only able to store
a defined value: it collapses the non-determinism via the PickV (_) event when interacting with
the memory. This behavior prevents proving the correctness of certain optimizations, such as store
forwarding. Other proposed memory models, such as the łtwin allocation semanticsž by Lee et al.
[Lee et al. 2018] permit store forwarding, but prohibit other desirable optimizations (such as dead
allocation elimination). It remains an open research question how best to fully model the LLVM’s
complex memory semantics, but the modularity of our handlers should make it easier to adapt VIR
as the technology improves.

P: Pick. When implementing the handlers for a PickV (𝑢) event, which resolve nondeterminism,
there is a bifurcation: The łtruež semantic model, which aims to capture all the legal behaviors, uses a
handler that interprets behaviors into a monad propTE A ≜ itree 𝐸 𝐴→ P. This monad represents
sets of ITrees as Coq predicates, allowing us to use logical quantifiers to express the allowable

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:14 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

nondeterministic behaviors. On the other hand, for executable versions of the VIR semantics, we
can use any handler that implements one of the allowable behaviors, but provides a way to run VIR
programs. We will see in Section 5 that we can prove that a (good) executable interpreter refines
the model. Here, we just define the handlers themselves.
The P handler for the semantic model is shown below:

model_handleP PickV (𝑢) : propTE5 V = {𝑡 |

{

𝑡 ≈ fail J𝑢K𝐶 = ∅
𝑡 ≈ ret 𝑣 𝑑𝑣 ∈ J𝑢K𝐶 ∧ 𝑑𝑣 ≠ poison
𝑡 ≈ raiseUB 𝑑𝑣 ∈ J𝑢K𝐶 ∧ 𝑑𝑣 = poison

}

Here, ł≈ž stands for ITree equivalence. The set J𝑢K𝐶 denotes all possible defined values corre-
sponding to 𝑢. For example, we have J2/undefi64K𝐶 = {2, 1, 0, poison} because 2/2 = 1, 2/1 = 2,
2/0 = poison, and 2/n = 0 for all other (unsigned) n. Thus, handling PickV (2/undefi64) might
trigger undefined behavior or it might yield 0, 1, or 2, nondeterministically. If there are no con-
cretizations of 𝑢, the semantics fails.

Many executable implementations are allowed by this modelÐthey work by łpickingž a default
value (generally the equivalent of 0 for the given type) for each instance of undef𝜏 in the under-
defined expression 𝑢 and then evaluating the expression to obtain a defined value.

exec_handleP PickV (𝑢) : propTE5 V = ret default(u)

U: Undefined Behavior. VIR represents undefined behavior throughU events. AU event UB∅ is
triggered whenever undefined behavior is encountered, either directly from the interpretation of
the program, as in the case of a store to poison, or less directly through under-defined values and
P events, such as a division by undef as described above. As with P, there are both propositional
and executable handlers.
The propT handler is trivial: it permits the set of all ITrees of the appropriate type:

model_handleU UB∅ : propTE5 V = {𝑡 | 𝑡 : itree 𝐸5 V}

An executable semantics is free to do anything at all upon encountering undefined behavior. To aid
with debugging, our executable semantics simply fails:

exec_handleU UB∅ : propTE5 V = fail

4.4 Stitching the Semantics Together

Having represented our syntax as ITrees, and having defined handlers for each event type, we
combine them with interp (see Section 3) to obtain intepreters over complete ITrees as depicted in
Figure 5. The order in which we compose these interpreters is chosen to keep łsimplerž semantics
(such as the pure intrinsics) earlier and delay as far down the chain as possible the introduction of
the prop monad.

At the top-level, an LLVM program is parsed into a VIR representation containing the declarations
of globals9, themcfg, and the name of the main from which to start the execution. The set of internal
functions is fixed and known statically, which allows us to build the association list of function
addresses to denotations required by J_Kmcfg:

JprogKVIR main args mcfg =

genv ← build_global_env (𝑝𝑟𝑜𝑔) ;;

defns← mapm (𝜆 cfg . 𝑓 𝑣 ← trigger (GRdV (cfg.(𝑒𝑛𝑡𝑟𝑦))) ;;
ret (fv, JcfgKcfg)) prog ;;

𝑎𝑑𝑑𝑟 ← trigger (GRdV (𝑚𝑎𝑖𝑛)) ;;
JprogKmcfg defns (↑ 𝑎𝑑𝑑𝑟) args

9We elide the details of the initialization of the global environment, keeping build_global_env opaque.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:15

General Monad Laws
𝑥 ← ret 𝑣 ; ; 𝑘 𝑥 ≈ 𝑘 𝑣
𝑥 ← 𝑡 ; ; ret 𝑥 ≈ 𝑡

𝑥 ← (𝑦 ← 𝑠; ; 𝑡 𝑦); ; 𝑢 𝑥 ≈
(𝑦 ← 𝑠; ; 𝑥 ← 𝑡 𝑦; ; 𝑢 𝑥)

General Interpreter Laws
interp ℎ (trigger 𝑒) ≈ ℎ _ 𝑒
interp ℎ (ret 𝑟) ≈ ret 𝑟
interp ℎ (𝑥 ← 𝑡 ; ; 𝑘 𝑥) ≈
𝑥 ← interp ℎ 𝑡 ; ; interp ℎ (𝑘 𝑥)

ITree-specific Structural Laws
Tau 𝑡 ≈ 𝑡

𝑥 ← Tau 𝑡 ; ; 𝑘 𝑥 ≈ Tau (𝑥 ← 𝑡 ; ; 𝑘 𝑥)
𝑥 ← Vis 𝑒 𝑘1; ; 𝑘2 𝑥 ≈ Vis 𝑒 (𝜆 𝑦. (𝑥 ← 𝑘1 𝑦; ; 𝑘2 𝑥))

Fig. 7. Core equational theory of ITrees.

Finally, we obtain the full semantic model for VIR, model, as interp_vir(J_KVIR). If, rather than
composing all the layers of intepretation, we instead define interp_vir4, stopping at the fourth
level, we obtain a semantics that does not introduce the prop monadÐwe return to this idea in
Section 5. Finally, we can also interpret all stages, but using different handlers: the left path on
Figure 5 defines the propositional model, where the right path leads to an executable interpreter for
VIR that we refer to as interpreter.

5 VIR EQUIVALENCES AND REFINEMENT

One of VIR’s primary goals is to serve as a formal semantics suitable for reasoning about LLVM
IR code, for verifying optimization passes or the correctness of translations to/from it. We hence
require a notion of what it means for an optimization to be correct: we need a refinement relation
between LLVM programs. Due to the nondeterminism present in LLVM (e.g. for undef values and
undefined behaviors), a single program fragment 𝑝 may have a set of valid behaviors J𝑝K,and any
𝑝 ′ such that J𝑝K ⊇ J𝑝 ′K is a valid refinement of 𝑝 .

In this section, we define appropriate notions of refinement and prove that we can lift refinements
at the ITree level to set inclusions at the propositional level. We also establish some powerful
general-purpose machinery for working with these refinements, obtaining the correctness of VIR’s
executable interpreter with respect to the nondeterministic model as an easy corollary of the
correctness of handlers for pick and undefined behaviors. The refinement theory is crucial for
reasoning about VIR programsÐby lifting the structural equational theory to VIR constructs, we
obtain powerful relational reasoning principles suitable to prove correct program transformations
and compilers targeting VIR in a compositional fashion.

5.1 ITree Equivalences and Refinement Relations

At the heart of the refinement relations for ITrees is the 𝑡1 ≈𝑅 𝑡2, or eutt relation, also known
as łequivalence up to taus.ž Here 𝑡1 ≈𝑅 𝑡2 relates 𝑡1 with 𝑡2 if these itrees are weakly bisimilar (i.e.
they produce the same tree of visible events, ignoring any finite number of Taus) where all values
returned along corresponding branches are related by 𝑅. We omit the definition of ≈𝑅 (see [Xia
et al. 2020; Zakowski et al. 2020] for details), instead focusing on its relevant properties. Technically,
≈𝑅 is an equivalence relation only when 𝑅 is; the usual notion of weak bisimulation is recovered as
the instance ≈eq, where the relation is chosen to be Coq’s Leibnitz equality, eq, and we leave off the
subscript in this case. The ≈ relation plays a particular role in that it can be used as a rewriting rule
in any ≈𝑅 goal. When 𝑅 is a preorder (i.e. reflexive and transitive), so is ≈𝑅 , and we can think of
this relation as a form of tree refinement; in this case we write 𝑡1 ≳𝑅 𝑡2 to emphasize the (potential)
asymmetry and think of 𝑡2 as refining 𝑡1.

The ITrees equational theory is defined in terms of ≈. Figure 7 shows the key equivalences that
allow us to exploit the monadic structure and semantics of interpretations. The general interpreter
laws hold for any monad that supports a suitable implementation of the iter combinator, which
includes ITrees and many monads built from themÐespecially important for the VIR semantics are

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:16 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

𝑅(𝑟1, 𝑟2)

ret 𝑟1 ≈𝑅 ret 𝑟2
ERet

𝑡1 ≈𝑅1 𝑡2 𝑡2 ≈𝑅2 𝑡3

𝑡1 ≈𝑅1◦𝑅2 𝑡3
ETrans

𝑡1 ≈𝑈 𝑡2 ∀ 𝑢1, 𝑢2,𝑈 (𝑢1, 𝑢2) ⇒ (𝑘1 𝑢1) ≈𝑅 (𝑘2 𝑢2)

(𝑥 ← 𝑡1; ; (𝑘1 𝑥)) ≈𝑅 (𝑥 ← 𝑡2; ; (𝑘2 𝑥))
ECloBind

𝑡1 ≈𝑅1 𝑡2 𝑅1 ⊆ 𝑅2

𝑡1 ≈𝑅2 𝑡2
EMon

𝑡1 ≈𝑅 𝑡2

(interp ℎ 𝑡1) ≈𝑅 (interp ℎ 𝑡2)
EInterp

Fig. 8. Relational reasoning principles

the state and propositional monad transformers.10 The figure also shows laws specific to ITrees,
which explain how Tau and Vis interact with bind. The first of these laws, (Tau 𝑡) ≈ 𝑡 , lets us ignore
any (finite number) of Tau’s, which is where ≈ gets the name łequivalence up to tausž from.

Figure 8 shows (selected) relational reasoning principles that hold for ≈𝑅 , for an arbitrary relation
𝑅. In the case of refinements, the ERet rule establishes the basic relation between values returned
by the computation, and reflexivity of 𝑅 ensures that the computation refines itself. In the ETrans
rule, we write 𝑅1 ◦𝑅2 for relation composition. For refinements, we have 𝑅 ◦𝑅 = 𝑅 by transitivity, so
indeed tree refinement is also transitive. Moreover, ETrans implies that rewriting with the monad
and interpretation laws is sound for refinement: since eq ◦ 𝑅 = 𝑅 = 𝑅 ◦ eq for any relation 𝑅. This
means that we can string refinements and equivalences together to reach a desired conclusion. For
instance, from 𝑡1 ≈ 𝑡2 ≳𝑅 𝑡3 ≳𝑅 𝑡4 ≈ 𝑡5 we can conclude 𝑡1 ≳𝑅 𝑡5.

Rule EMon says that monotonicity allows us to prove a stronger refinement relation to establish
a weaker one, and EInterp says that interpretation with respect to the same handler preserves any
refinement relation (intuitively, since handlers affect only the visible events of the tree, the leaves
remain in the refinement relation). Finally, ECloBind (for łrelational closure under bindž) says
that, to prove that two trees both built from binds are related by refinement, it suffices to find some
relation𝑈 (which is existentially quantified in this rule) that relates the results of the first parts of
the computation and that for any answers related by 𝑈 that they might produce, the continuations
of the bind are in refinement. ECloBind plays a crucial role in reasoning about ITreesÐwe will see
in more detail below how it is used.

5.2 Interpretation into P

Recall that a predicate 𝑆 : 𝐴→ P can be thought of as a (propositionally-defined) set of values of
type 𝐴. We write 𝑎 ∈ 𝑆 for the proposition 𝑆 𝑎, which indicates that 𝑎 is an element of 𝑆 . Similarly,
the type propTE A, defined as itree 𝐸 𝐴→ P, represents a set of ITrees, where we additionally treat
set membership modulo ≈. We use this type in the VIR semantics to model nondeterminism in the
language definition. The type propTE is nearly a monad,11 where, intuitively, ret 𝑥 is the singleton
set {𝑥} corresponding to a deterministic result, but bind spec 𝑘𝑠𝑝𝑒𝑐 must take the union over all
possible nondeterministic behaviors allowed by spec, when each of those might itself continue via
any one of a set of possible behaviors characterized by 𝑘𝑠𝑝𝑒𝑐 . The unions are implemented in Coq
by existentially quantifying over the possibilities. Formally, we have:

Definition 5.1 (propTE A operations).

• ret (𝑥 : 𝐴) : propTE 𝐴 = 𝜆(𝑡 : itree 𝐸 𝐴) . 𝑡 ≈ ret 𝑥

10The Coq code uses typeclasses to characterize such monads and to overload ≈𝑅 with suitable notions of refinement.
11All of the expected monad laws hold with respect to equality defined as set equivalence (up to ≈), except one direction of
bind associativity. This is expected in the presence of nondeterminism [Maillard et al. 2020].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:17

• bind (spec𝐴 : propTE 𝐴) (𝑘𝑠𝑝𝑒𝑐 : 𝐴→ propTF 𝐵) : propTF 𝐵 =

𝜆(𝑡 : itree 𝐸 𝐵) . ∃(𝑡𝑎 : itree 𝐸 𝐴) ∃(𝑘 : 𝐴→ itree 𝐸 𝐵)) .

𝑡 ≈ (𝑥 ← 𝑡𝑎 ; ; (𝑘 𝑥)) ∧ 𝑡𝑎 ∈ spec𝐴 ∧
∀(𝑎 : 𝐴), (𝑎 ∈ returns 𝑡𝑎) ⇒ (𝑘 𝑎) ∈ (𝑘𝑠𝑝𝑒𝑐 𝑎)

Here, ret lifts a value into the singleton set containing the pure itree that simply returns the
value. The bind operation is more interesting: the resulting set contains all trees that can be factored
into a subtree 𝑡𝑎 satisfying the predicate spec𝐴, bound to a continuation 𝑘 that maps every answer 𝑎
that might be returned by 𝑡𝑎 to a tree satisfying 𝑘𝑠𝑝𝑒𝑐 𝑎. The returns 𝑡𝑎 predicate is an inductively
defined characterization of the set of values that might be returned by the computation 𝑡𝑎 , and it is
given by the definition below.

Definition 5.2 (Returns 𝑡).
(Returns 𝑡) : 𝐴→ P is the smallest set such that

• 𝑡 ≈ ret 𝑎 ⇒ 𝑎 ∈ (Returns 𝑡)

• 𝑡 ≈ Tau 𝑢 ⇒ 𝑎 ∈ (Returns 𝑢) ⇒ 𝑎 ∈ (Returns 𝑡)

• 𝑡 ≈ Vis 𝑒 𝑘 ⇒ ∃(𝑏 : 𝐵), 𝑎 ∈ (Returns (𝑘 𝑏)) ⇒ 𝑎 ∈ (Returns 𝑡), where 𝑒 : 𝐸𝐵 is an event with
response type 𝐵.

The key part of its definition says that a value 𝑎 is in the set returns(Vis e k) if there exists
a value 𝑏 such that 𝑎 ∈ returns(k 𝑏), in other words, if the continuation k can return 𝑎 for some
𝑏. Crucially, returns 𝑡𝑎 can be a strict subset of values of type 𝐴Ðfor instance it is empty when
𝑡𝑎 (always) diverges. Quantifying over all 𝑎 ∈ 𝐴, rather than just those that 𝑡𝑎 might yield, is too
strong and breaks many expected monad law equivalences.
The semantics of nondeterministic events like pick are given by interpretation via a function

interp_prop into propTE A, which as we saw above, represents a set of ITrees. This is sufficient
for the purposes of defining the semantics, but to prove a refinement relation between two such
interpretations, it is convenient to also allow the sets produced by interpreter to be łsaturatedž by
a relation, so we parameterize the type of interp_prop to include a relation 𝑅 on the underlying
ITree type and define it as follows:

Definition 5.3 (interp_prop). Let ℎ𝑠𝑝𝑒𝑐 : 𝐸 { propTF be a (propositional) handler and 𝑅 : 𝐴→
𝐵 → P be a relation, then interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 has type itree 𝐸 𝐴→ propTF 𝐵 and is defined as a
coinductive predicate satisfying:

• If 𝑅(𝑟1, 𝑟2) and 𝑡2 ≈ ret 𝑟2 then 𝑡2 ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 (Ret 𝑟1)

• If 𝑡2 ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 𝑡1 then 𝑡2 ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 (Tau 𝑡1)

• If 𝑡2 ≈ (bind 𝑡𝑐 𝑘2) for some 𝑡𝑐 and 𝑘2 : 𝐶 → itree 𝐸 𝐵 such that 𝑡𝑐 ∈ (ℎ𝑠𝑝𝑒𝑐 𝑒) and
∀(𝑐 : 𝐶), (returns 𝑡𝑐 𝑐) ⇒ (𝑘2 𝑐) ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 (𝑘1 𝑎), then
𝑡2 ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 (Vis 𝑒 𝑘1)

This definition of interp_prop satisfies the general interpreter laws in Figure 7.12 More impor-
tantly for reasoning about sets of behaviors is that interpretation łliftsž handlers. First, let us define
what it means for a handler ℎ to satisfy some specification:

Definition 5.4 (Handler Correctness). A handler ℎ : 𝐸 { itree 𝐹 is correct with respect to a
specification ℎ𝑠𝑝𝑒𝑐 : 𝐸 { propT F, written as ℎ ∈ ℎ𝑠𝑝𝑒𝑐 , if and only if ∀ 𝑇 𝑒, (ℎ 𝑇 𝑒) ∈ ℎ𝑠𝑝𝑒𝑐 𝑇 𝑒 .

Then we prove that interpretation of some tree by a handler ℎ that is correct with respect to
some specification ℎ𝑠𝑝𝑒𝑐 yields a computation whose behaviors are among those allowed by the
specification. The following lemma follows by straightforward coinduction.

12Except that, as for bind associativity, the bind law holds in only one direction, again due to nondeterminism.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:18 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

outputs(cfg2) ∩ inputs(cfg1) = ∅ 𝑡𝑜 ∉ inputs(cfg1)

Jcfg1 ++ cfg2Kbks (𝑓 , 𝑡𝑜) ≈ Jcfg2Kbks (𝑓 , 𝑡𝑜)
SubCFG1

independent_flows cfg1 cfg2 𝑡𝑜 ∈ inputs(cfg𝑖)

Jcfg1 ++ cfg2Kbks (𝑓 , 𝑡𝑜) ≈ JcfgiKbks (𝑓 , 𝑡𝑜)
Flow

Jcfg1 ++ cfg2Kbks (𝑓 , 𝑡𝑜) ≈ 𝑥 ← Jcfg1Kbks (𝑓 , 𝑡𝑜) ;; match 𝑥 with | inl fto⇒ Jcfg1 ++ cfg2Kbks fto
| inr 𝑣 ⇒ ret 𝑣

SubCFG2

Fig. 9. Structural VIR equations (excerpt)

Lemma 5.5 (interp_prop correct). For any handler ℎ ∈ ℎ𝑠𝑝𝑒𝑐 , any reflexive relation 𝑅, and any
tree 𝑡 : itree 𝐸 𝐴 it is the case that (interp ℎ 𝑡) ∈ interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 𝑡 .

A significantly less trivial propertyÐthe proof is fairly tricky and we refer interested readers to
the Coq development for detailsÐestablishes that the analog of the EInterp rule from Figure 8 also
holds when we interpret into the PropT monad.

Lemma 5.6 (interp_prop respects refinement). For anyℎ𝑠𝑝𝑒𝑐 and any partial order𝑅, if 𝑡1 ≳𝑅 𝑡2,
then (interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 𝑡1) ⊇ (interp_prop𝑅 ℎ𝑠𝑝𝑒𝑐 𝑡2).

With the above results established, our development uses interp_prop𝑅 in two ways. In the
definition of the VIR propositional model (see the left path of Figure 5), we use 𝑅 = eq (Coq’s
equality), in which case interp_propeq gives us the desired łsets of ITreesž semantics for modeling
nondeterminism. On the other hand, we use Lemma 5.6 to reason about that modelÐin particular,
to establish refinement properties, where we pick 𝑅 to be nontrivial (see Section 5.4).

5.3 Equational Theory for VIR

We use the ITrees equational theory descried above to reason about VIR code. As simple examples,
it is easy to prove that J3+4K𝑒 ≈ J7K𝑒 , and, with a bit more work, that interp_vir3J3 + %𝑥K𝑒 (𝑙, 𝑔) ≈
interp_vir3J7K𝑒 (𝑙, 𝑔) whenever 𝑙 (%𝑥) = 4 (we have to interpret to 𝐿3 to reason about the local
environment 𝑙). Equations of this form let us use rewriting to łexecutež the VIR semantics in any
refinement proof.

It is a common compiler optimization to perform systematic rewriting of equivalent expressions,
often associated with clever mechanisms used to find the optimal sequence of rewriting according
to some cost function. Since expressions depend on the state, but (most) do not cause side effects,13

the correctness of rewriting expression 𝑒 into 𝑓 can usually be established sound with respect to a
strong notion of equivalence: they are bisimilar, and compute exactly the same states, i.e.:

∀𝑔 𝑙 𝑚, interp_vir4J𝑒K𝑒 𝑔 𝑙 𝑚 ≈ interp_vir4J𝑓 K𝑒 𝑔 𝑙 𝑚.

This equivalence, much stronger than the notion of refinement that completely disregards the
computed states (see Section 5.4), can be easily lifted to all contexts without any syntactic conditions
about variables in scope. Naturally, this strong equivalence also entails the refinement relation:
substitution of 𝑓 for 𝑒 is always sound, in any piece of syntax.

While one could always unfold the denotation of a VIR program to systematically use the low level
equational theory of the underlying monad, it would quickly be extremely tedious and impractical.
Instead, we make all representation functions opaque and provide a high level equational theory to
reason directly over the syntax of VIR programs.

The equations pertaining to the denotation of open cfgs are of particular interest: we highlight a
couple of them in Figure 9. Suppose that we are interested in the semantics of a cfg composed of

13In our memory model, pointer-to-integer casts do have side effects.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:19

two components cfg1 and cfg2. Equation SubCFG1 allows us to simply disregard cfg1 granted that
we syntactically check that we are jumping into cfg2, and that it cannot jump back into cfg1: we can
reason about sequence. Similarly, equation Flow helps to reason about branches: if cfg1 and cfg2
are (syntactically) completely independent, the semantics of their union is simply the semantics of
whichever subgraph we enter. Finally, equation SubCFG2 states that we can always temporarily
forget about cfg2 by starting execution in cfg1 (without cfg2) and then proceeding afterward with
the whole graph in scope.

Lifting expression equivalence. The compositionality of the semantics allows us to lift equivalences
of sub-components to the context. In general, this process is non-trivial: an optimization eliminating
an instruction from a block can naturally only be lifted into a context where the assigned variable is
dead. However, compositionality allows us to prove the syntactic conditions on the context under
which the substitution is valid once and for all, and reason locally when proving optimizations.

Reasoning about the control flow in a stateless world: block fusion. While substitution of equivalent
expressions is the canonical example of a local reasoning enabled by compositionality, we prove a
simple block fusion optimization to illustrate the benefits from the modularity of the semantics.

The optimization scans a cfguntil it finds a block 𝑏𝑘𝑠 such that: (1) 𝑏𝑘𝑠 has a direct jump to some
block 𝑏𝑘𝑡 , (2) 𝑏𝑘𝑡 admits only 𝑏𝑘𝑠 for predecessor, (3) 𝑏𝑘𝑠 and 𝑏𝑘𝑡 are distinct and (4) 𝑏𝑘𝑡 has no
phi-node. If it finds such a couple, it removes them from the graph, adds their obvious sequential
merge, and updates the phi-nodes of the successors of 𝑏𝑘𝑡 to expect instead a jump from 𝑏𝑘𝑠 .

This optimization only modifies the control flow of programs. As a consequence, we can establish
the correctness of the transformation without interpreting any event in the graph. Assuming
a well-formed graph 𝐺Ðall block identifiers are unique, and phi-nodes only expect jumps from
predecessorsÐwe establish:

JGKcfg ≈ Jfusion_block GKcfg.

The result is established with no layer of interpretation, abstracting away from the state. Once
again, the equivalence can be transported by interpretation all the way to the top-level semantics.
The proof of this result on closed cfgsderives from a bisimulation established on open cfgs. At

that level, the post-condition established is not straightforward equality of computed results: the
provenance of a jump out of the graph may have been changed by the transformation. This subtlety
disappears when specialized over closed graphs, resulting in this simple ≈ relation.
It is worth noting that establishing the simulation for this optimization must be done using an

explicit coinductive proof Ð in contrast to transformations such as loop unrolling for instance. To
the best of our knowledge, the axiomatization of the ITree loop iterators is indeed not expressive
enough to reason about such fusion because it requires matching two iterations of a body to a
single iteration of the body for some values of the accumulator.

5.4 VIR Refinements

The refinement machinery defined in Sections 5.1 and 5.2 lets us give a clean semantics to VIR’s
underspecified values and undefined behaviors. Moreover, we can straightforwardly define appro-
priate refinement relations that work at any level of interpretation shown in Figure 5 such that
refinement at one level implies refinement at the next. This arrangement means that we can prove
the correctness of program transformations at whatever level is most suited to the task.

Uvalue refinements. In order to prove refinements between programs we need to know what it
means for a value to be a refinement of another in VIR. For concrete values, this is straightforward: re-
finement is reflexive and anything can refine poison. However, as we have established, LLVMmakes

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:20 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

use of (typed) under-defined values values, which can represent arbitrary (typed) sets of concrete val-
ues. The refinement relation is thus given by inclusion between the sets of concrete values that can
be represented by aV𝑢 . At the base case we have Jundef𝜏K𝐶 = {𝑣 | 𝑣 is a concrete value of type 𝜏}
where the notation J𝑥K𝐶 represents the set of concrete values of 𝑥 . For instance Jundef𝑖64K𝐶 is the
set of all 64-bit integers. SinceV𝑢 contains łdelayedž computations like 2 × undef𝑖64, the sets are
nontrivial. In this case, we have that J2 × undef𝑖64K𝐶 is the set of even 64-bit integers.

Definition 5.7 (Uvalue refinement). We say that 𝑎 ∈ V𝑢 refines𝑢 ∈ V𝑢 precisely when J𝑢K𝐶 ⊇ J𝑎K𝐶
and we write 𝑢 ⪰ 𝑎 for that relation.

Uvalue refinement, namely 𝑡1 ≈⪰ 𝑡2, gives us the base notion of what it means for VIR programs
to be related at the structural level 𝐿0 in which none of the LLVM events have yet been interpreted.
Levels 1-4 introduce pieces of state: the compiler has no responsibility to preserve them, as long as
programs exhibit the same series of external calls and returns values are related by ⪰. Thus, at 𝐿1
we use the refinement 𝑡1 ≈T×⪰ 𝑡2, where T is the total relation. Each subsequent state interpretation
adds another T × − to the relation.
A consequence of EInterp is that refinement at a level implies refinement at later levels. For

instance, we have:

Lemma 5.8 (𝐿0 to 𝐿1 refinement).

For any global state 𝑔, if 𝑡1 ≈⪰ 𝑡2 then (interp_global 𝑡1 𝑔) ≈T×⪰ (interp_global 𝑡2 𝑔).

For P and U, this approach falls short as they lift their events into the propTE monad. We
instead use Lemma 5.6 to lift a tree refinement to set inclusion, which gives us the desired definition
of top level refinement for VIR programs.

Soundness of the executable interpreter. A pleasingÐand very usefulÐconsequence of the above
refinement lemmas is that it is almost trivial to prove that the executable VIR interpreter’s pro-
gram behaviors are permitted by the VIR semantics. The following theorem follows directly from
Lemma 5.5 by showing that the executable handlers for P andU are correct with respect to their
propositional specifications (which is entirely straightforward, since for P the only requirement is
that the handler choose a concrete value of the appropriate type andU allows any behavior at all).

Theorem 5.9 (VIR interpreter soundness). For any program 𝑝 , (interpreter 𝑝) ∈ model 𝑝 .

5.5 Floyd-Hoare-Style Forward Relational Reasoning

From the point of view of reasoning, we can think of the 𝑅 of ≈𝑅 as a relational postcondition
satisfied by two bisimilar computations. Heterogeneous relations 𝑅 : 𝐴 → 𝐵 → P, which relate
ITrees of different return types, are useful when connecting the behaviors of two ITrees, as is
typical when reasoning about a compiler’s or program transformation’s correctnessÐwe describe
such a case study in Section 6.
In this case we prove 𝑡𝑠𝑟𝑐 ≈𝑆𝑇 𝑡𝑡𝑔𝑡 for source and target trees that encode their respective

semantics. Relation 𝑆𝑇 establishes the connection between source and target states, which might
be of different types. The general relational properties work together allowing a verification
strategy following this recipe: (1) rewrite 𝑡𝑠𝑟𝑐 and 𝑡𝑡𝑔𝑡 using the monad laws to normalize the trees
by unnesting binds, eliminating Taus and łbubblingž triggers and variables to the top; (2) use
ECloBind to break down the term into simpler pieces that use assumptions about the variable
from the environment or lemmas about the triggered event’s handler; (3) conclude by ERet or
independent lemmas established over the correctness of these smaller pieces.
When working with VIR in particular, we apply the same recipe but change the granularity of

our łatomicž computations: we do not bubble up triggers but instead we bubble up denotations

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:21

of individual instruction, keeping their representation opaque and relying on axiomatizations of
their behaviors.
Here ECloBind is analogous to the usual łsequencingž rule from Hoare logic, stating that to

establish a postcondition 𝑅, we need to find some intermediate relation𝑈 that acts as a postcon-
dition for the first tree. While this relation shares some similarities with the more traditional
simulation relation used in backward-simulation-based approaches, it does not have to be global:
each application of the ECloBind rule may introduce a different relation, much in the style of
Floyd-Hoare forward proof. EInterp allows commuting ≈𝑅 through interpreters.

5.6 Expressing Functional Properties of VIR: a Derived Unary Program Logic

Using eutt, we can express and prove in the same framework the equational theory of VIR, the
correctness of VIR to VIR optimizations, or, when used heterogeneously, to prove transformations
relating VIR to other languages. When conducting such proofs, ≈𝑅 can be thought as a termination,
trace equivalence, sensitive relational program logic, where ECloBind acts as a cut rule.
An important missing aspect is the ability to express (and use in refinement proofs) functional

properties of specific programs. To this end, we introduce a unary interpretation of eutt: given
𝑡 : itree 𝐸 𝑋 and 𝑃 : 𝑋 → P, we write 𝑡 ↩→ 𝑃 ≜ 𝑡 ≈(𝜆 (𝑥,𝑦)=>𝑃 𝑥) 𝑡 .

14

This unary relation inherits from eutt a sequencing rule, and allows for the combination of
postconditions of a same computations with respect to the usual logical combinators. This program
logic has a partial correctness interpretation: all finite branches of the tree lead to the postcondition,
but some branches may diverge.

We prove that such unary judgments can be established independently and easily invoked during
refinement proofs. We derive to this end a new version of the ECloBind rule:
𝑡1 ↩→ 𝑄1 𝑡2 ↩→ 𝑄2 𝑡1 ≈𝑈 𝑡2 ∀ 𝑢1, 𝑢2,𝑈 (𝑢1, 𝑢2) ⇒ 𝑄1 𝑢1 ⇒ 𝑄2 𝑢2 ⇒ (𝑘1 𝑢1) ≈𝑅 (𝑘2 𝑢2)

(𝑥 ← 𝑡1; ; (𝑘1 𝑥)) ≈𝑅 (𝑥 ← 𝑡2; ; (𝑘2 𝑥))

A semantically simple, but practically crucial example of application of this rule is during the
proof of correctness of the block fusion optimization. During the simulation, the semantics of
terminators of blocks that are not the fused one are matched one against another triviallyÐthey are
the same. However, the correctness of the transformation requires us to prove that we will not jump
to the fused block. To do so, we use this unary predicate to prove as a property of the semantics
that the denotation of blocks can only return labels that are syntactically in the successors of the
block. While this fact is intuitively trivial, establishing it requires a case analysis on the terminator
and an explicit processing of its semantics Ð something that one one does not want to inline in a
refinement proof.

6 CASE STUDY: HELIX

Besides allowing us to reason about LLVM IR program transformations and to prove the adequacy
of the executable interpreter, it is also important that the VIR semantics be usable for applications
like compiler correctness proofs. To that end, we have (in a parallel project) verified the correctness
of HELIX, a compiler that targets LLVM IR. HELIX synthesizes high-performance implementations
of numerical algorithms, providing a certified compiler for a formally-specified DSL [Zaliva and
Franchetti 2018; Zaliva and Sozeau 2019; Zaliva et al. 2020]. HELIX is inspired by SPIRAL [Franchetti
et al. 2018], an automated program synthesis tool that generates efficient implementations of
computational kernels across a variety of platforms.

14We show that the definition 𝑡 ≈(𝜆 (𝑥,𝑦)=>𝑃 𝑥∧𝑥=𝑦) 𝑡 is equivalent.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:22 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

The full details of the verification effort are beyond the scope of this paper, so we refer interested
readers to the HELIX repository for more details15. Here we sketch the process of using ITree
relational reasoning principles to prove the correctness of the last stage of the compiler, which
translates an intermediate language called FHCOL to VIR. Proving the correctness of this translation
is an excellent stress test for VIR’s infrastructure, as the languages are significantly different. FHCOL
is a highly-specialized, imperative DSL designed to operate on fixed-length vectors of floating-point
numbers with a relatively simple memory model, consisting of blocks that directly store 64-bit
floating point values, inspired by CompCert’s first memory model [Leroy et al. 2012]. In contrast,
VIR is a general-purpose, low-level language, equipped with a more complex memory model, as
described in Section 4.3. Furthermore, the compiler from FHCOL, as well as the big-step semantics
for FHCOL, were developed independently, and with no prior knowledge of VIR’s semantics. 16

Fig. 10. Verification Methodology

In the remainder of this section, we describe at a high
level how the expressiveness of our semantic framework can
be leveraged to tackle this problem following the schema
shown in Figure 10. The first step is to follow the recipe from
Section 4 to define an ITree-based semantics for FHCOL,
and prove that this semantics refines the preexisting one.
Next, we state the correctness of the translation, using the generality of the heterogeneous relation
≈𝑅 to relate the completely different memory models involved. Finally, we take advantage of the
compositionality of our approach to prove this correctness theorem by straightforward induction
on FHCOL’s syntax, following the natural structure of the compiler. The proofs are conducted in
the postcondition-driven style described in Section 5.5.

6.1 A Sound ITree-Based Semantics for FHCOL

FHCOL is equipped with a big-step operational semantics. As the language is strongly normalizing,
the structure of the semantics is relatively simple: given an FHCOL operator op, an evaluation
context 𝜎 and an initial memory mem, (evalFHCOL op 𝜎 𝑚𝑒𝑚) either fails, or returns the final memory.
A distinguished pointer out is used to contain the vector result of the computation.

We have defined an alternate ITree semantics for FHCOL following VIR’s approach, as described
through Section 4, albeit at a smaller scale. An FHCOL operator op is represented as an ITree
JopK𝜎

𝐹𝐻𝐶𝑂𝐿
acting over a HELIX interface of memory and failure events. Thememory events are then

handled into a state monad over FHCOL’s memory model, similar to the handler from Section 4.3,
resulting in an interpretation function interp_mem. Finally, we have formally proven that this
denotation is a sound refinement of FHCOL’s big-step semantics:

(evalFHCOL op 𝜎 mem = Some mem′) ⇒ (interp_mem (JopK𝜎𝐹𝐻𝐶𝑂𝐿) mem ≈ 𝑅𝑒𝑡 (mem′,tt))

The proof proceeds by induction over FHCOL’s syntax, leveraging the equational reasoning
described in Figure 7. The new semantics is designed to match up with the original, providing the
necessary glue to reason in terms of ITrees. The proof is fairly straightforward17, except for the
encoding of FHCOL for loops into ITrees’s iterators.

6.2 Verification of the FHCOL to VIR Translation

Having ITree representations for FHCOL and VIR, we can now express the correctness of the
compiler using the approach developed in Section 5.4. This time, rather than relating one VIR

15https://github.com/vzaliva/helix
16For context, HELIX as a whole is roughly 45 kloc. FHCOL itself contains a cumulative total of 11 operators, and 22 built-in
functions. The compiler from FHCOL to VIR is over 1 kloc.
17The complete definition of the new semantics and the proof of it equivalence to big-step semantics is only 843 loc

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

https://github.com/vzaliva/helix

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:23

program to another, we instead relate a HELIX op to a VIR cfg by interpreting away the different
memory events to obtain state-monad transformed ITrees expressible in the same event signatures.
On the HELIX side, we write J−K𝜎

𝐻
for the resulting semantics. On the VIR side we can use

interp_vir4 (J−Kcfg) because compilation of FHCOL’s operators does not exhibit under-defined
values and does not cause undefined behavior, so the equivalence can be established with VIR’s
fourth level of interpretation, and we can conveniently reason without introducing the propmonad.
The theorem below states the core correctness result. It shows that if a HELIX op successfully

compiles and is well defined, then running the source op starting from a memory𝑚𝐻 and envi-
ronment 𝜎 is equivalent to running the resulting VIR control-flow graph starting in a related VIR
memory𝑚𝑉 , global environment 𝑔 and local environment 𝑙 . The invariants also use 𝑠1 and 𝑠2 to
track the set of local variables generated by the compiler and ensure that the local environment is
modified only in that set.

Theorem 6.1 (FHCOL compilation correctness). If

− compile(op, 𝑠1) = Some (𝑠2, 𝑖𝑛, cfg) successful compilation
− nofail(JopK𝜎

𝐻
𝑚𝐻) well-defined source

− (state_invariant 𝜎 𝑠1 𝑚𝐻 (𝑚𝑉 , (𝑙, 𝑔)) ∧ scoped 𝜎 𝑠1 𝑠2) state invariant

then JopK𝜎
𝐻
𝑚ℎ ≈𝑄 interp_vir4 (JcfgKcfg) (𝑏, 𝑖𝑛) 𝑔 𝑙 𝑚𝑉 where relation 𝑄 is defined such that

𝑄 (𝑚′𝐻 , _) (𝑚
′
𝑉 , (𝑙

′, (𝑔′, 𝑜𝑢𝑡)) ⇒ (state_invariant 𝜎 𝑠𝑠 𝑚
′
𝐻 (𝑚

′
𝑉 , (𝑙

′, 𝑔′))

∧ ok(𝑜𝑢𝑡) ∧ local_modif 𝑙 𝑙 ′ ⊆ [𝑠1, 𝑠2]

The backbone of the proof relies on a complex state_invariant predicate that shows how
FHCOL’s notions of memory and evaluation context relates to VIR’s notions of global state, local
state, and memory. This invariant is a subset of the simulation invariant we would need to spell out
for a backward-simulation-based approach. However, due to the compositionality and modularity
of these ITrees-based approaches, we need only focus on the relation between the memories of the
both languages. We do not need the typical reasoning about control flow, usually encoded through
relations between the respective syntactic terms, or respective program counters.
Furthermore, since we can give meaning to syntactic subcomponents of both FHCOL and VIR,

we are able to easily express the correctness of each code-generation function used by the compiler.
To do so, we establish similarly that the corresponding denotations are related by ≈𝑅 for 𝑅 a relation
specific to the each case considered and locally strengthening 𝑄 . The proofs rely crucially on the
relational reasoning principles discussed in Section 5.

7 REFERENCE INTERPRETER VALIDATION

One big benefit of using ITrees as the basis for our Coq semantics is that we are able to extract
an executable reference interpreter. To run VIR code, we use a minimal driver, written in OCaml,
that traverses an ITrees generated by the semantics, performing the appropriate action for each
event. We already defined executable handlers for the nondeterministic events in Section 4.3 and
Section 4.3, but there are still F (failure) and CE (external calls) events that have semantic content.
Debug eventsD have no semantic content, but we exploit the ability to write event handlers on the
OCaml side to allow łprintf-stylež debugging. The ability to do this for a large Coq formalization
is, in our experience, invaluable.
Our development also contains an (unverified) parser from LLVM IR’s surface syntax to VIR’s

internal AST, and a pretty printer in the reverse direction. We can hence insert VIR-verified passes
into an otherwise unverified compilation chain and interoperate with LLVM IR-native passes.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:24 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

Testing the interpreter. Executability allows for basic differential testing against another LLVM
implementation. The main question is whether our Coq implementation matches the behavior
expected for the LLVM IR. Due to the presence of undef, an LLVM IR program might have multiple
legal behaviors, but an LLVM implementation (and our interpreter) will produce only one, so we
include only deterministic test cases in the test suite. Although our interpreter supports external
function calls, for simplicity, we tested only programs that don’t perform IO; we also considered
only programs in the subset of LLVM IR covered by VIR semantics.

Unit Tests. We have developed in conjunction with VIR a battery of unit tests. Each test is a
standard .ll file containing one or more functions that exercise LLVM IR features and produce
numerical outputs. The suite contains 140 total tests, and covers arithmetic operations for various
bit-width integers, treatment of poison, control-flow operations, phi-nodes, recursion, memory
model, aggregate types, etc. In all cases, our reference interpreter produces the same output as a
corresponding executable compiled via llc.18

QuickChick. We have also developed QuickChick generators for VIR programs, allowing us to
randomly generate programs to use as test cases. The primary property we wish to test is that the
VIR interpreter agrees with LLVM proper. Properties in QuickChick are tested by first extracting
the property into an ocaml program, making it straightforward to use our extracted interpreter, and
additionally it is possible to use Coq’s extraction mechanism to expose a function that will serialize
our VIR program into a .ll file, compile it with clang, and execute it. With this we can perform
basic differential testing by comparing the return values from our interpreter and the compiled
program, and currently our interpreter agrees across hundreds of generated test cases. At present
our QuickChick generators only create fairly straightforward integer programs without loops,
but we have demonstrated that it is viable to combine property based testing with the executable
interpreter derived from our semantics. We hope to extend this work in the future by generating
more interesting programs, but this is beyond the scope of this paper as projects like CSmith[Yang
et al. 2011] have demonstrated that this can be a substatial contribution on its own.

HELIX. The HELIX test suite includes eleven tests of varying levels of complexity, obtained
by using the verified HELIX compiler described above to produce VIR code. The most complex
one calculates a dynamic window monitor for a cyber-physical control system; when compiled
it produces 368 lines of LLVM IR code. When run on randomly-generated floating-point vector
inputs, our semantics again agrees with that of llc.

Although these tests are undoubtedly incomplete, they provide confidence that the VIR semantics
agrees with the LLVM IR on a rich enough set of programs to be usable in practice. Moreover, despite
being extracted from a purely functional Coq specification, the reference interpreter performs well:
it runs the entire test suite in well under 0.1s.

8 RELATED WORK AND DISCUSSION

There is a large literature on formal verification of software artifacts [Ringer et al. 2019]. Here we
focus on the works most closely connected to the VIR development.
Verified compilers The CompCert [Leroy 2009] C compiler was a pivotal development in the

domain of verified compilation, tackling a real world programming language and nontrivial opti-
mizations formally in the Coq proof assistant [Team 2020]. CompCert’s success has fueled numerous
projects aiming to expand upon its results. Examples include the addition of concurrency [Ševčík

18In our tests, we compared against llc LLVM version 11.0.0 compiling for the x86_64-apple-darwin19.6.0 target
running on a 2.4 GHz 8-Core Intel Core i9 processor with 32GB ram.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:25

et al. 2013], the support for linking open programs [Patterson and Ahmed 2019; Song et al. 2019],
or the preservation of security properties [Barthe et al. 2020]. Others have developed their own
infrastructure in order to tackle different languages: the CakeML [Kumar et al. 2014] project has
developed a complete verified chain of compilation for ML
Compositional verification CompCert’s original theorem suffered the major restriction of

applying only to whole programs, thereby disallowing linking. A rich line of works [Kang et al.
2016; Neis et al. 2015; Song et al. 2019; Stewart et al. 2015; Wang et al. 2019] has sought to relax this
restriction via compositional simulation techniques. These works have struck different balances
between expressiveness and proof obligations. Patterson and Ahmed [Patterson and Ahmed 2019]
have recently proposed a framework allowing to compare these result. Another point of comparison
comes from CertiKOS’[Gu et al. 2015, 2018] certified (concurrent) abstraction layers. These layers
share many properties with the relational reasoning techniques we describe in Section 5, albeit the
connections among such techniques requires further investigations.

Non-small step approaches Interaction trees were developed as a general-purpose representation
for effectful, interactive, and possibly-divergent code [Xia et al. 2020] and, besides programming
language semantics, have been used for specifying network servers[Koh et al. 2019]. One of their
distinguishing features is the pervasive use of coinduction, which is crucial to support recursion
and iteration, but requires sophisticated proof techniques [Hur et al. 2013; Zakowski et al. 2020].
Leroy and Grall [Leroy and Grall 2009] have experimented with coinduction to model divergence in
the operational semantics of a lambda calculus, proving type soundness and verifying a compiler.
Several other exceptions to using relational small-step semantics approach are notable. Chli-

pala [Chlipala 2010] verifies a compiler for a language shallowly-embedded in Coq. The language
in question is total, and hence does not require recursion combinators; nevertheless, this style
of semantics admits modular and compositional proof techniques similar to ours. Owens et al.
advocate for big-step semantics łakinž to an interpreter [Owens et al. 2016]Ðthey use a łclockž for
łfuelž to bound recursion, thereby sidestepping the need for coinduction, but requiring proofs to
take the fuel into account via step-indexed logical relations. We take this idea a step further and
use a true interpreter, embracing the coinductive structure directly. This means that we can more
readily reason equationally about ITrees semantics. The tradeoffs between such step-indexed and
coinductive approaches deserve more attention.
JSCert The JSCert project [Bodin et al. 2014], which formalizes JavaScript semantics in Coq,

uses Charguéraud’s łpretty big stepž semantics [Charguéraud 2013]. This approach, like interaction
trees, promotes compositionality by allowing the semantics to be defined inductively on the syntax;
it also uses coinduction to handle diverging terms. Unlike interaction trees, however, łpretty big stepž
semantics are still defined relationally. The authors implemented a separate executable version of
semantics, JSRef, that is intended to serve as a reference implementation. Nontrivial proof effort (we
estimate that it takes several thousand lines of Coq code) is required to prove the correspondence
of the JSCert pretty-big step relational specification with the JSRef executable version. The authors
write: łWe believe that both JSCert and JSRef are necessary: JSCert, unlike JSRef, is well-suited for
developing inductive proofs about the semantics of JavaScript; JSRef, unlike JSCert, can be used to
run JavaScript programs.ž In contrast, we have shown that interaction trees meet both desiderata:
they are well suited both for inductive proofs and for excecutability.
LLVM and C Semantics The Vellvm project [Zhao et al. 2012] has focused its attention on

LLVM’s intermediate representation and verified complex optimizations over it [Zhao et al. 2013].
The subset of LLVM IR that Vellvm handles is fairly similar to VIR’s, albeit marginally outdated
and less rich in features. More importantly, their semantics are radically different: Vellvm relies on
a traditional small step relation parameterized by the whole mcfg considered. Proving any transfor-
mation of programs changes themcfg in play and therefore requires to relate two distinct semantics,

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:26 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

which in turn requires heavy invariants. Our approach leads to a significantly cleaner semantics
illustrated by the removal of the heavy notion of program counter that Vellvm manipulates.
A number of other projects have formalized various subsets of C [Ellison 2012; Krebbers and

Wiedijk 2015; Memarian et al. 2019, 2016], or LLVM IRÐsuch as Crellvm [Kang et al. 2018], K-
LLVM [Li and Gunter 2020], and the Alive [Lopes et al. 2015; Menendez and Nagarakatte 2017]
projects. The Crellvm project uses the Vellvm semantics internally, so it inherits the same fun-
damental structure. The K-LLVM framework, implemented in K [Roşu and Şerbănută 2010], is
perhaps the most complete executable semantics for the LLVM IR and has been used for extensive
testing. There is some work connecting K specifications to Isabelle/HOL [Li and Gunter 2018], but,
to our knowledge, the viability of that approach for formal proofs of, e.g., compiler correctness,
remains to be demonstrated.
Alive [Lopes et al. 2015], and its recent successor Alive2 [Lopes et al. 2021], focus on finding

bugs in the LLVM IR implementation by using translation validation to check for mis-optimizations.
Alive2 is able to run directly on LLVM’s source code, and has demonstrated an impressive efficacy.
Although their objective, bug-finding, differs from ours, formal verification, both projects share the
need for formalizing parts of LLVM IR’s semantics. One significant difference from our approach is
that Alive2 only formalizes LLVM’s semantics implicitly, through the encoding its validator performs
to check an optimized program. Moreover, the Alive2 semantics properly avoids collapsing undef’s
non-determinism when interacting with the memory modeÐcontrary to our current memory
modelÐbut it under-approximates its semantics elsewhere (per the paper [Lopes et al. 2021], they
łonly allow an argument to be either fully undef or not undef at allž). Moreover, as far as we can tell,
Alive2 does not support pointer-to-integer casts. These approximations are sound for bug-finding,
only straying Alive2 farther from completeness, but are incompatible with verification. Those
differences aside, Alive2 could be a rich source of test cases for VIR. One challenge is that most of
the Alive2 test cases aren’t executable (they are open program fragments before/after optimization),
so it is not clear how we can use them in conjunction with VIR semantics. One could state the
expected refinement relation between such program fragments as theorems and try to prove them,
but finding a more automatic way of using Alive2 tests, perhaps by making them executable by
(randomly) instantiating their free variables, would be desirable.

Others have focused their attention more specifically on characterizing the LLVM’s undefined
behaviors [Lee et al. 2017] and its concurrency semantics [Chakraborty and Vafeiadis 2017]. Even
more specifically, modeling realistic memory models for LLVM is an active area of research in
itself [Kang et al. 2015; Lee et al. 2018; Leroy et al. 2012; Mansky et al. 2015], which is closely
connected to similar efforts for low-level languages like C [Memarian et al. 2019]. None of these
works rely on a mechanized denotational semantics as we do, which constitutes the core of our
contribution. Nonetheless, many of these works cover semantic features that VIR does not yet tackle,
and as such are major sources of inspirations for the future of VIR. In particular, improving the VIR
memory model is an important next step. For example, the memory model presented here does not
support storing undef, or, more generally, elements of V𝑢 in the heap, a limitation shared with
Vellvm and most of the prior work. This forces the semantics to use a PickV () event as part of a
store operation, which in turn invalidates store-forwarding optimizations (where a load following
a store to the same location is replaced by the stored value). There are similar issues with respect
to the proper treatment of poison and undef with respect to intrinsics and external function calls,
that remain to be resolved. VIR currently models the behaviors of GEP and pointer-to-integer casts
via interactions with the memory model, a natural model for these constructions as their semantics
depends on details about how data is laid out in the heap; however, this also means that proving
correctness of program transformations that move or eliminate such operations is nontrivial. For

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:27

instance, in addition to the usual requirements about the scopes of program identifiers, one would
have to prove that a call to alloca doesn’t affect the result of GEP in order to move a use of the GEP
instruction around an alloca. The memory model provided in Juneyoung et al. [Lee et al. 2018]
addresses this issue, ensuring that GEP is truly pure, and should hence be part of the design of
the future rework for VIR’s memory model. Despite such remaining challenges, we are optimistic
that the design of VIR provides the necessary ingredients to model LLVM semantics with higher
fidelityÐITrees provide the ability to introduce and handle nondeterministic events at various levels
of interpretation, and the use of the propTE monad provides a rich semantic space for describing
the allowed behaviors.

LLVM IR’s semantics is complex, but also evolving: subtle interactions between poison and undef
led to a recent proposal [Lee et al. 2017] to simplify the under-defined values semantics via a freeze
instruction, which in VIR affects where PickV () events occur; it was extremely straightforward to
add support for freeze to VIR. Similarly, there is ongoing work on a łprovenancež mechanism for
specifying which pointer-to-integer casts are allowed, which is also subject to change. Maintaining
a formal development of the size of VIR with such evolutions is a major challenge that we believe
can be mitigated by the modularity of its semantics.
Executability Our use of monadic interpreters based on interaction trees allowed us to get

an executable VIR semantics with very little effort, which enabled testing of the semantics early
on. As mentioned above, one main contribution of the JSCert project is the proof of correspon-
dence between the specification and a reference implementation. Similarly, both the Vellvm and
CompCert projects have spent substantial efforts during their development to define interpreters
and prove them equivalent to the relational semantics. Maintaining two artifacts incurs the cost of
synchronizing them, which can become especially painful as a language evolves. Any change to
the semantics has to be echoed in the interpreter and the proof fixed. With our approach, almost
all of the semantics is shared with the interpreter, with the exception of the implementation of the
non-deterministic effects of the language.

As a measure of the impact of this design on the part of the development related to the interpreter,
we offer an (admittedly) rough comparison with Vellvm, which, as it also aims to formalize LLVM
IR, is the Coq development most like VIR.

Vellvm VIR
(extra) lines of Coq code to define interpreter: ∼500 ∼130
(extra) lines of Coq code to prove refinement: ∼1000 ∼250

The overhead of verifying the VIR interpreter is significantly smaller; however, Vellvm supports
significantly fewer LLVM types and operations than VIR, so the numbers in the Vellvm column
would be somewhat larger for a łfairerž comparison. The Vellvm proof that the interpreter refines
the semantics proved the result only for a single small step, eliding the coinductive outer reasoning
to establish co-termination of the two semantics, something that we get for free. The VIR results
are therefore simpler, shorter, and much stronger. With respect to the resulting interpreters, there
are also significant differences: The Vellvm semantics (due to its propositional nature) axiomatized
properties about global memory and state initialization and, consequently does not extract an
executable memory model (it punts to an C implementation), whereas VIR extracts the memory
model tooÐthe Vellvm interpreter itself is much less trustworthy than VIR’s.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant
No. 1521539 and the ONR under Grant No. N00014-17-1-2930. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author and do not necessarily
reflect the views of the National Science Foundation or the ONR.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

67:28 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

REFERENCES

Andrew W. Appel. 2011. Verified Software Toolchain. In Programming Languages and Systems, Gilles Barthe (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 1ś17. https://doi.org/10.1007/978-3-642-19718-5_1

Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu. 2020.
Formal verification of a constant-time preserving C compiler. Proc. ACM Program. Lang. 4, POPL (2020), 7:1ś7:30.
https://doi.org/10.1145/3371075

Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. In Proceedings of

the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Venice, Italy) (POPL ’04). Association
for Computing Machinery, New York, NY, USA, 14ś25. https://doi.org/10.1145/964001.964003

Martin Bodin, Arthur Chargueraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt,
and Gareth Smith. 2014. A Trusted Mechanised JavaScript Specification. In Proceedings of the 41st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’14). Association for Computing
Machinery, New York, NY, USA, 87ś100. https://doi.org/10.1145/2535838.2535876

SohamChakraborty and Viktor Vafeiadis. 2017. Formalizing the Concurrency Semantics of an LLVM Fragment. In Proceedings
of the 2017 International Symposium on Code Generation and Optimization (Austin, USA) (CGO ’17). IEEE Press, 100ś110.
https://doi.org/10.5555/3049832.3049844

Arthur Charguéraud. 2013. Pretty-Big-Step Semantics. In Programming Languages and Systems, Matthias Felleisen and
Philippa Gardner (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 41ś60. https://doi.org/10.1007/978-3-642-37036-
6_3

Adam Chlipala. 2010. A Verified Compiler for an Impure Functional Language. In Proceedings of the 37th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Madrid, Spain) (POPL ’10). ACM, New York, NY,
USA, 93ś106. https://doi.org/10.1145/1706299.1706312

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. Efficiently Computing Static
Single Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (Oct. 1991), 451ś490.
https://doi.org/10.1145/115372.115320

Charles Ellison. 2012. A formal semantics of C with applications. Ph.D. Dissertation. University of Illinois at Urbana-
Champaign.

Franz Franchetti, Tze-Meng Low, Thom Popovici, Richard Veras, Daniele G. Spampinato, Jeremy Johnson, Markus Püschel,
James C. Hoe, and José M. F. Moura. 2018. SPIRAL: Extreme Performance Portability. Proceedings of the IEEE, special issue
on łFrom High Level Specification to High Performance Codež 106, 11 (2018). https://doi.org/10.1109/JPROC.2018.2873289

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong
Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). ACM, New York, NY,
USA, 595ś608. https://doi.org/10.1145/2676726.2676975

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS:
An Extensible Architecture for Building Certified Concurrent OS Kernels. In Proceedings of the 12th USENIX Conference

on Operating Systems Design and Implementation (Savannah, GA, USA) (OSDI’16). USENIX Association, USA, 653ś669.
https://doi.org/10.5555/3026877.3026928

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman)Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo,
and Tahina Ramananandro. 2018. Certified Concurrent Abstraction Layers. In Proceedings of the 39th ACM SIGPLAN

Conference on Programming Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for
Computing Machinery, New York, NY, USA, 646ś661. https://doi.org/10.1145/3192366.3192381

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2013. The Power of Parameterization in Coinductive Proof.
In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome,
Italy) (POPL ’13). ACM, New York, NY, USA, 193ś206. https://doi.org/10.1145/2429069.2429093

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the Foundations of the
Rust Programming Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017), 34 pages. https://doi.org/10.
1145/3158154

Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve Zdancewic, and Viktor Vafeiadis. 2015. A Formal C
Memory Model Supporting Integer-Pointer Casts. In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation (Portland, OR, USA) (PLDI ’15). Association for Computing Machinery, New York,
NY, USA, 326ś335. https://doi.org/10.1145/2737924.2738005

Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2016. Lightweight Verification of
Separate Compilation. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Machinery, New York, NY, USA, 178ś190.
https://doi.org/10.1145/2837614.2837642

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1145/3371075
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.5555/3049832.3049844
https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1007/978-3-642-37036-6_3
https://doi.org/10.1145/1706299.1706312
https://doi.org/10.1145/115372.115320
https://doi.org/10.1109/JPROC.2018.2873289
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.5555/3026877.3026928
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/2837614.2837642

Modular, Compositional, and Executable Formal Semantics for LLVM IR 67:29

Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park, Mark Dongyeon Shin, Yonghyun Kim,
Sungkeun Cho, Joonwon Choi, Chung-Kil Hur, and Kwangkeun Yi. 2018. Crellvm: Verified Credible Compilation for
LLVM. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Philadelphia, PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 631ś645. https:
//doi.org/10.1145/3192366.3192377

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C. Pierce, and Steve
Zdancewic. 2019. From C to Interaction Trees: Specifying, Verifying, and Testing a Networked Server. In Proceedings of

the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs (Cascais, Portugal) (CPP 2019). ACM,
New York, NY, USA, 234ś248. https://doi.org/10.1145/3293880.3294106

Robbert Krebbers and Freek Wiedijk. 2015. A typed C11 semantics for interactive theorem proving. In Proceedings of the

2015 Conference on Certified Programs and Proofs. ACM, 15ś27. https://doi.org/10.1145/2676724.2693571
Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation

of ML. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San
Diego, California, USA) (POPL ’14). Association for Computing Machinery, New York, NY, USA, 179ś191. https:
//doi.org/10.1145/2535838.2535841

Leonidas Lampropoulos and Benjamin C. Pierce. 2018. QuickChick: Property-Based Testing in Coq. Electronic textbook.
https://softwarefoundations.cis.upenn.edu/qc-current/index.html

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation.
San Jose, CA, USA, 75ś88.

Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes. 2018. Reconciling High-Level
Optimizations and Low-Level Code in LLVM. Proc. ACM Program. Lang. 2, OOPSLA, Article 125 (Oct. 2018), 28 pages.
https://doi.org/10.1145/3276495

Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John Regehr, and Nuno P.
Lopes. 2017. Taming Undefined Behavior in LLVM. In Proceedings of the 38th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI 2017). ACM, 633ś647. https://doi.org/10.1145/3140587.3062343
Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107ś115. https://doi.org/10.1145/

1538788.1538814
Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2012. The CompCert Memory Model, Version 2.

Research Report RR-7987. INRIA. 26 pages. https://hal.inria.fr/hal-00703441
Xavier Leroy and Hervé Grall. 2009. Coinductive big-step operational semantics. Information and Computation 207, 2 (2009),

284 ś 304. https://doi.org/10.1016/j.ic.2007.12.004 Special issue on Structural Operational Semantics (SOS).
Liyi Li and Elsa Gunter. 2020. K-LLVM: A Relatively Complete Semantics of LLVM IR. In 34rd European Conference on

Object-Oriented Programming, ECOOP 2020, Berlin, Germany. https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
Liyi Li and Elsa L. Gunter. 2018. IsaK: A Complete Semantics of K. Technical Report. University of Illinois at Urbana-

Champaign.
Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: Bounded Translation Valida-

tion for LLVM. Proceedings of the 42th ACM SIGPLAN Conference on Programming Language Design and Implementation.
https://doi.org/10.1145/3453483.3454030

Nuno P Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015. Provably correct peephole optimizations
with alive. Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation,
22ś32. https://doi.org/10.1145/2813885.2737965

Kenji Maillard, Cătălin Hrit,cu, Exequiel Rivas, and Antoine Van Muylder. 2020. The next 700 Relational Program Logics.
Proceedings of the ACM on Programming Languages 4, POPL, Article 4 (2020), 33 pages. https://doi.org/10.1145/3371072

William Mansky, Dmitri Garbuzov, and Steve Zdancewic. 2015. An Axiomatic Specification for Sequential Memory Models.
In Computer Aided Verification - 27th International Conference, CAV 2015. https://doi.org/10.1007/978-3-319-21668-3_24

Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M. Watson, and Peter
Sewell. 2019. Exploring C Semantics and Pointer Provenance. Proc. ACM Program. Lang. 3, POPL, Article 67 (Jan. 2019),
32 pages. https://doi.org/10.1145/3290380

Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert N. M. Watson, and Peter
Sewell. 2016. Into the Depths of C: Elaborating the de Facto Standards. In Proceedings of the 37th ACM SIGPLAN Conference

on Programming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing
Machinery, New York, NY, USA, 1ś15. https://doi.org/10.1145/2908080.2908081

David Menendez and Santosh Nagarakatte. 2017. Alive-Infer: Data-driven Precondition Inference for Peephole Optimizations
in LLVM. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI 2017). ACM, 49ś63. https://doi.org/10.1145/3140587.3062372
Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: A

Compositionally Verified Compiler for a Higher-Order Imperative Language. In Proceedings of the 20th ACM SIGPLAN

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1145/2676724.2693571
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://softwarefoundations.cis.upenn.edu/qc-current/index.html
https://doi.org/10.1145/3276495
https://doi.org/10.1145/3140587.3062343
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://hal.inria.fr/hal-00703441
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/2813885.2737965
https://doi.org/10.1145/3371072
https://doi.org/10.1007/978-3-319-21668-3_24
https://doi.org/10.1145/3290380
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/3140587.3062372

67:30 Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic

International Conference on Functional Programming (Vancouver, BC, Canada) (ICFP 2015). Association for Computing
Machinery, New York, NY, USA, 166ś178. https://doi.org/10.1145/2784731.2784764

Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan. 2016. Functional Big-Step Semantics. In Programming

Languages and Systems, Peter Thiemann (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 589ś615. https://doi.org/
10.1007/978-3-662-49498-1_23

Daniel Patterson and Amal Ahmed. 2019. The next 700 Compiler Correctness Theorems (Functional Pearl). Proc. ACM
Program. Lang. 3, ICFP, Article 85 (July 2019), 29 pages. https://doi.org/10.1145/3341689

Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Applied Categorical Structures 11, 1
(2003), 69ś94. https://doi.org/10.1023/A:1023064908962

Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, Zachary Tatlock, et al. 2019. QED at large: A survey of engineering
of formally verified software. Foundations and Trends® in Programming Languages 5, 2-3 (2019), 102ś281.

Grigore Roşu and Traian Florin Şerbănută. 2010. An overview of the K semantic framework. The Journal of Logic and
Algebraic Programming 79, 6 (2010), 397 ś 434. https://doi.org/10.1016/j.jlap.2010.03.012 Membrane computing and
programming.

Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A
Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3 (2013), 22. https://doi.org/10.1145/2487241.2487248

Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2019. CompCertM: CompCert
with C-Assembly Linking and Lightweight Modular Verification. Proc. ACM Program. Lang. 4, POPL, Article 23 (Dec.
2019), 31 pages. https://doi.org/10.1145/3371091

Guy L. Steele, Jr. 1994. Building Interpreters by Composing Monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (Portland, Oregon, USA) (POPL ’94). ACM, New York, NY, USA,
472ś492. https://doi.org/10.1145/174675.178068

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert. In Proceedings

of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL
’15). Association for Computing Machinery, New York, NY, USA, 275ś287. https://doi.org/10.1145/2676726.2676985

Wouter Swierstra and Tim Baanen. 2019. A Predicate Transformer Semantics for Effects (Functional Pearl). Proc. ACM
Program. Lang. 3, ICFP, Article 103 (July 2019), 26 pages. https://doi.org/10.1145/3341707

The Coq Development Team. 2020. The Coq Proof Assistant, version 8.11.0. https://doi.org/10.5281/zenodo.3744225
YutingWang, PierreWilke, and Zhong Shao. 2019. An Abstract Stack Based Approach to Verified Compositional Compilation

to Machine Code. Proc. ACM Program. Lang. 3, POPL, Article 62 (Jan. 2019), 30 pages. https://doi.org/10.1145/3290375
Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2020.

Interaction Trees. Proceedings of the ACM on Programming Languages 4, POPL (2020). https://doi.org/10.1145/3371119
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Proceedings

of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose, California, USA)
(PLDI ’11). Association for Computing Machinery, New York, NY, USA, 283ś294. https://doi.org/10.1145/1993498.1993532

Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic. 2020. An Equational Theory for Weak Bisimulation via
Generalized Parameterized Coinduction. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified

Programs and Proofs (CPP). https://doi.org/10.1145/3372885.3373813
Vadim Zaliva and Franz Franchetti. 2018. HELIX: A Case Study of a Formal Verification of High Performance Program

Generation. InWorkshop on Functional High Performance Computing (FHPC). https://doi.org/10.1145/3264738.3264739
Vadim Zaliva and Matthieu Sozeau. 2019. Reification of Shallow-Embedded DSLs in Coq with Automated Verification. In

International Workshop on Coq for Programming Languages (CoqPL).
Vadim Zaliva, Ilia Zaichuk, and Franz Franchetti. 2020. Verified Translation Between Purely Functional and Imperative

Domain Specific Languages in HELIX. In Proceedings of the 12th Working Conference on Verified Software: Theories, Tools,

and Experiments (VSTTE). https://doi.org/10.1007/978-3-030-63618-0_3
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM Intermediate

Representation for Verified Program Transformations. In Proc. of the ACM Symposium on Principles of Programming

Languages (POPL). https://doi.org/10.1145/2103621.2103709
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2013. Formal Verification of SSA-Based

Optimizations for LLVM. In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation

(PLDI). https://doi.org/10.1145/2499370.2462164

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 67. Publication date: August 2021.

https://doi.org/10.1145/2784731.2784764
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1145/3341689
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/3371091
https://doi.org/10.1145/174675.178068
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1145/3341707
https://doi.org/10.5281/zenodo.3744225
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3371119
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3372885.3373813
https://doi.org/10.1145/3264738.3264739
https://doi.org/10.1007/978-3-030-63618-0_3
https://doi.org/10.1145/2103621.2103709
https://doi.org/10.1145/2499370.2462164

	Abstract
	1 Introduction
	2 VIR: a formalization of LLVM IR
	2.1 Syntax
	2.2 Dynamic Values

	3 Interaction trees: Background
	4 A modular LLVM semantics
	4.1 An Inventory of LLVM's Events
	4.2 Representing VIR Programs as Interaction Trees
	4.3 Handling Events
	4.4 Stitching the Semantics Together

	5 VIR Equivalences and Refinement
	5.1 ITree Equivalences and Refinement Relations
	5.2 Interpretation into P
	5.3 Equational Theory for VIR
	5.4 VIR Refinements
	5.5 Floyd-Hoare-Style Forward Relational Reasoning
	5.6 Expressing Functional Properties of VIR: a Derived Unary Program Logic

	6 Case Study: HELIX
	6.1 A Sound ITree-Based Semantics for FHCOL
	6.2 Verification of the FHCOL to VIR Translation

	7 Reference Interpreter Validation
	8 Related Work and Discussion
	Acknowledgments
	References

