

Infrared matrix- isolation and theoretical studies of interactions between CH3I and water

Sophie Sobanska, Hanaa Houjeij, Stéphane Coussan, Christian Aupetit, Sonia Taamalli, Florent Louis, Laurent Cantrel, Anne Cecile Gregoire, Joelle Mascetti

► To cite this version:

Sophie Sobanska, Hanaa Houjeij, Stéphane Coussan, Christian Aupetit, Sonia Taamalli, et al.. Infrared matrix- isolation and theoretical studies of interactions between CH3I and water. Journal of Molecular Structure, 2021, 1236, pp.130342. 10.1016/j.molstruc.2021.130342. hal-03525471

HAL Id: hal-03525471 https://hal.science/hal-03525471v1

Submitted on 14 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Revised Manuscript R2

1	Infrared matrix-isolation and theoretical studies of interactions between CH3I and water
2	
3 4	Sophie Sobanska ¹ *, Hanaa Houjeij ^{1,4} , Stéphane Coussan ² , Christian Aupetit ¹ , Sonia Taamalli ³ , Florent Louis ³ , Laurent Cantrel ⁴ , Anne Cécile Gregoire ⁴ , Joëlle Mascetti ¹
5	1- Institut des Sciences Moléculaires, Université de Bordeaux, UMR5255 CNRS, 33405
6	Talence cedex, France
7	2- CNRS, Aix-Marseille Univ, PIIM, Marseille13397, France
8	3- Physico-Chimie des Processus de Combustion et de l'Atmosphère, Université de Lille,
9	UMR8522 CNRS, 59000 Lille, France
10	4- Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES, Cadarache, 13115 St
11	Paul Lez Durance, France
12	*corresponding author: sophie sobanska \mathcal{Q} u-bordeaux fr
13	••••••••••••••••••••••••••••••••••••••
14	Abstract
15	Gaseous iodomethane are naturally emitted in the atmosphere over oceans through the algae
16	and phytoplankton activities. The fate of naturally emitted iodomethane is of great interest
17	because of the oxidizing properties of iodine in the atmosphere and its impact on the catalytic
18	destruction of the ozone layer. Additionally, iodomethane is one of the gaseous species that can
19	be emitted in the case of severe nuclear accident. The radiological impact of gaseous
20	iodomethane is of concerns and requires knowledge about its behavior in the atmosphere. Water
21	is one of the major species in the atmosphere which is responsible for atmospheric aerosol
22	nucleation and thus, for cloud condensation nuclei (CCN). The fundamental knowledge
23	concerning the interaction between methyl iodine and water at the molecular scale contributes
24	to the better understanding of the fate of such species into the atmosphere and their role in CCN
25	formation. Here the microhydration of iodomethane was investigated using cryogenic matrix
26	experiments which were supported by theoretical DFT calculations. A large excess of water
27	regarding CH_3I was used in order to mimic atmospheric conditions. Dimers and trimers of CH_3I
28	are observed despite the high water amount in the initial mixture together with hetero aggregates
29	between CH ₃ I and water clusters. This may be explained by the low affinity of CH ₃ I with water.
30	Considering the concentration of iodomethane used in our experiments, the aggregates are
31	rather formed in gas phase and not in the matrix cage. The interaction between CH_3I and H_2O
32	molecules studied experimentally and supported by DFT calculation highlights that, in the

atmosphere, gaseous iodomethane and water will likely form association between water and iodomethane aggregates instead of $(CH_3I)_n$ - $(H_2O)_m$ hetero complexes. Our results have important consequences for the understanding of the alkyl halide solvation in primary processes and contribute to the understanding of reactive halogen species in tropospheric chemistry. In the context of a nuclear severe accident, our work is contributing to better understand the fate of nuclear species in the atmosphere and thus, the radionuclide dispersion.

Key words: iodomethane, hydration, nuclear accident, atmosphere, matrix isolation infrared
spectroscopy

42 1. Introduction

Iodine is an important fission product of the fuel used in Nuclear Power Plants (NPPs) in 43 terms of safety with the generation of high radioactive isotopes (¹³¹I and ¹³³I) potentially 44 released outside in case of severe accident. Indeed, radioactive gaseous iodine poses a health 45 hazard if released into the atmosphere due to its accumulation in the human thyroid gland after 46 inhalation, where it can locally induce cancer [1-4]. A severe accident in a NPPs as Chernobyl 47 (Ukraine) and the more recent Fukushima- Daichi (Japan) disaster can led to gaseous molecular 48 iodine (I₂) and methyl iodide (CH₃I), as main representative of organic iodides released into the 49 50 atmosphere [5-7]. Particularly, it has been postulated that the removal of CH_3I with the currently used filter materials (for instance as charcoal media or liquid scrubber) is less efficient 51 compared to I₂ [3,8,9]. Hence, the reactivity of CH₃I in the atmosphere has recently gained 52 much interest in the field of nuclear industrial safety as its interaction with atmospheric species 53 54 i.e. gaseous oxidants, radicals, water or aerosols may influence the atmospheric dispersion and thus the sanitary impacts. 55

Iodine also occurs naturally in the ocean boundary layer and is mainly derived from algae 56 and phytoplankton in the oceans and from heterogeneous reactions at the ocean-atmosphere 57 interface [10-12]. The iodine species mainly emitted by these natural sources are halogenated 58 organic compounds such as CH₃I. The atmospheric chemistry of iodine species is of great 59 60 interest because of the oxidizing properties of iodine in the atmosphere and its impact on the catalytic destruction of the ozone layer. The chemistry of halogens especially the marine iodine 61 chemistry has been extensively studied and was reviewed by Saiz-Lopez et al. [11] and Simpson 62 et al. [12]. These previous works mainly focus on gaseous chemistry and photochemistry of 63 iodine species such as CH₃I which leads to the formation of iodine oxide particles (IOP). Iodine 64 oxide-driven new particle formation has been reported from both field observations and 65

laboratory experiments. As one of the main species present in the atmosphere, water molecules 66 67 may affect the reactivity of the gaseous species. As a gas, water molecules may form some aggregates or complexes with atmospheric species. As a liquid droplet, water may dissolve 68 gaseous components, the latter being driven by Henry's law constant [13,14]. Recently, the 69 microhydration of n-alkyl halides has received much attention as it may affect the halide 70 71 chemistry processes such as photolysis, and more generally the atmospheric halide cycle. The 72 atmospheric gas-to-particle conversion mechanism may be also influenced by the humidity as it is reported for the IOP formation. Additionally, the effect of water on aerosol chemical 73 74 processes are increasingly questioned [15 and reference herein] since water cluster growth and 75 further, hygroscopicity properties of aerosols, are the most research concerns for understanding 76 the cloud formation. The interaction between water and halide compounds (including iodine) 77 has been mainly investigated using ab initio calculations [16 and ref herein] since sparse 78 experimental data are available due to the challenging task to study water-alkyl interaction in ambient conditions. In a previous work, the structure and vibrational spectra of methyl halides 79 80 dimers has been examined by ab initio calculation [17]. Besides, Ito et al. have studied the formation of CH₃I clusters and CH₃I-H₂O (1:1) complex by using the matrix isolation technique 81 82 [18-20] since the matrix isolation technique is a relevant experimental technique to study interand intra-molecular interactions occurring during the microhydration process. In Ito's papers, 83 the only CH₃I-H₂O complex considered is the 1:1 ratio when complexes with higher number of 84 molecules are expected in the atmosphere. The main question that remains for further 85 atmospheric implication, i.e. the influence of water on both reactivity of halide compounds in 86 gaseous phase and CCN formation, is: in the atmospheric conditions i.e. with high water 87 content, is CH₃I species able to form complexes (CH₃I)_n(H₂O)_m with water molecules or only 88 aggregates of homo-clusters of $(CH_3I)_n$ and $(H_2O)_m$ can be observed? 89

In the present paper, we have investigated the interactions between CH₃I and H₂O to give 90 91 insights on the microhydration process of CH₃I, which in turn help in understanding the reactivity of CH₃I in the gas phase and its molecular interaction with hydrated aerosols. 92 93 Increasing the knowledge of CH₃I reactivity will contribute to improve the understanding of 94 the atmospheric iodine cycle and consequently, the prediction of the radiological consequences 95 resulting from accidental iodine radioisotope releases. The matrix-isolation Fourier Transform Infra-Red (FTIR) spectroscopy technique was used for studying in details the formation of 96 97 (CH₃I)_n-(H₂O)_m complexes or aggregates of homo-clusters. To help in the interpretation, the formation of (CH₃I)_n clusters were studied in similar experimental conditions and the structure, 98

99 infrared spectra and energetics of the observed species have been investigated by Density100 Functional Theory (DFT) calculations.

101 **2. Experimental and theoretical section**

Matrix isolation experiments. The matrix isolation system used in this work has been 102 described in details elsewhere [21-23]. Experiments were conducted in a high vacuum 103 experimental set up consisting in a stainless steel chamber ($P=10^{-5}$ mbar at room temperature) 104 containing an IR transparent NaCl window cooled to 10K by means of a closed cycle He 105 cryostat Cryophysics Cryodine. The sample temperature is monitored with a Si diode 106 107 thermometer set on the copper holder of the NaCl window. Two sets of experiments were conducted in this work to scrutinize the CH₃I-H₂O interactions at low temperature (1) CH₃I in 108 Ar matrix from 10 to 35 K as benchmark experiment and (2) CH₃I and H₂O in Ar matrix from 109 10 to 35 K. Gaseous samples of CH₃I/Ar (0.1% CH₃I - 99.9% Ar, Airproduct) were used 110 without any further purification at a flow of 1mL/min. The matrix ratio is then CH₃I/Ar = 111 1/1000 since various ratios were investigated in previous work [20]. For the observation of the 112 formation of $(CH_3I)_m$ - $(H_2O)_n$ complexes, the vapor of ultrapure H₂O (conductivity of 18.2 M Ω 113 Millipore system) was introduced from a glass flask and mixed with CH₃I/Ar in a glass reservoir 114 in the proportion $CH_3I/H_2O/Ar = 1/25/1500$ and injected into the chamber at a rate of 1 mL/min⁻ 115 ¹. This CH₃I/H₂O ratio is chosen to ensure both high water concentration in matrix and CH₃I 116 signal detection since beyond this ratio, signals of water aggregates would overlap those of 117 (CH₃I)_m-(H₂O)_n. Deionized water was previously subjected to multiple freeze-pump-thaw 118 cycles under vacuum to remove dissolved gases. Thus, the concentration H₂O/Ar equal to 1/60 119 120 introduced was used to mimic the closest atmospheric conditions. A reference experiment with H₂O trapped in Ar matrix (7/1000) was also recorded at 4 K for comparison. The gaseous 121 samples were introduced by gas nozzle inlet and deposited by diffusion directly on NaCl plate 122 for 2 hours. This deposition mode is soft enough to limit cluster formation during the deposition 123 process. The deposited samples at 10 K were annealed to 35 K, close to the sublimation 124 temperature of the argon crystal. The infrared spectra of the gas-isolated samples were recorded 125 126 in transmission mode using a Bruker Vertex 70V FTIR spectrometer with a DTGS detector in the spectral range 4000-400 cm⁻¹, with a spectral resolution of 0.5 cm⁻¹ and each spectrum 127 averaged over approximately 200 scans. Spectra were recorded at 10K for CH₃I and CH₃I/H₂O 128 129 experiments.

130**Theoretical Calculations.** The structure and harmonic vibrational spectra of CH₃I monomer,131dimers and trimers, and CH₃I-water complexes such as $(CH_3I)_m$ - $(H_2O)_n$ (with m = 1,2,3 and n

= 1,2,3) were calculated with the Gaussian09 suite of programs [24] using the long range 132 corrected functional @B97X-D [25] with the aug-cc-pVTZ basis set for hydrogen, carbon and 133 oxygen atoms, while the aug-cc-pVTZ-PP basis set [26] was used for the iodine atom that 134 incorporates a small-core relativistic pseudo potential, as previously mentioned [27]. Harmonic 135 vibrational frequencies have been calculated at the same level of theory, and remained unscaled. 136 137 Additionally, NBO analysis was performed on the isolated molecules CH₃I and H₂O and on CH₃I.H₂O (1:1a and 1:1b) complexes at the ω B97X-D/aug-cc-pVTZ level of theory. The 138 139 standard molar entropy ($S^{\circ}_{10 \text{ K}}$) and the heat capacity at constant pressure (1 bar) have been calculated with the script thermo.pl published by the National Institute of Standards and 140 141 Technology [28]. The Gibbs free energy of reaction ($\Delta_r G^0$) in kJ.mol⁻¹ for both CH₃I clusters and complexes have been calculated at the @B97XD/ aug-cc-pVTZ-PP level of theory. The 142 143 basis set superposition error (BSSE) correction is known to be negligible in microhydration 144 energetics, [27, 29] therefore this correction has not been included in the energetic calculations 145 of this study.

146 The IR band assignment was performed by comparing the observed and calculated shifts 147 Δv . The frequency shifts are calculated with respect to the monomer position ($\Delta v = v - v_{\text{monomer}}$).

148 **3. Results and discussion**

Formation of (CH₃I)_n clusters. Structures of CH₃I monomer, dimers and trimers were 149 investigated using experimental spectra supported by calculations presented above. Two 150 isomers of (CH₃I)₂, shown in Fig. S1(a) with xyz coordinates reported in Table S2 (Supporting 151 Information), are found to be stable and will be hereafter referred as Head-to-Tail (HT) and 152 Head-to-Head (HH) structures. These structures were previously reported using the MP2/ 153 LanL2DZ+fdp level of theory [18]. It should be highlighted that both levels of theory using 154 MP2/LanL2DZ+fdp [18] and ω B97XD/aug-cc-pVTZ-PP (this work) predict the same (CH₃I)₂ 155 stable isomers, i.e. HH and HT, with a difference in the intermolecular distance not exceeding 156 0.2 Å. A Gibbs free energy difference of 3.0 and 3.8 kJ/mol is found for HH and HT isomers 157 158 respectively, between the method used in this study and the one used previously [18]. Two (CH₃I)₃ isomers have also been found to be stable (Fig. S1(b) and Table S2 (SI)) and will be 159 160 hereafter referred as Tail-to-Head-to-Tail THT₁ and THT₂. The THT₂ structure was previously 161 discussed by Ito et al. [20,30] to be the most stable structure of (CH₃I)₃ using the MP2 method. 162 In the present work the Gibbs free energy difference between the 2 isomers is less than 1 kJ/mol at the @B97X-D/ aug-cc-pVTZ-PP level of theory. As a result, THT₁ and THT₂ could be 163

considered as isoenergetic. The difference in the intermolecular distance between the level of 164 theory used in this study and the one used previously [30] does not exceed 0.2 Å. Moreover, a 165 difference of about 5 kJ/mol in the Gibbs free energy was found between the two levels of 166 theory. As a result, the difference in binding energies shows that $\Delta E(\omega B97X)$, this work) is lower 167 than ΔE calculated using MP2 method [18,30] for both CH₃I dimers and trimers. This 168 interaction between CH₃I molecules is more accurately evaluated using the ω B97X-D 169 functional, which is consistent with a recent study [17] that includes dispersion for a better 170 171 characterization of the inter-molecular complexes under study. Moreover the size of the basis 172 set is larger in our work (aug-cc-pVTZ-PP) than the one used in Ito's studies (LANDZ+fdp) 173 [18,30].

The calculated vibrational spectra together with bands relative intensities of the monomer 174 and the most stable HH, HT, THT₁, THT₂ isomers are gathered in Table S8. For a more reliable 175 analysis of CH₃I clusters infrared spectra, we used unscaled IR frequencies. It should be noted 176 that the calculated wavenumber position is likely dependent of the level of theory. For example, 177 the wavenumber position of the monomer CH₃ symmetric deformation mode is calculated at 178 1334 cm⁻¹ using the MP2/ LanL2DZ+fdp level of theory [18], whereas it is calculated at 1297 179 cm⁻¹ in this work using the ω B97X-D/aug-cc-pVTZ-PP level of theory. It is known that the 180 shift from the monomer peak due to clustering can be evaluated by theoretical calculations. For 181 182 instance, in the CH₃ symmetric deformation region the shift of the dimer mode, with respect to that of the monomer, ranges between -4 and 2 cm⁻¹ using the MP2/ LanL2DZ+fdp level of 183 theory [18], against of -1 to 3 cm⁻¹ in this work using the @B97X-D/aug-cc-pVTZ-PP level of 184 theory. Similar observations have been found for the trimer, where the shift ranges between -7 185 to -1 cm⁻¹ using the MP2/ LanL2DZ+fdp level of theory [30] and -1 to 8 cm⁻¹ using the ω B97X-186 187 D/aug-cc-pVTZ-PP one (this work, Table S8). It shows that the bands of dimers and trimers are in close vicinity with those of monomer, what underlies that perturbation induced by CH₃I 188 homo-complexation is weak. Considering that shifts calculated at both levels of theory, that of 189 the present work and the one used by Ito et al. [18,30] are of the same magnitude, it is more 190 191 accurate to uniquely consider those shifts rather than scaled harmonic frequencies to identify present species. The calculation performed in this study will be used as a support to discriminate 192 between monomers, dimers and trimers observed by FTIR-isolation matrix experiments. Those 193 194 theoretical vibrational spectra will be studied in fingerprint regions in which they will help to 195 identify species trapped in the matrix.

A typical matrix-isolation infrared (IR) spectra of CH₃I in Ar matrix at 10K and at a mixing 196 ratio of 1/1000 is shown in Fig. S2. The spectrum shows CH₃-stretching (v₁ and v₄), 197 deformation (v_2) and rocking (v_6) regions centered at 3000, 1250 and 890 cm⁻¹, respectively 198 while the C-I stretching mode is outside the observed spectral region ($< 600 \text{ cm}^{-1}$). Additional 199 bands related to traces of water are observed at \sim 3750 cm⁻¹ and 1600 cm⁻¹ (not shown). The 200 fundamental bands of the CH₃I monomer are observed at 3054 (not shown), 2965, 1432 (not 201 shown), 1245, 882 and 881(doublet) cm⁻¹ for v_4 , v_1 , v_5 , v_2 and v_6 , respectively. These band 202 positions are consistent with those previously reported for supersonic jet deposition for CH₃I 203 204 monomer [18,31]. Some additional bands appear on both sides of monomer bands, especially for v_1 , v_2 and v_6 , which are the most intense bands on the FTIR spectrum (Fig.S2). The observed 205 wavenumbers and the shifts from the monomer are listed in Table 1 and compared with those 206 207 obtained by calculations. As expected, the set of additional bands are due to the formation of CH₃I clusters. Considering the concentration 1/1000 of CH₃I in Ar matrix, the observation of 208 209 the monomer bands is the most plausible. However, regarding the calculated and experimental bands the additional ones can be assigned to both HT and HH dimers observed at 2967, 2960, 210 1248, 1246, 1245, 886 cm⁻¹ and 2960, 1244, 886, 881, 878 cm⁻¹, respectively. If the 882-881 211 doublet is assignable to the monomer, the band at 886 cm⁻¹ and that at 879 cm⁻¹ present a blue-212 shift of \approx +4 and a red-shift of \approx -3 cm⁻¹ with respect to the 882 cm⁻¹ one (the most intense of 213 the doublet). Those shifts match (CH₃I)₂ HT (+5), and HH (-2). Even if it is more unlikely, the 214 215 blue-shift could also match with THT₁ and THT₂ trimers. These bands can also be due to Ar sites, what is certainly the case of 882-881 doublet. The 1246-1245 cm⁻¹ bands are assigned to 216 two monomer sites, when other observed bands are blue-shifted by $\approx +7$ and +3 cm⁻¹ and the 217 two latter are red-shifted by \approx -2 and -6 cm⁻¹. Those shifts allow us to identify unambiguously 218 THT₂ trimer (at 1252 cm⁻¹ and tentatively at 1243 and 1239 cm⁻¹), and more tentatively HT 219 dimer and THT₁ trimer (at 1248 cm⁻¹). However, we cannot discard the presence of HH dimer 220 because this latter one presents almost degenerated bands with monomer (see Tables 1 and 2). 221 222 No clusters larger than n > 3 are observed in our experimental conditions. The bands of both monomer and clusters are almost degenerated, which is due to the weakness of CH₃I 223 intermolecular forces (and adopted structures) as previously reported [17]. As a result, the shifts 224 due to the dimer and trimer formation are close to the monomer frequencies. Iodomethane 225 226 dimers and trimers are more likely formed in the gas phase prior to deposition. The formation of homo-clusters of CH₃I is confirmed by annealing the matrix from 10 to 35K. The FTIR 227 228 spectra (Fig. S1) clearly show the decrease of the bands of monomer when the IR bands

assigned to dimer or trimer increase. The FTIR spectra (Fig. S3) clearly show the decrease of 229 the monomer bands when those assigned to dimer or trimer increase. This behavior in matrix 230 experiments is explained by the diffusion of CH₃I molecules in the Ar matrix during the 231 annealing. Indeed, Van der Waal radius of iodine atom is large, which results in a limited 232 diffusion of CH₃I within the Ar matrix, moreover on long distance. Thus, we can hypothesis 233 that CH₃I dimers and trimers are formed in the matrix by diffusion of monomers, which are in 234 a close vicinity. This close vicinity may be explained by the fact that cluster of CH₃I are formed 235 236 in the gaseous phase and partly separated as monomers during the matrix deposition, because 237 of translational kinetic energy relaxation. The further annealing of the close CH₃I molecules is then able to re-form clusters of CH₃I. 238

In brief, in our experimental conditions we observe CH₃I dimers and trimers formation. These results complete those obtained by Ito et al. [18, 20] in previous studies performed using supersonic jet technic.

242 Formation of CH₃I-H₂O complexes. The structure and the vibrational spectra of various (CH₃I)_n-(H₂O)_m complexes have been calculated at ω B97X-D/aug-cc-pVTZ-PP level of theory 243 for n=1, 2 and m=1, 2, 3. Ito et al. [20] have demonstrated that the B971/LanL2DZ+fdp level 244 of theory reproduces well the MP2/aug-cc-pVTZ level of theory results, while the 245 MP2/LanL2DZ +fdp level of theory underestimates the intermolecular interaction between 246 CH₃I and H₂O for 1:1 complex only. In the present work, the calculations are performed with 247 the @B97X-D functional with a relativistic effective core potential and an extended valence 248 basis-set for iodine, i.e., aug-cc-pVTZ-PP. 249

The 1:1, 1:2, 2:1, 2:2 and 1:3 structures were optimized revealing the predicted most stable isomers for each of them as following: 2 isomers for 1:1 and 1:2 structures, 4 isomers for 1:3 structure, 5 isomers for 2:1 structure and 10 isomers for 2:2 structure. The geometry and the standard Gibbs free energies of these isomers are presented in Fig. S4 to S8 with xyz coordinates in Tables S3 to S8 (see SI).

From this theoretical work, valuable information can be retrieved on relative stabilities of each species together with the structure of their vibrational spectra. Indeed, from those results we selected the most accurate spectral regions to discriminate between $(CH_3I)_n$, $(H_2O)_m$ and $(CH_3I)_n-(H_2O)_m$ aggregates and complexes.

259 The 1:1 hetero-dimer (Fig. S4 in SI) presents two stable forms, one pseudo-cyclic, referred 260 as 1:1a, more stable than an unexpected one, 1:1b, which displays a I^{...}O interaction ($\Delta_r G^{\circ}_{10K}$

= -13.5 kJ mol⁻¹, for 1:1a, against -7.5 kJ mol⁻¹, for 1:1b). Indeed, one could have expected to 261 observe, in 1:1b case, a I^{...}H H-bond interaction, rather than this long distance interaction 262 between iodine and oxygen atoms. Is it so surprising? If one compares, iodine's Pauling 263 electronegativity of 2.66 with that of hydrogen, which is 2.2, it is then plausible to observe a 264 halogen-bond type interaction between iodine and oxygen, this latter presenting a Pauling 265 electronegativity of 3.44. Moreover, the iodomethane dipole moment is oriented toward carbon 266 atom, which leads a partial positive Mulliken's charge for iodine atom in this configuration. It 267 is thus likely that we observe this I^{...}O interaction. The complementary NBO calculations 268 269 (reported on Fig. S9) show that the distribution of NBO charges within isolated systems (i.e. CH₃I and H₂O monomer) do not greatly differ from those within the 1:1a and 1:1b systems. 270 271 This indicates that the charge transfer is not the main process while electrostatic interactions 272 are the main forces involved for these systems as we stated. However, the charge transfer 273 influence the geometry of the H-bonds as we have seen on THT₁ and THT₂ structures. Our assumptions are consistent with a recent work [32]. On the vibrational spectra side, one 274 275 observes a stronger perturbation for 1:1a, with respect to each monomer, H₂O and CH₃I, vibration frequencies, than for 1:1b (see Table S9). Water v_3 and v_1 modes are both red-shifted 276 by -28 and -41 cm⁻¹, respectively, while the most obvious shift concerning CH₃I moiety seems 277 to be that of the CH₃ rocking with a blue-shift of 22 cm⁻¹. For 1:1b, water partner presents two 278 almost equivalent free OH bonds, however red-shifted by -11 and -10 cm⁻¹. This result 279 280 illustrates the iodomethane polarity effect: while there is greater stabilization from the donoracceptor interaction between the units of the dimer in 1:1b than 1:1a, dimer 1:1a is the lower 281 282 energy species indicating that electrostatic interactions are mainly responsible for the energy difference between species 1:1a and 1:1b. 283

For the $CH_3I-(H_2O)_2$ complexes, shown in Fig. S5 (SI), there are three stable structures 284 denoted 1:2a, 1:2b and 1:2c, with $\Delta_r G^{\circ}_{10K}$ of -45.01, -25.38 and -21.61 kJ mol⁻¹, respectively. 285 286 If the former one presents a cyclic structure which can be summarized as a water dimer interacting by two H-bond type interactions with CH₃I, the second one displays an almost 287 symmetrical structure with the two water monomers on each side of the CH₃I partner, *i.e.* a kind 288 289 of double 1:1a (1:1 complex) structure with respect to the ICH iodomethane plane. Regarding 290 the last form, it is the addition of the forms 1:1a and 1:1b (it could be noted that its $\Delta_r G^{\circ}_{10K}$ is the sum of those of 1:1a and 1:1b species). As a result, on the vibrational spectra of the two first 291 forms, one should observe in 1:2a case, a typical water dimer spectrum, with one proton 292 acceptor, PA, and one proton donor, PD, partner, perturbed by CH₃I, but with the difference 293

that PA partner also gives its proton to iodine atom, while for 1:2b, one should find a vibrational 294 295 spectrum close to that of 1:1a. Concerning the last form, 1:2c, it should display a vibrational spectrum really close to those of 1:1a and 1:1b. From Table S10, for 1:2b species, one observes, 296 indeed, comparable shifts with those of 1:1a, for water monomers while CH₃ rocking mode 297 presents more pronounced blue-shifts, by 33 instead of 22 and 22 against 6 cm⁻¹, with respect 298 to 1:1a ones. Another noticeable red-shift is that of CH₃ symmetrical stretching which is -8 cm⁻ 299 ¹. If we come back to 1:2a species, it is clearly a water dimer spectrum perturbed by CH₃I as 300 illustrated by v_3 and v_1 water mode red-shifts. These red-shifts, namely that of -205 cm⁻¹ (typical 301 of a v_1 water dimer PD), coupled to OH. O distance of 1.87 Å (typical of a water dimer) [33], 302 put in evidence that H₂O-H₂O interaction is stronger than interactions of each water monomer 303 with CH₃I partner. As a result it would be difficult to discriminate between 1:2a (in the water 304 region) spectrum and that of the pure water dimer. For 1:2c species, it is easy to see from Tables 305 S9 and S10, that its spectrum will be almost degenerated with those of 1:1a and 1:1b species. 306 As a result it would be quite impossible to discriminate among those three species. Considering 307 this fact, in the remainder of the manuscript, especially in the interpretation of the experimental 308 spectra, if 1:1a and 1:1b are found, this will imply that potentially the 1:2c species is also 309 310 present.

The CH₃I-(H₂O)₃ complex, displayed in Fig. S6 (SI), could be considered as the first step of 311 312 CH₃I water embedding and could lead to models of CH₃I trapped in water environment as aggregates or Amorphous Solid Water (ASW). We found four different stable structures: (i) 313 1:3a, the most stable one ($\Delta r G^{\circ}_{10K} = -86.4 \text{ kJ mol}^{-1}$) which is a cyclic water trimer perturbed by 314 315 CH₃I molecule which should present a vibrational spectrum close to that of cyclic water trimer, (ii) 1:3b, the least stable one ($\Delta r G^{\circ}_{10K} = -37.5 \text{ kJ mol}^{-1}$), which is a kind of spinning top 316 317 structure with three water molecules interacting independently from each other with a central CH₃I molecule, and should exhibit a spectrum close to that of 1:1a; (iii) 1:3c ($\Delta r G^{\circ}_{10K} = -59.7$ 318 kJ mol⁻¹) which displays a kind of "1:1a+1:2a" structure and should therefore share much in 319 common with these two structures; (iv) 1:3d ($\Delta r G^{\circ}_{10K} = -74.8 \text{ kJ mol}^{-1}$) which is a cyclic 320 structure comprising a non-cyclic water trimer bridging both iodine and H atoms of 321 iodomethane. It should be noted that 1:3b and 1:3c should present the strongest CH₃ blue-shifts. 322 One more time, it is obvious that, the greater the number of water molecules involved in self 323 324 H-bond association, the more stable the hetero-complex or hetero-aggregate is. It comes partly 325 from H-bond interaction efficiency which induces cooperative effects. From the observation of theoretical harmonic frequencies values (Table S11), it is clear that those signals overlap withthose of the other forms.

328 For the (CH₃I)₂-H₂O complexes, shown in Fig. S7 (SI) we count none less than five stable structures denoted, 2:1a to 2:1e, with $\Delta_r G^{\circ}_{10K}$ lying in a close range of energies (-30.6 to -28.9 329 kJ mol⁻¹, 2:1b and 2:1c being degenerated), with the exception of 2:1e one, which is a little bit 330 disfavored at -23.8 kJ mol⁻¹). If the three first ones, 2:1a, 2:1b and 2:1c, present quite similar 331 structures, *i.e.* CH₃I dimer interacting with a water monomer (2:1a presenting a subtle double 332 333 PD, one time PA, character, which gives a small stabilization compared to 2:1b and 2:1c, whose one OH bond remains free), the 2:1d displays water molecule bridging between the two CH₃I 334 335 molecules while 2:1e presents again the 1:1a moiety in interaction with the other CH₃I partner. Not surprisingly, the most "3D" interacting structures are the most stable. From a vibrational 336 337 point of view (see Table S12), one can guess that indeed, in the water stretching region, 2:1e presents red-shifts comparable with those of 1:1a but also overlapping with those of 1:2b. 338 339 Having regard to 2:1a and 2:1d, also in water stretching region, they present comparable redshifts of -61 cm⁻¹ (v₃), while 2:1a shares its v₁ red-shift of -54 cm⁻¹ with 2:1b and 2:1c. In the 340 CH₃ rocking region, all the species should present the same spectrum, with blue-shifts 341 342 overlapping with those of the above studied forms.

Concerning (CH₃I)₂-(H₂O)₂ species, shown in Fig. S8 (SI), we can easily discriminate between 343 344 two kinds of complexes: those which display a water dimer part, and those which display two separated water molecules. Except for 2:2e ($\Delta_r G^{\circ}_{10K} = -47.9 \text{ kJ mol}^{-1}$), all the former class 345 present the most stable potentials with $\Delta_r G^{\circ}_{10K}$ ranging from -70.1 (2:2b) to -53.7 (2:2j) kJ mol⁻ 346 ¹. The latter class displays less stable structures with $\Delta_r G^{\circ}_{10K}$ ranging from -47.0 (2:2d) to -33.2 347 (2:2f) kJ mol⁻¹. It could be understood in terms of H-bond type interaction strength. Indeed, in 348 the case of the presence of a water dimer moiety, there is a strong interaction (as illustrated by 349 short OH. H bonds of 1.8-1.9 Å, see Fig S8), due to the guasi-linear interaction between the 350 PD O-H bond and the sp³ doublet of the PA partner, while in the second category of complexes, 351 interactions between PD and PA are less effective. On the vibrational side, from Table S13, it 352 353 is obvious that one more time considering OH stretching regions and CH₃ one, if all these isomers coexist, it will induce a spectral congestion. However, some blue-shifts in the v_2 water 354 bending mode (2:2b, 28 cm⁻¹; 2:2e, 32 cm⁻¹; 2:2g, 35 cm⁻¹; 2:2h, 26 cm⁻¹) could be of some 355 help, even if the 1:2a isomer presents also a blue-shift in this region of 25 cm⁻¹. 356

The formation of all these species will induce a spectral congestion, so, a careful examination of spectral conditions (namely sample ratii) will be necessary to unambiguously identify all the forms present in argon matrices.

360 On the experimental vibrational spectra, the two iodomethane spectral regions, *i.e.* v_2 (bending CH) and v_6 (rocking mode) are displayed on Fig. 1, while the three water spectral regions, *i.e.* 361 v_1 (symmetric stretching), v_2 (bending) and v_3 (antisymmetric stretching) are presented in Fig. 362 363 2 and Fig. S10. We selected those spectral domains because the new bands related to CH₃I-H₂O interaction are well visible on the spectra in these regions. In addition, as discussed above, with 364 the help of theoretical results, we should be able to identify which aggregates and complexes 365 are present in those experimental conditions (with a large excess of water) supposed to mimic 366 atmospheric ones. In Fig.1 and 2 and Fig.S9 (SI) we present a comparison of pure CH₃I spectra 367 with mixed (CH₃I)_n(H₂O)_m ones and of pure water homo-clusters for various spectral regions. 368 New or increasing bands, observed in mixed species spectrum, with respect to those of pure 369 370 water or iodomethane ones, are marked with a dashed line. The frequencies and assignment are 371 reported in Tables 2 and 3.

372 It is known that iodomethane is not soluble in water, as a result, it is water self-aggregation which should be favored. However, considering that mixed aggregates and complexes will be 373 374 trapped in the same matrix cage, we should be able to observe those latter subject to two conditions: they are formed in gas phase prior to sample deposition, and they survive landing 375 376 on the sample carrier, or they are formed when they land. Indeed the injection mode we used in our experiments is similar to the quenching of a molecular jet when landing on the sample 377 378 holder. The kinetic energy of translation must then be dissipated which can lead to the 379 dissociation of these complexes. A third way to form those species is to anneal the samples to 380 allow molecules in close neighborhood (few Å to nm) to diffuse through the argon matrix and 381 aggregate. However, iodomethane concentration is so low that homo iodomethane aggregates, by extension hetero complexes with more than one CH₃I molecule, should be formed in gas 382 phase and survive landing at sample carrier. 383

Considering the large excess of water we used, it seems more appropriate to start by iodomethane vibrational regions v_2 and v_6 (Fig. 1 and Table 2). Indeed CH₃I concentration remains 1/1000 with respect to Ar, which limits homo-iodomethane aggregation. Therefore, water addition, if there is aggregation with iodomethane, will lead to less overlapping bands than in the water zone. Between 930 and 850 cm⁻¹ (Fig. 1, Table 2), for pure iodomethane

- (spectrum (a)), one observes bands centered at 886, 882, 881 and 879 cm⁻¹ that are assigned to 389 monomer of CH₃I and CH₃I clusters (dimers and trimers) as presented in the previous part. In 390 the case of mixed iodomethane-water sample (spectrum (b)), one observes the 886 cm⁻¹ 391 increase, while 882 and 881 decrease in intensity, and new bands at 909, 903, 899 and 891 cm⁻ 392 ¹ (Table 2). Those latter are blue-shifted by $\approx +27$, +20, +16 and +9 cm⁻¹, with respect to 882 393 cm⁻¹. These shifts match totally or partially those of the following hetero-complexes and 394 aggregates ((CH₃I)_n(H₂O)_m): 1:1a, 1:2a, the 1:3a, 1:3c ones, the whole series 2:1a to 2:1e and 395 the three 2:2f, 2:2g and 2:2h species (Fig. S4 to S8 in SI). 396
- In the v_2 (bending CH) region (1270-1230 cm⁻¹), one observes, in the case of pure iodomethane, 397 bands at 1248, 1246, 1245, 1243 and 1239 cm⁻¹ (Fig. 1, Table 2) that are attributed to CH₃I 398 monomer, dimer and trimer as described in the previous part. In the case of mixed iodomethane-399 water sample (spectrum (b)), one observes the 1248 cm⁻¹ increase, while 1246-1245 decrease 400 in intensity, and new bands at 1257, 1256, 1254 and 1250 cm⁻¹ (Table 2). Those latter are blue-401 shifted by $\approx +12$, 10, 9 and 5 cm⁻¹, with respect to 1245 cm⁻¹. These shifts match totally or 402 partially those of the following hetero-complexes and aggregates ((CH₃I)_n(H₂O)_m): 1:1a, 1:2a 403 and 1:2b, the 1:3a and 1:3b, the whole serie 2:1a to 2:1e and the three 2:2c, 2:2d, 2:2f and 2:2g 404 species (Figures S4 to S8). Concerning the species 1:3b, we can already discard its presence 405 because we did not observe blue-shifts of about +44 cm⁻¹ in the v_6 region. 406
- From the analysis of the iodomethane regions (v_2 and v_6), we can conveniently discriminate between the first candidates when at least two bands were identified:
- 409 CH₃I.H₂O complex: 1:1a
- 410 $CH_3I_{(H_2O)_2}$ complex: 1:2a
- 411 $CH_3I.(H_2O)_3$ complex: 1:3a
- 412 (CH₃I)₂.H₂O complexes: whole serie 2:1a to 2:1e
- 413 $(CH_3I)_2(H_2O)_2$ complexes: 2:2f, 2:2g
- 414 Water spectral regions should bring decisive clues in the identification of the different isomers,
- despite the spectral congestion due to water aggregates.
- 416 The H₂O spectral regions (i.e. v_1 , v_2 and v_3) are presented in Fig. 2 (v_1) and in Fig. S10 (v_2 and
- 417 v₃). In the v₂ region (1770-1510 cm⁻¹), in the case of pure water matrix (Fig. S10 (a)), one
- 418 observes bands at 1663, 1658, 1637, 1627, 1625, 1620, 1616, 1612, 1611, 1608, 1602, 1599,

1593, 1591, and 1590 cm⁻¹. They are due to water monomer and water clusters [34]. In the case 419 of iodomethane-water mixture (trace (b)), one observes only one new band at 1600 cm⁻¹ (Fig. 420 S10), blue-shifted by about $\approx +11$ cm⁻¹ with respect to the nrm (non rotating monomer) water 421 bending mode at 1589 cm⁻¹. It is a "poor" area because of strong overlapping between water 422 aggregates signals and those of iodomethane-water complexes and aggregates, which should be 423 in minority. As a consequence, the only partial matches found are: 1:3a, which should present 424 theoretically three blue-shifts of $\approx +32$, +16 and +10 cm⁻¹ (the +32 and +10 cm⁻¹ band are 425 certainly overlapped by water aggregates ones), and 2:2a, 2:2e and 2:2j species. 426

In the v_1 and water cluster region (3695-3100 cm⁻¹) (Fig. 2(a) and Table 3), one observes bands 427 at 3670, 3662, 3654, 3648, 3647, 3640, 3630, 3628, 3617, 3612, 3574 cm⁻¹ (Proton Donor, PD, 428 dimer), 3567, 3564, 3549, 3543, 3528, 3515 cm⁻¹ (Trimers), 3445, 3409, 3392, 3373 cm⁻¹ 429 (Tetramers), 3332-3325 cm⁻¹ (Pentamers), and 3209 cm⁻¹ (larger clusters and 2v₂ harmonic 430 mode of H_2O). The first band of interest in the case of mixed samples, is located at 3463 cm⁻¹, 431 i.e. between trimers and tetramers. This band is red-shifted with respect to water trimers and 432 433 blue-shifted with respect to water tetramers, i.e. more red-shifted ("perturbed") than a water 434 trimer but less than a water tetramer. This structure is undoubtedly a water trimer perturbed by an iodomethane partner. In Fig. S6, there are only two such structures, 1:3a and 1:3d. 435 436 Considering that we did not find any evidence of 1:3d presence in the other regions, and that in a large excess of water, this is a cyclic conformation that will be adopted by water, we suggest 437 that this band is assigned to 1:3a. In addition, we have reported a calculated band at 3557 cm⁻¹ 438 i.e. redshifted by 322 cm⁻¹ for this species (see Table S11) that is not observed on the 439 440 experimental spectrum. Indeed, because water is overabundant, and considering that IR 441 calculated intensities are indicative in matrix media, this is not surprising not seeing it. The second band of interest is the one centered at 3553 cm⁻¹, red-shifted by \approx -85 cm⁻¹ with respect 442 to v_1 nrm mode located at 3638 cm⁻¹ [34]. This species is located between water dimer Proton 443 Donor (PD) band and those of water trimers. Following the same reasoning, it is thus a water 444 445 dimer perturbed by an iodomethane partner. In Fig. S5, there is only one structure which matches this water dimer type configuration, this is 1:2a. The mode we observe is the v_1 stretch 446 of water dimer Proton Acceptor (PA) which bridges to iodine atom. This vibrational assignment 447 is strongly supported by the calculated shift $\Delta v \approx -97$ cm⁻¹ (Table S10), found for this species. 448 However, one has to consider also the presence of 1:3c structure (Fig.S6) which is a "1:2a 449 +1:1a" kind of structure. This last form presents a theoretical red-shift of \approx -91 cm⁻¹ in this 450 region (and also a blue-shift of $\approx +26$ cm⁻¹ in v₆ (CH₃I), as mentioned above). The other bands 451

- observed in case of iodomethane-water mixture are centered at 3582, 3603, 3607, 3609 and 452 3642 cm⁻¹. The four first bands display red-shifts of \approx -56, -35, -31 and -29 cm⁻¹ against a blue-453 shift of $\approx +4$ cm⁻¹ for the last one. The only forms which could partially or totally match with 454 455 those shifts are: 1:1a, 1:3c, the whole serie 2:1a to 2:1e, and 2:2i. As already mentioned, 456 calculated intensities, especially those of the OH modes, they are purely indicative. For 457 instance, in the case of malonaldehyde [35], the OH intensity of the chelated form is calculated to be 0.33 of the most intense OH band among the isomers, but is not observed because of the 458 H-bond strength, which induces a FWHM of thousands of cm⁻¹. As a result, this band is almost 459 flat, and not observed. A similar situation is expected in our case. 460
- In the v_3 region (3950-3700 cm⁻¹) (Fig. S10 (a) and Table 3)), one observes bands at 3777, 461 3756, 3753, 3738, 3736, 3731, 3721, 3716, 3711, 3708, 3707, 3703, 3700 and 3695 cm⁻¹. Those 462 bands are mainly due to water monomer and clusters, the non rotating monomer (nrm) and 463 rovibrational transitions [29]. Four new bands are observed in the case of mixed sample, at 464 3752, 3749, 3720 and 3713 cm⁻¹. If the two highest ones are tentatively assigned to $0_{00} \rightarrow 1_{01}$ 465 water monomer rovibronic transition perturbed by iodomethane proximity, the two lowest ones 466 present red-shift with respect to v_3 nrm mode of water monomer, located at 3736 cm⁻¹ [34] of 467 \approx -23 and -16 cm⁻¹. Species which present possible matching with those red-shifts are: 1:1a, 468 1:2b, the whole (1:3) series, 2:1b, 2:1c and 2:1e, 2:2c, 2:2f and 2:2i (Tables S2-S6). 469
- From the combined analysis of the three water regions we can conveniently discriminate between the candidates we have found. Only species presenting at least two distinct bands are considered:
- 473 CH₃I.H₂O complex: 1:1a
- 474 CH₃I.(H₂O)₂ complex: 1:2a
- 475 $CH_3I.(H_2O)_3$ complexes: 1:3a,1:3c
- 476 (CH₃I)₂.H₂O complexes: whole series from 2:1a to 2:1e
- 477 $(CH_3I)_2(H_2O)_2$ complexes: 2:2i

In summary, comparing the candidates identified from both CH_3I and H_2O regions, we can confidently state that we have identified 1:1a, 1:2a and 1:3a, 1:3c species shown on Fig. 3, together with CH_3I monomer, dimers and trimers (Table 2 and 3). It should be noted that they present common bands, this is due to their close structures (see theoretical part). The 1:1a, 1:2a and 1:3a isomers observed experimentally are consistent with calculated Gibbs free energy
given them as the most stable isomers. The structures of dimer or trimer of H₂O perturbed by
CH₃I are found in our experimental conditions. This result highlights the preferred formation
of hetero aggregates rather than hetero complexes.

486 Concerning the other possible candidates, either they partially match the observed shifts with no decisive evidence of their presence, or CH₃I being the minority product, 2:1 and 2:2 species 487 are hard to see. The evidence of dimer of CH₃I in our experiments suggests the presence of 488 interaction with water as 2:1 and 2:2 complexes as mentioned above. Indeed, we observed for 489 2:2i isomer, the only form among all those calculated which present a blue-shift in the v_1 water 490 region, or 2:1a, 2:1b and 2:1c which could be responsible for the band at 3582 cm⁻¹, while that 491 observed at 3603 cm⁻¹ could be assigned to 2:1d and 2:1e species. Because we cannot confirme 492 their presence, we do not include them in Tables 2 and 3. 493

494 **4.** Conclusion

We have investigated the interaction between CH₃I and water molecules using argon cryogenic 495 matrix experiments. The experimental data were supported by theoretical DFT calculations. 496 The experiments were conducted with a large excess of H₂O molecules compared to CH₃I in 497 order to mimic CH₃I environment in the atmosphere. Cryogenic matrices seem pretty accurate 498 499 in order to describe inter molecular interactions between atmospherically relevant molecules. Even if working at low temperature and pressure does not mimic atmospheric conditions, it 500 501 brings insights at molecular level. However, working in these conditions allows the study of 502 the ground energy potential of those atmospheric complexes and aggregates. Dimers and trimers of CH₃I are observed despite the high water amount in the initial mixture: this may be 503 504 explained by the low affinity of CH₃I with water. Monomer of CH₃I perturbing water dimer and trimer are observed rather than hetero complexes that would suggest hetero aggregation 505 506 process. Finally, considering the concentration of iodomethane used in our experiments and the 507 poor ability of CH₃I to diffuse into the matrix, we state that the aggregates are rather originally 508 formed in the gas phase and not in the matrix cage. The other complexes such as 2:1 and 2:2 cannot be completely excluded but appear as minor species. Thus, the inter molecular behavior 509 510 between CH₃I and H₂O molecules determined for the first time experimentally and supported by DFT calculation highlights that, in the atmosphere, gaseous iodomethane and water will 511 likely form hetero aggregates of water and iodomethane clusters instead of (CH₃I)_n-(H₂O)_m 512 complexes. This result is consistent with recent theoretical studies, which have predicted the 513

- incomplete hydration of iodine species [27, 29]. In principle, the abundant low-volatility 514 condensing vapors other than iodine are required in the atmosphere for the growth of iodine 515 clusters to CCN. Our results suggest that the CH₃I would be partially condensed with water on 516 aerosols during the CCN process rather than serves as CCN it-self. The Henry constant value 517 $(H^{CP} \text{ (at 298 K)} = 2-3.5 \text{ 10}^{-3} \text{ mol.m}^{-3} \cdot \text{Pa}^{-1} \text{ [36]})$ predicts that CH₃I will remain in the gaseous 518 phase and thus, will be subject to the oxidative photolysis to form in term iodine oxide particles 519 (IOPs) [37]. The atmospheric gas-to-particle conversion mechanism requires initial clustering 520 steps, which are driven by IxOy in both dry and humid conditions. However, the IR and UV 521 522 photolysis of hetero aggregates in gaseous phase has not been considered until now. In the future, the photochemical behavior of such CH₃I-water aggregates will be investigated. Finally, 523 524 in the context of the NNP's severe accident, our work is contributing to better understand the
- 525 fate of nuclear species in the atmosphere and thus, the radionuclide dispersion.
- 526

527 Author statement

- 528 Sophie Sobanska: Oversight and leadership responsibility for the research activity planning and
- 529 execution, acquisition of the financial support for the project leading to this publication, writing,
- 530 reviewing and editing the paper.
- 531 Hanaa Houjeij: Perfoming the experiments and theoretical calculations
- 532 Stephane Coussan: Participating to the interpretation of the experimental and theoretical results
- and to the manuscript writing and reviewing.
- 534 Christian Aupetit: Providing experimental services
- 535 Sonia Taamali: Providing training and support for theoretical calculations
- 536 Florent Louis: Providing a part of theoretical discussion and of computational section writing.
- 537 Laurent Cantrel: Participating to the acquisition of the financial support.
- 538 Anne Cécile Gregoire: Acquisition of the financial support, reviewing of the paper.
- Joëlle Mascetti: Formulation and evolution of overarching research goal and aims, performing
- 540 the experiments.

541 Declaration of competing interest

- 542 No potential conflict of interest is reported by the authors
- 543
- 544

545 Acknowledgments

- 546 Authors acknowledges funding from Region Nouvelle Aquitaine and IRSN for the financial
- 547 support through the project SPECAERO n° 2017-1R10108-00013012. Computer time for
- 548 part of the theoretical calculations was kindly provided by the Centre de Ressources
- 549 Informatiques (CRI) of the University of Lille and the Centre Régional Informatique et
- 550 d'Applications Numériques de Normandie (CRIANN). S. Sobanska, J. Mascetti and S.
- 551 Coussan thank GDR-EMIE (GDR CNRS 3533) for the financial support of a joint project.

552 **REFERENCES**

- J. Didier, A. Bentaïb, H. Bonneville, G. Cénérino, B. Clément, F. Corenwinder, M.
 Cranga, G. Ducros, F. Fichot, D. Jacquemain, et al. Nuclear Power Reactor Core Melt
 Accidents; EDP Sciences : Science and Technology Series, France, 2015.
- A. Karhu, Gas Phase Chemistry and Removal of CH₃I during a Severe Accident; Report:
 NKS-25, ISBN 87-7893-076-6. Corpus ID: 59022982. Danka Services International,
 DSI.; Denmark, 2001.
- 559 http://www.nks.org/en/documents_test/view_document.htm?id=111010111119718
- 560 [3] H. Bruchertseifen, R. Cripps, S. Güntay, B. Jäckel, Experiments on the Retention of the
 561 Fission Product Iodine in Nuclear Reactor Accidents [CH--0401]. Report NIS/IAEA,
 562 Reference Number 36002863 Gschwend, B. [Ed.]. Switzerland, 2004.
- 563 [4] G.Steinhauser, A.Brandl, T. E. Johnson, Sci. Total Environ. 470–471 (2014) 800–817.
 564 https://doi.org/10.1016/j.scitotenv.2013.10.029.
- 565 [5] S. Dickinson, A. Auvinen, Y. Ammar, L. Bosland, B. Clément, F. Funke, G. Glowa, T. Kärkelä, D.A. Powers, S. Tietze, S.; et al., Ann. Nucl. Energy 74 (2014) 200–207. https://doi.org/10.1016/j.heliyon.2018.e00553
- 568 [6] S. Guentay, R.C. Cripps, B. Jäckel, H. Bruchertseifer, Chimia 59 (2005) 957–965.
 569 https://doi.org/10.2533/000942905777675453
- 570 [7] L.S. Lebel, R.S. Dickson, G.A. Glowa, J. Environ. Radioact. 151 (2016) 82–93.
 571 https://doi.org/10.1016/j.jenvrad.2015.06.001
- 572 [8] M. Chebbi, B. Azambre, C. Volkringer, T. Loiseau, Microporous Mesoporous Mater.
 573 259 (2018) 244–254. https://doi.org/10.1016/j.micromeso.2017.10.018
- 574 [9] L. Bosland, S. Dickinson, G. Glowa, L.E. Herranz, H.C. Kim, D.A. Powers, M. Salay,
 575 S. Tietze, Ann. Nucl. Energy 74 (2014) 184–199.
- 576 https://doi.org/10.1016/j.anucene.2014.07.016
- 577 [10] L.J. Carpenter, Chem. Rev. 103 (2003) 4953–4962. https://doi.org/10.1021/cr0206465
- 578 [11] A. Saiz-lopez, J.M.C Plane, A.R. Baker, L.J. Carpenter, R. Von Glasow, C.G. Juan, G.
 579 Mcfiggans, R.W. Saunders, Chem. Rev. 112 (2012) 1773–1804.
 580 https://doi.org/10.1021/cr200029u
- [12] W.R. Simpson, S.S.Brown, A. Saiz-Lopez, J.A. Thornton, R. Von Glasow, Chem. Rev.
 115 (2015) 4035–4062. https://doi.org/10.1021/cr5006638
- 583 [13] R.M. Moore, C.E. Geen, V.K. Tait, Chemosphere 30 (1995) 1183–1191.
 584 https://doi.org/10.1016/0045-6535(95)00009-W
- 585 [14] S. Elliottl, F. Sherwood, F., Geophys. Res. Lett. 20 (1993) 1043–1046.
 586 https://doi.org/10.1029/93GL01081
- 587 [15] L. Feketeová, P. Bertier, T. Salbaing, T. Azuma, F. Calvo, B. Farizon, M. Farizon, T.D.
 588 Märk, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 22540–22544.

- 589 https://doi.org/10.1073/pnas.1911136116
- 590 [16] A. Habartová, A. Obisesan, B. Minofar, M. Roeselová, Theor. Chem. Acc. 133 (2014)
 591 1–15. https://doi.org/10.1007/s00214-014-1455-z
- 592[17]P.Ramasami,T.A.Ford,J.Mol.Struct.1126(2016)2–10.593https://doi.org/10.1007/s00894-019-3927-5
- 594 [18] F. Ito, T. Nakanaga, Y. Futami, S. Kudoh, M. Takayanagi, M. Nakata, Chem. Phys. Lett.
 595 343 (2001) 185–191. https://doi.org/10.1016/S0009-2614(01)00688-1
- 596 [19] Y. Futami, S. Kudoh, F. Ito, T. Nakanaga, M. Nakata, J. Mol. Struct. 690 (2004) 9–16.
 597 https://doi.org/10.1016/j.molstruc.2003.10.037
- 598 [20] F. Ito, J. Mol. Struct. 1035 (2013) 54–60. https://doi.org/10.1016/j.molstruc.2012.09.027
- [21] Z. Guennoun, C. Aupetit, J. Mascetti, Phys. Chem. Chem. Phys. 13 (2011) 7340–7347.
 https://doi.org/10.1039/C0CP01756F
- [22] Z. Guennoun, C. Aupetit, J. Mascetti, J. Phys. Chem. A 115 (2011) 1844–1852.
 https://doi.org/10.1021/jp108713n
- [23] V. Deguin, J. Mascetti, A. Simon, N. Ben Amor, C. Aupetit, S. Latournerie, J. Noble, J.
 Phys. Chem. A 122 (2018) 529–542. https://doi.org/10.1021/acs.jpca.7b09681
- [24] M.J. Frisch, G. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J. Cheeseman, G.
 Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al. Gaussian 09, Revision A.1.,
 Gaussian, Inc.: Wallingford, CT. 2009.
- 608 [25] J. Da Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10 (2008) 6615–6620.
 609 https://doi.org/10.1039/B810189B
- [26] K.A. Peterson, B.C. Shepler, D. Figgen, H. Stoll, J. Phys. Chem. A 110 (2006) 13877–
 13883. https://doi.org/10.1021/jp0658871
- 612 [27] A. Villard, S. Khanniche, C. Fortin, L. Cantrel, I. Černušák, F. Louis, Int. J. Quantum
 613 Chem. 119 (2019) 1–11. https://doi.org/10.1002/qua.25792
- 614 [28] K.K. Irikura. THERMO.PL, National Institute of Standards and Technology,
 615 Gaithersburg, MD, USA 2000.
- 616 [29] S. Taamalli, D. Khiri, S. Suliman, S. Khanniche, I. Černušák, L. Cantrel, M. Ribaucour,
 617 F. Louis, ACS Earth Space Chem. 4 (2020) 92-100.
- https://doi.org/10.1021/acsearthspacechem.9b00257
- [30] F. Ito, T. Nakanaga, Y. Futami, M. Nakata, Chem. Phys. 286 (2003) 337–345.
 https://doi.org/10.1016/S0301-0104(02)00919-9
- [31] A.J. Barnes, M. L.Evans, H.E. Hallam, J. Chem. Soc., Faraday Trans. 2, 69 (1973) 738–
 749. https://doi.org/10.1039/F29736900738
- [32] J.M. Herbert and K. Carter-Fenk, J Phys Chem A. 125 (2021) 1243-1256.
 https://doi.org/10.1021/acs.jpca.0c11356.
- [33] S. Coussan, P. Roubin, J.P. Perchard, Chem. Phys. 324 (2006) 527–540.
 https://doi.org/10.1016/j.chemphys.2005.11.017
- [34] J. P. Perchard. Chem. Phys. 273 (2001), 217–213. https://doi.org/10.1016/S0301 0104(01)00496-7
- [35] A.Trivella, T. N.Wassermann; C. Manca Tanner, N. O. B. Lüttschwager, S. Coussan, J.
 of Phys. Chem. A 122, (2018) 2376-2393. https://doi.org/10.1021/acs.jpca.7b11980
- [36] R. Sander, Atmos. Chem. Phys. 15, (2015) 4399–4981. https://doi.org/10.5194/acp-15 4399-2015
- [37] J.C. Gomez Martin, T.R. Lewis, M.A. Blitz, J.M.C. Plane, M. Kumar, J.S. Francisco, A.
 Saiz-Lopez, Nature com. 11 (2020) 4521-4521. https://doi.org/10.1038/s41467-020 18252-8
- 636
- 637

638 Figure captions:

- Fig. 1: IR spectra in v_2 [bending CH), v_6 (rocking CH₃) regions of pure iodomethane matrix (trace (a)) (CH₃I/Ar = 1/1000), recorded at 10 K, and of mixed CH₃I/H₂O/Ar = 1/25/1500, recorded at 10 K (trace (b)).
- 642 Fig. 2: IR spectra in v_1 (antisymmetric stretching) region of pure water cluster matrix (trace (a))
- 643 $(H_2O/Ar = 7/1000)$, recorded at 4 K, and of mixed CH₃I/H₂O/Ar = 1/25/1500, recorded at 10 K 644 (trace (b))
- 644 (trace (b)).
- Fig. 3: Calculated structures of the unambiguously identified $(CH_3I)_n$ - $(H_2O)_m$ isomers at the $\omega B97X$ -D/ aug-cc-pVTZ-PP level of theory observed experimentally

647 Table captions:

- Table 1: Table 1: Experimental IR band positions for v_1 , v_2 and v_6 (in cm⁻¹) for CH₃I (1000
- 649 ppm) in Ar matrix, observed and calculated shift from the monomer and tentative assignment
- (in bold the most intense IR bands) Experimental IR band positions for v_1 , v_2 and v_6 (in cm⁻ for CH₃I (1000 ppm) in Ar matrix from (18) and (31) and CH₃I in gas phase from (31).
- Table 2: Experimental IR band positions for v_1 , v_2 , and v_6 (in cm⁻¹) in CH₃I spectral range for mixed CH₃I/H₂O/Ar = 1/25/1500, recorded at 10 K, calculated spectral shifts (Δv) to experimental spectrum of CH₃I monomer and tentative assignment.
- Table 3: Experimental IR band positions for v_1 , and v_3 (in cm⁻¹) in H₂O spectral range for reference spectra of monomer and dimer, mixed CH₃I/H₂O/Ar = 1/25/1500, recorded at 10 K, for H₂O (4:1000) at 4K, calculated spectral shift (Δv) to experimental spectrum for H₂O
- 658 monomer and tentative assignment.
- 659

660

662 Tables

Table 1: Experimental IR band positions for v_1 , v_2 and v_6 (in cm⁻¹) for CH₃I (1000 ppm) in Ar

matrix, observed and calculated shift from the monomer and tentative assignment (in bold the

665 most intense IR bands) – Experimental IR band positions for v_1 , v_2 and v_6 (in cm⁻¹) for CH₃I

666 (1000 ppm) in Ar matrix from [18] and [31] and CH_3I in gas phase from (31).

Vibrational		V experimental	Δv from		v cm ⁻¹	v cm ⁻¹	Vgas phase	tentative assignment
moues		cm ²	monon	ner	[18]	[31]	cm [31]	
			obs	cal				
v_1	CH ₃ stretch	2976	11	-				-
		2967	2	2				dimer HT
		2965	0	0	2965	2965	2953	monomer / trimer THT ₁
		2960	-5	2/-2/-4				dimer HT / dimer HH / trimer THT1
v ₂	Sym CH ₃	1248	3	3				dimer HT / trimer THT ₁
	deformation	1246	1	0				dimer HT / trimer THT ₁
		1245	0	0	1245	1245	1251	monomer / dimer HT
		1244	-1	-1				dimer HH
		1243	-2	-2				trimer THT ₁
		1240	-5	-				-
v_6	CH ₃	886	4	5/3				dimer HT / dimer HH / trimer
	rocking		_					
		882	0	0	882		882	monomer / dimer HH
		881	-1	-1	880	880		monomer/ dimer HH
		878	-4	-2				dimer HH

667

Table 2: Experimental IR band positions for v_1 , v_2 , and v_6 (in cm⁻¹) in CH₃I spectral range for

670 mixed CH₃I/H₂O/Ar = 1/25/1500, recorded at 10 K, calculated spectral shifts (Δv) to

6/1 experimental spectrum of CH ₃ I monomer and tentative as	assignments.
---	--------------

Vibrational Mode	CH ₃ I monomer	CH ₃ I-H ₂ O	Δν	tentative assignments
v1 CH3I		2976	11	CH ₃ I
		2968	3	dimer HT
	2965	2965	0	monomer / trimer THT ₁
		2961	-4	dimer HT / dimer HH / trimer THT ₁
		2925		n.c.
		2868		n.c.
		2855		n.c.
		2846		n.c.
		2825		n.c.
		2819		n.c.
v ₂ CH ₃ I		1257	12	CH ₃ I-3H ₂ O (1 :3a)
		1256	11	CH ₃ I-3H ₂ O (1 :3a)
		1254	9	see text
		1250	5	CH ₃ I-2H ₂ O (1 :2a)
		1248	3	dimer HT / trimer THT ₁ / CH_3I-H_2O (1:1a)
		1246	1	dimer HT / trimer THT ₁
	1245	1245	0	monomer / dimer HT /
		1243	-2	dimer HH/ trimer THT ₁
		1240	-5	CH ₃ I
v6 CH3I		909	27	CH ₃ I-2H ₂ O (1:2a) / CH ₃ I-3H ₂ O (1:3c)
		903	21	CH ₃ I-H ₂ O (1 :1a)
		899	17	CH ₃ I-2H ₂ O (1:2a) / CH ₃ I-3H ₂ O (1:3a)
		896	14	CH ₃ I-3H ₂ O (1:3a)
		891	11	CH ₃ I-H ₂ O (1 :1a)
		888	6	see text
		886	4	dimer HT / dimer HH / trimer THT ₁ / CH ₃ I-3H ₂ O (1:3a)
	882	882	0	monomer / dimer HH
	881	881	-1	monomer/ dimer HH
		879	-2	dimer HH

672

Table 3: Experimental IR band positions for v_1 , and v_3 (in cm⁻¹) in H₂O spectral range for reference spectra of monomer and dimer, mixed CH₃I/H₂O/Ar = 1/25/1500, recorded at 10 K,

reference spectra of monomer and dimer, mixed CH₃I/H₂O/Ar = 1/25/1500, recorded at 10 K, for H₂O (4:1000) at 4K, calculated spectral shifts ($\Delta \nu$) to experimental spectrum for H₂O monomer and tentative assignments.

H ₂ O monomer and dimer[29]	H ₂ O 4:1000	CH ₃ I-H ₂ O	Δν	tentative assignements
3776	3777	3777		H_2O rovibrationnal band v_3
3757	3756	3756		H_2O rovibrationnal band v_3
	3753	3753		H_2O rovibrationnal band v_3
		3752	16	see text
		3749	13	see text
3739				H_2O rovibrationnal band v_3
3738	3738	3738		H ₂ O dimer PA
3736	3736	3736		$H_2O v_3 [nrm)$
	3731	3731		H_2O rovibrationnal band v_3
3725	3721	3721		H_2O rovibrationnal band v_3
		3720	-16	CH ₃ I-3H ₂ O [1 :3c)
3716	3716	3716		H ₂ O dimer PD
3711	3711	3711		H_2O rovibrationnal band v_3
		3713	-23	CH ₃ I-H ₂ O [1:1a) / CH ₃ I-3H ₂ O [1:3c)
3708	3708			H ₂ O dimer PD
3670	3670	3670		H_2O dimer PD / H_2O rovibrationnal band v_1
	3662	3662		H ₂ O dimer PD
3654	3654	3654		H_2O dimer PD / H_2O rovibrationnal band v_1
	3648	3648		H ₂ O dimer PD
	3647	3647		H ₂ O dimer PD
		3642	4	see text
	3640	3640		H ₂ O dimer PD
3638	3638	3638		$H_2O v_1 [nrm)$
3633	3633	3633		H ₂ O dimer PA
	3630	3630		H ₂ O dimer PD
	3628	3628		H ₂ O dimer PD
3623				H_2O rovibrationnal band v_1
	3617	3617		H ₂ O dimer PD
	3612	3612		H ₂ O dimer PD
		3609	-29	CH ₃ I-H ₂ O [1 :1a)
3607	3607	3607	-31	H_2O rovibrationnal band v_1 / see text
		3603	-35	see text
		3582	-56	see text
3574	3576	3574		H ₂ O dimer PD
	3567	3567		H ₂ O trimer
	3564	3564		H ₂ O trimer
		3553	-85	CH ₃ I-2H ₂ O [1:2a) / CH ₃ I-3H ₂ O [1:3c)
	3549	3549		H ₂ O trimer
	3543	3543		H ₂ O trimer
	3528	3528		H ₂ O trimer
	3515	3515		H ₂ O trimer

	3463	-175	CH ₃ I-3H ₂ O [1 :3a)
3445	3445		H ₂ O tetramer
3402	3402		H ₂ O tetramer
3392	3392		H ₂ O tetramer
3373	3373		H ₂ O tetramer
3332	3332		H ₂ O pentamer
3325	3325		H ₂ O pentamer
3209	3209		H_2O High polymer / $2v_2$ harmonic

681 Figures

Fig. 1 : IR spectra in v_2 (bending CH), v_6 (rocking CH₃) regions of pure iodomethane matrix (trace [a)) (CH₃I/Ar = 1/1000), recorded at 10 K, and of mixed CH₃I/H₂O/Ar = 1/25/1500, recorded at 10 K (trace (b)).

687

Fig. 2: IR spectra in the v_1 (antisymmetric stretching) regions of pure water cluster matrix [trace (a)) (H₂O/Ar = 7/1000), recorded at 4 K, and of mixed CH₃I/H₂O/Ar = 1/25/1500, recorded at

10 K (trace (b)).

Fig. 3: Calculated structures of the unambiguously identified $(CH_3I)_n$ - $(H_2O)_m$ isomers at the $\omega B97X$ -D/ aug-cc-pVTZ-PP level of theory observed experimentally

Highlights (for review)

Infrared matrix-isolation and theoretical studies of interactions between CH3I and water

Sophie Sobanska^{1*}, Hanaa Houjeij^{1,4}, Stéphane Coussan², Christian Aupetit¹, Sonia Taamalli³, Florent Louis³, Laurent Cantrel⁴, Anne Cécile Gregoire⁴, Joëlle Mascetti¹

1- Institut des Sciences Moléculaires, Université de Bordeaux, UMR5255 CNRS, 33405 Talence cedex, France

2- CNRS, Aix-Marseille Univ, PIIM, Marseille13397, France

3- Physico-Chimie des Processus de Combustion et de l'Atmosphère, Université de Lille, UMR8522 CNRS, 59000 Lille, France

4- Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES, Cadarache, 13115 St Paul Lez Durance, France

*corresponding author: sophie.sobanska@u-bordeaux.fr

Highlights:

- Microhydration of iodomethane is explored by matrix isolation infrared spectroscopy
- Microhydration with a large excess of water is investigated
- Hetero-aggregates between CH₃I and H₂O are formed with dimers and trimers of CH₃I
- Interaction between CH₃I and H₂O is not favored in the atmosphere

±

1	Infrared matrix-isolation and theoretical studies of interactions between CH3I and water
2	
3 4	Sophie Sobanska ¹ *, Hanaa Houjeij ^{1,4} , Stéphane Coussan ² , Christian Aupetit ¹ , Sonia Taamalli ³ , Florent Louis ³ , Laurent Cantrel ⁴ , Anne Cécile Gregoire ⁴ , Joëlle Mascetti ¹
5 6	1- Institut des Sciences Moléculaires, Université de Bordeaux, UMR5255 CNRS, 33405 Talence cedex, France
7 8	2- Physique des interactions ioniques et moléculaires, UMR7345 CNRS, Aix-Marseille Université, 13013 Marseille, France
9 10	3- Physico-Chimie des Processus de Combustion et de l'Atmosphère, Université de Lille, UMR8522 CNRS, 59000 Lille, France
11 12	4- Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSN-RES, Cadarache, 13115 St Paul Lez Durance, France
13 14	*corresponding author: sophie.sobanska@u-bordeaux.fr
15	Supporting information
16	
17	Figure list:
18 19 20	Fig. S1: ω B97X-D/ aug-cc-pVTZ-PP-predicted geometry (distance in Å) and Gibb free energy (Δ G in kJ.mol ⁻¹) of CH ₃ I dimers (a) and trimers (b).
21 22 23	Fig. S2: IR spectra of CH ₃ I/Ar sample at 10 K in the 3100-2750 cm ⁻¹ and 1350-750 cm ⁻¹ spectral range corresponding to the CH ₃ stretching and CH ³ deformation and rocking regions, respectively.
24 25 26 27	Fig. S3: IR spectra of the annealing of CH_3I/Ar sample until 35 K in the spectral range (a) 3080-2944 cm ⁻¹ (b) 1270-1237 cm ⁻¹ (c) 905-870 cm ⁻¹ . Bands denoted in green, pink and orange are assigned to CH_3I monomer, CH_3I dimer, and CH_3I trimer, respectively.
28 29 30	Fig. S4: ω B97X-D/aug-cc-pVTZ-PP-predicted geometry (distances in Å) and Gibbs free energy (Δ G in kJ mol ⁻¹) of CH ₃ I.H ₂ O isomers.
31 32 33	Fig. S5: ω B97X-D/aug-cc-pVTZ-PP-predicted geometry (distances in Å) and Gibbs free energy (Δ G in kJ mol ⁻¹) of CH ₃ I.(H ₂ O) ₂ isomers.
34 35 36	Fig. S6: ω B97X-D/aug-cc-pVTZ-PP-predicted geometry (distances in Å) and Gibbs free energy (Δ G in kJ mol ⁻¹) of CH ₃ I.(H ₂ O) ₃ isomers.
37 38 39	Fig. S7: ω B97X-D/aug-cc-pVTZ-PP-predicted geometry (distances in Å) and Gibbs free energy (Δ G in kJ mol ⁻¹) of (CH ₃ I) ₂ .(H ₂ O) isomers.

- Fig. S8: ω B97X-D/aug-cc-pVTZ-PP-predicted geometry (distances in Å) and Gibbs free energy (Δ G in kJ mol⁻¹) of (CH₃I)₂.(H₂O)₂ isomers.
- Fig. S9: Distribution of NBO charges calculated at ωB97X-D/aug-cc-pVTZ level of theory for CH₃I,
 H₂O monomers and 1:1a and 1:1b complexes.
- Fig. S10: IR spectra in the v_3 (symmetric stretching) and v_2 (bending mode) regions of pure water cluster
- 45 in matrix (trace (a)) (H₂O/Ar = 7/1000), recorded at 4 K, and of mixed CH₃I/H₂O/Ar = 1/25/1500,
- 46 recorded at 10 K (trace (b) new bands are marked with dashed lines).
- 47
- 48 <u>Table list:</u>
- 49 Table S1. Optimized Cartesian Coordinates of $(H_2O)n$ at the $\omega B97X$ -D/aug-cc-pVTZ level of theory
- 50 Table S2. Optimized Cartesian Coordinates of (CH_3I) at the ω B97X-D/aug-cc-pVTZ level of theory
- 51 Table S3. Optimized Cartesian Coordinates of CH₃I.H₂O at the ωB97X-D/aug-cc-pVTZ level of theory
- Table S4. Optimized Cartesian Coordinates of $CH_3I.(H_2O)_2$ at the $\omega B97X-D/aug-cc-pVTZ$ level of theory
- Table S5. Optimized Cartesian Coordinates of CH_3I . $(H_2O)_3$ at the $\omega B97X$ -D/aug-cc-pVTZ Level of Theory
- Table S6. Optimized Cartesian Coordinates of $(CH_3I)_2$. H_2O at the $\omega B97X$ -D/aug-cc-pVTZ level of theory
- Table S7. Optimized Cartesian Coordinates of $(CH_3I)_2$. $(H_2O)_2$ at the $\omega B97X$ -D/aug-cc-pVTZ level of theory
- Table S8. Calculated wavenumbers (cm⁻¹) and intensities (I in km/mol) of CH₃I monomer, HH and HT
- 61 dimers and THT₁ and THT₂ trimers. The IR bands are predicted at the ω B97X-D/aug-cc-pVTZ-PP level
- 62 of theory. The frequency shifts are calculated with respect to the monomer position ($\Delta v = v v_{\text{monomer}}$).
- 63
- Table S9. Calculated wavenumbers (cm⁻¹) and intensities (I in km/mol) of CH₃I.H₂O complexes compared to the calculated wavenumber (cm⁻¹) and intensities (I) of CH₃I monomer and H₂O monomer and dimer. The IR bands are predicted at the ω B97X-D/aug-cc-pVTZ-PP level oft. The frequency shifts
- are calculated with respect to the monomer position ($\Delta v = v v_{\text{monomer}}$).
- 68 69 Table S10. Calculated wavenumbers (cm⁻¹) and intensities (I in km/mol) of CH₃I.(H₂O)₂ complexes 70 compared to the calculated wavenumber (cm⁻¹) and intensities (I) of CH₃I monomer and H₂O monomer 71 and dimer. The IR bands are predicted at the ω B97X-D/aug-cc-pVTZ-PP level of theory. The frequency
- shifts are calculated with respect to the monomer position ($\Delta v = v v_{\text{monomer}}$).
- 73
- Table S11. Calculated wavenumbers (cm⁻¹) and intensities (I in km/mol) of CH₃I.(H₂O)₃ complexes compared to the calculated wavenumber (cm⁻¹) and intensities (I) of CH₃I monomer and H₂O monomer and dimer. The IR bands are predicted at the ω B97X-D/aug-cc-pVTZ-PP level of theory. The frequency
- shifts are calculated with respect to the monomer position ($\Delta v = v v_{\text{monomer}}$).
- 78
- Table S12. Calculated wavenumbers (cm⁻¹) and intensities (I in km/mol) of (CH₃I)₂.(H₂O) complexes compared to the calculated wavenumber (cm⁻¹) and intensities (I) of CH₃I monomer and H₂O monomer and dimer. The IR bands are predicted at the ω B97X-D/aug-cc-pVTZ-PP level of theory. The frequency shifts are calculated with respect to the monomer position ($\Delta v = v - v_{\text{monomer}}$).
- 83
- Table S13. Calculated wavenumbers (cm⁻¹) and intensities (I in km/mol) of $(CH_3I)_2$. $(H_2O)_2$ complexes compared to the calculated wavenumber (cm⁻¹) and intensities (I) of CH_3I monomer and H_2O monomer and dimer. The IR bands are predicted at the $\omega B97X$ -D/aug-cc-pVTZ-PP level of theory. The frequency
- shifts are calculated with respect to the monomer position ($\Delta v = v v_{\text{monomer}}$).
- 88

HH (a) HT 3.67 Å 3.71 Å 3.67 Å 3.75 Å 3.26 Å $\Delta_{\rm r} {\rm G^{o}}_{10{\rm K}} = -8.4 \text{ kJ mol}^{-1}$ $\Delta_{\rm r} {\rm G^{\circ}}_{10{\rm K}} =$ -11.4 kJ mol⁻¹ **(b)** THT₁ THT₂ 3.62 Å 3.66 Å 3.30 Å 3.24 Å 3.25 Å 3.32 Å 3.26 Å 3.24 Å 3.44 Å $\Delta_r G^{\circ}_{10K} = -27.7 \text{ kJ mol}^{-1}$ $\Delta_{\rm r} {\rm G^{\circ}}_{10{\rm K}} = -28.2 \ {\rm kJ \ mol^{-1}}$

92 93

94 95

90

91

Fig. S1: ω B97X-D/ aug-cc-pVTZ-PP-predicted geometries (distances in Å) and Gibbs free energies (Δ G in kJ/mol) of CH₃I dimers (a) and trimers (b).

97Fig. S2: IR spectra of CH_3I/Ar sample at 10 K in the 3100-2750 cm⁻¹ and 1350-750 cm⁻¹ spectral98range corresponding to (a) the CH_3 stretching (v_1 , (b) CH_3 deformation (v_2) and (c) rocking (v_6)99regions, respectively.

Fig. S3: IR spectra of the annealing of CH₃I/Ar sample until 35 K in the spectral range (a) 3020-2940 cm⁻¹ i.e. v_1 CH₃ stretching region (b) 1280-1227 cm⁻¹ i.e. v_2 CH₃ bending region (c) 905-870 cm⁻¹ i.e. v_6 CH₃ rocking region. Bands denoted in green, pink and orange are assigned to CH₃I monomer, CH₃I dimer and CH₃I trimer, respectively.

Fig. S4: ω B97X-D/ aug-cc-pVTZ-PP-predicted geometry (distances in Å) and Gibbs free

 $\Delta_{\rm r} {\rm G^{o}}_{10{\rm K}} = -7.5 \ {\rm kJ \ mol^{-1}}$

1:1a $\Delta_r G^{\circ}_{10K} = -13.5 \text{ kJ mol}^{-1}$

energy (ΔG in kJ mol⁻¹) of CH₃I.H₂O isomers.

110 111 112

- 114
- 115 116
- 117
- 118

100

Fig. S5: ω B97X-D/ aug-cc-pVTZ-PP-predicted geometry (distances in Å) and Gibbs free energy (Δ G in kJ mol⁻¹) of CH₃I.(H₂O)₂ isomers.

Fig. S6: ω B97X-D/ aug-cc-pVTZ-PP-predicted geometry (distances in Å) and Gibbs free energy (Δ G in kJ mol⁻¹) of CH₃I.(H₂O)₃ isomers.

Fig. S7: ω B97X-D/ aug-cc-pVTZ-PP-predicted geometry (distances in Å) and Gibbs free energy (Δ G in kJ mol⁻¹) of (CH₃I)₂.(H₂O) isomers.

Fig. S8: ωB97X-D/ aug-cc-pVTZ-PP-predicted geometry (distances in Å) and Gibbs free
 energy (ΔG in kJ mol⁻¹) of (CH₃I)₂.(H₂O)₂ isomers.

142 Fig. S9: Distribution of NBO charges calculated at ω B97X-D/aug-cc-pVTZ level of theory for CH₃I, H₂O monomers and 1:1a and 1:1b complexes.

Fig. S10: IR spectra in the v_3 (symmetric stretching) and v_2 (bending mode) regions of pure water cluster matrix (trace (a)) (H₂O/Ar = 7/1000), recorded at 4 K, and of mixed CH₃I/H₂O/Ar = 1/25/1500, recorded at 10 K (trace (b) new bands are marked with dashed lines).

153	Tab	le S1. Optimized	d Cartesian Co	ordinates of (H	$_{2}$ O) _n at the ω B97X-D/aug-cc-pVTZ level of theory
154	(H ₂	D)			
155	0	-0.000000	0.000000	0 116383	
156	Ĥ	0.000000	0 760161	-0.465533	
157	н	-0.000000	-0.760161	-0.465533	
158	11	-0.000000	-0.700101	-0.405555	
159	(H ₂	\mathbf{O}			
160	0	1 501446	-0.000598	-0 120598	
161	н	1 916104	0.003574	0.741310	
162	н	0 551378	-0.000064	0.053544	
163	$\hat{0}$	-1 385260	0.000411	0.114636	
16/	ч	-1 699478	-0.763555	-0.370726	
165	и П	1.607401	0.761544	0.376434	
166	11	-1.077471	0.701344	-0.370434	
167	Tah	le S2 Ontimized	1 Cartesian Co	ordinates of (C	H_2D_2 at the $\alpha B97X$ -D/aug-cc-nVTZ level of theory
168		16 52. Optimized			rision at the who mediately the point level of theory
169	C	0.000000	0.000000	-1 811644	
170	ĩ	0.000000	0.000000	0 326414	
171	н	0.000000	1.031350	-2 143367	
172	н	0.893175	-0.515675	-2 143367	
173	н	-0.893175	-0.515675	-2 143367	
174	11	-0.075175	-0.515075	-2.143307	
175	(CH	3D2 HH			
176	C	-3 907754	0 390987	-0.004362	
177	ī	-1 838951	-0 154458	0.001166	
178	н	-3 969591	1 472138	-0.040989	
170	и П	-4.366730	-0.053585	0.879470	
190	и П	4 355008	-0.055585	-0.879470	
181	C II	1 665041	1 816332	0.903010	
101	T	2 242080	0.242018	0.000879	
102	I II	2.243080	-0.243018	-0.000309	
103	п	2.309/10	2.415019	-0.019023	
104 105	п	1.038971	1,980833	-0.880034	
186	11	1.094703	1.773721	0.903781	
187	(CH	3D2 HT			
188	C	1 622437	1 814822	0.000071	
189	ĩ	2 278767	-0.220718	-0.000015	
190	н	0.538611	1 804962	-0.001982	
191	Н	2 011550	2 285114	0.895105	
192	н	2.011950	2.205111	-0.892798	
192	Ċ	-1 482055	-1 763383	0.00070	
197	T	-2.304184	0.211418	-0.000015	
105	и Ц	-2.304184	-2 463006	-0.000013	
106	и П	-2.309333	1 864681	-0.000137	
107	11	-0.875177	-1.804081	-0.891330	
197	п	-0.8/3/88	-1.804329	0.891907	
199		I.D. THT.			
200	C C	_2 611265	-0 156029	1 535612	
200	ц	-3 674467	-0.082235	1,555012	
201	T	_2 35/8//	-1 202688	_0.311660	
202	и Ц	-2.554044	-1.202000	1 / 18100	
203	п U	-2.100301	0.022033	1.410122	
204 205	п С	-2.111030	-0.720937	2.309031	
203		1.103443	-1.240203	1.04/309	
200	H T	1.733062	-1.322101	2.510703	
207	1 11	2.308466	-1.482244	-0.100/93	
208	Н	0.355746	-2.024739	1.636964	
209	Н	0.645072	-0.259067	1.589717	

210	С	0.423170	1.700963	-1.762384	
211	Н	0.003244	2.380145	-2.494538	
212	Ι	0.241593	2.630053	0.156476	
213	Н	-0.126321	0.767960	-1.720854	
214	Η	1.477570	1.524966	-1.936626	
215					
216	(CH	3I)3-THT2			
217		,			
218	С	2.145148	2.734239	0.397215	
219	Η	2.178470	3.194791	1.377319	
220	Ι	0.092032	2.376726	-0.085539	
221	Η	2.552316	3.394720	-0.358936	
222	Η	2.649296	1.774587	0.395383	
223	С	0.925720	-1.532791	-1.411356	
224	Η	0.273384	-2.375321	-1.214532	
225	Ι	2.454356	-1.524893	0.085833	
226	Н	1.410959	-1.630193	-2.374967	
227	Н	0.386654	-0.595555	-1.332725	
228	С	-1.378208	-1.217054	1.430838	
229	Н	-1.875731	-1.182816	2.392580	
230	Ι	-2.851214	-0.849020	-0.075398	
231	Η	-0.625893	-0.440256	1.348768	
232	Н	-0.949663	-2.195364	1.247436	
233					
234	Tab	le S3. Optimize	d Cartesian Co	ordinates of C	H ₃ I.H ₂ O at the ∞ B97X-D/aug-cc-pVTZ level of theory
235	СНз	I_ (1:1a)			
236	С	-0.324666	1.691645	-0.008427	
237	Ι	0.637281	-0.222031	-0.001147	
238	Н	-1.392797	1.509590	-0.046959	
239	Н	-0.039582	2.202525	0.903298	
240	Н	0.022906	2,227418	-0.883518	
241	0	-3.082563	-0.345960	0.081432	
242	Н	-2.262422	-0.835751	0.185006	
243	Н	-3.495515	-0.718337	-0.697934	
244					
245	CH ₃	I (1:1b)			
246	С	2.307237	-0.003551	-0.166295	
247	Ι	0.178576	0.001026	0.049239	
248	Η	2.667308	0.999157	0.032560	
249	Η	2.715483	-0.707898	0.549203	
250	Η	2.543533	-0.303803	-1.180597	
251	0	-3.102335	-0.000221	0.013228	
252	Η	-3.205324	0.751192	-0.572008	
253	Н	-3.210251	-0.769953	-0.546874	
254					
255					
256	Tab	le S4. Optimize	d Cartesian Co	ordinates of C	$H_3I.(H_2O)_2$ at the $\omega B97X$ -D/aug-cc-pVTZ level of theory
257	СНз	I (1:2a)			
258	С	0.116256	1.741200	0.280616	
259	Η	-0.948043	1.638711	0.092753	
260	Н	0.319186	2.018187	1.308074	
261	Ι	1.018017	-0.176580	-0.046812	
262	Н	0.583949	2.431321	-0.411423	
263	0	-3.126561	1.052353	-0.116378	
264	Η	-3.710066	1.199234	-0.859808	
265	Н	-2.996516	0.092444	-0.074015	
266	0	-2.372825	-1.667010	0.089172	
267	Η	-2.480960	-2.032587	0.967911	

268	Η	-1.424912	-1.518494	-0.008498	
269					
270	CH ₃	I (1:2b)			
271	С	0.000343	0.997859	1.240818	
272	Н	-0.900298	1.556198	1.011883	
273	Η	0.000288	0.636026	2.261971	
274	Ι	-0.000078	-0.724250	-0.039093	
275	Η	0.901257	1.555763	1.011877	
276	0	-2.946397	1.544332	-0.472769	
277	Η	-3.768260	1.150397	-0.179493	
278	Η	-2.452615	0.821528	-0.867688	
279	Ο	2.946091	1.543875	-0.472455	
280	Η	3.770948	1.152828	-0.183775	
281	Н	2.453218	0.819674	-0.865956	
282					
283	CH ₃	I (1:2c)			
284	С	-1.682986	-1.368027	-0.060041	
285	Ι	0.195580	-0.341787	0.019537	
286	0	-2.695047	1.976821	-0.081435	
287	Н	-2.462800	-0.615086	-0.028316	
288	Н	-1.716504	-1.930080	-0.985919	
289	H	-1.737091	-2.029032	0 797035	
290	н	-1 751392	1 811066	-0.161677	
291	н	-2 788982	2 456539	0 741744	
292	$\tilde{0}$	3 092707	1 148174	0.009620	
292	н	3 335933	1.102866	-0.915775	
294	H	3.671701	0 526608	0 452 207	
295	11	5.071701	0.520000	0.452207	
296	Tahl	le S5 Ontimize	d Cartesian Co	ordinates of C	H ₂ L (H ₂ O) ₂ at the @B97X-D/aug_cc_nVTZ Level of Theory
297	CH ₃	I (1:3a)	a curtostan co.		
298	C	0.010512	-1 464690	0 213293	
299	н	-0.612854	-1 208631	1.061957	
300	н	-0.575667	-1.497340	-0.697415	
301	T	1 470805	0.086950	-0.012056	
302	ч	0.548915	-2 390457	0.376729	
302	0		-0.155402	1 427486	
202	U U	-2.917972	-0.133402	2.062601	
205	п	-3.362123	0.109208	2.002001	
202		-2.332602	1.740096	0.254742	
200	0	-1.630114	1.740080	-0.234743	
207	п	-2.113033	1.094109	-0.928431	
308	П	-0.894684	1. /41489	-0.263691	
309	U	-2.901353	-0.680/15	-1.314002	
310	H	-3.707041	-0.823556	-1.809960	
311	Н	-3.140314	-0.742902	-0.3/5521	
31Z	СП	T (1.9k)			
515 514	СПЗ	1 (1:30)	0.001024	1 442240	
314	U	-0.005267	0.001934	1.442340	
315	H	1.032388	-0.030912	1.754539	
212	H	-0.498362	0.919908	1.741535	
31/	1	0.009429	-0.003160	-0.706516	
318	H	-0.556495	-0.881057	1./45340	
313	0	3.408414	-0.202132	0.883067	
320	H	2.949832	-0.137947	0.042091	
321	H	3.769426	-1.088828	0.901001	
322	0	-1.911022	-2.829204	0.862906	
323	Н	-2.854128	-2.664211	0.878937	
324	Η	-1.611164	-2.471901	0.023828	

325	0	-1.544158	3.042614	0.855416	
326	Н	-1.361723	2.616753	0.014597	
327	Н	-0.963766	3.803873	0.878346	
328					
329	CH	I (1:3c)			
330	С	-0.288616	1.063986	1.180678	
331	Η	-1.090712	1.708947	0.839708	
332	Н	-0.382344	0.825398	2.233199	
333	Ι	-0.511068	-0.782496	0.105452	
334	Н	0.693083	1.459272	0.939261	
335	0	-2.962766	1.894174	-0.861011	
336	Н	-2.729856	0.972004	-0.991932	
337	Н	-2.702561	2.331617	-1.672028	
338	0	2.831352	1.929167	0.325530	
339	Н	3.153499	2.649977	-0.214208	
340	Н	3.023054	1.122057	-0.175804	
341	0	3.035139	-0.567788	-0.995759	
342	Ĥ	2 105906	-0.801911	-0 889804	
343	Н	3.518433	-1.223400	-0.491497	
344		0.010100	1.220 100		
345	CH	I (1:3d)			
346	С	0.724463	-1.626333	0.798241	
347	Н	1.390783	-2.407409	0.451906	
348	Н	0.833210	-1.461186	1.863477	
349	Ι	1.330811	0.180462	-0.184809	
350	Н	-0.307395	-1.817155	0.517780	
351	0	-3.599594	0.454128	-0.513019	
352	Ĥ	-3 582593	0 704562	-1 436333	
353	Н	-3.011245	1.080383	-0.058692	
354	$\tilde{0}$	-2 413831	-2.040049	-0.067579	
355	н	-3.057099	-2 583321	0.385726	
356	Н	-2 865405	-1.194571	-0.234134	
357	$\hat{0}$	-1.716973	2 000965	0.836722	
358	н	-1 576828	2.000505	0.829704	
359	н	-0.859993	1 604241	0.637010	
360	11	0.007775	1.001211	0.057010	
361	Tab	le S6. Optimize	d Cartesian Co	ordinates of (($H_{3}D_{2}$ H ₂ O at the α B97X-D/aug-cc-nVTZ level of theory
362	2 Cl	H ₃ I (2:1a)			
363	C	-1.575315	0.977955	1.456682	
364	I	-2.262936	-0.364071	-0.064336	
365	8	-0.197901	2.590166	-1.248997	
366	Н	-1.190055	1.855777	0.949939	
367	Н	-2.423576	1.213604	2.088018	
368	Н	-0.796625	0.466645	2.009733	
369	H	-0.836154	1 964730	-1 598248	
370	Н	0.558742	2.048659	-1.007545	
371	C	1 668714	-1.620225	-1.017960	
372	н	2 119107	-2.521154	-0.619153	
373	I	2.281513	0.009132	0.225408	
374	Н	2.020281	-1.417040	-2.022285	
375	Н	0.586517	-1.667193	-0.977615	
376		, - - ,			
377	2 CI	H3I (2:1b)			
378	С	1.114383	-0.416188	1.418991	
379	Ι	2.532677	-0.393328	-0.186788	
380	0	0.990773	2.894500	0.406319	
381	Η	0.724805	0.591081	1.514019	

382	Н	0.332060	-1.117573	1.154882	
383	Н	1.641221	-0.727223	2.312972	
384	Н	1.693452	2.389679	-0.012888	
385	Н	1.420559	3.654417	0.798844	
386	С	-1.336739	0.913093	-1.110691	
387	Н	-1.902725	1.370256	-1.913501	
388	Ι	-2.702943	-0.251959	0.054882	
389	H	-0.581666	0 239949	-1.500442	
390	н	-0.895615	1 662207	-0.463247	
391		0.072012	1.002207	0.105217	
392	2 C	H ₃ I (2:1c)			
393	C	1.101742	-0.433871	1.395182	
394	Ι	2.551156	-0.386601	-0.181899	
395	Ō	0.974577	2.887192	0.404833	
396	Η	0.697171	0.567854	1.486407	
397	Н	0.333887	-1.144454	1.113696	
398	Н	1.614564	-0.741685	2.298382	
399	Н	1.685426	2.387834	-0.007053	
400	H	1.398516	3.633078	0.829335	
401	С	-1.329928	0.885948	-1.115426	
402	H	-0.896740	1.648015	-0.477799	
403	T	-2 717338	-0 249051	0.054642	
404	H	-1 881829	1 326529	-1.937093	
405	н	-0.570805	0.202390	-1.478472	
406		0.070000	0.202590	1.170172	
407	2 C	H3I (2:1d)			
408	C	2.411190	1.212758	1.149612	
409	Ι	2.311909	-0.457949	-0.185928	
410	0	0.011015	2.384778	-0.973575	
411	Н	1.712084	1.956599	0.783797	
412	Н	2.137140	0.859098	2.136602	
413	Н	3.429219	1.582844	1.136632	
414	Η	0.424145	1.603317	-1.350322	
415	Η	-0.928898	2.233724	-1.095605	
416	С	-1.236576	0.254033	1.538528	
417	Н	-1.866087	0.481385	2.390492	
418	I	-2.515476	-0.242118	-0.102814	
419	Н	-0.649901	1.112877	1.232491	
420	Η	-0.604421	-0.605273	1.728977	
421	• •				
422		H3I (2:1e)	1 142274	1 169452	
425	T	2 618020	-1.145574 0.265824	0.206205	
424	і Ц	1.835033	0.303834	-0.200203	
425	н	1.055835	-1 561256	0.790385	
420	н	2 760794	-1.894890	1 218089	
428	Ĉ	-1.297628	0 888439	1.084621	
429	Ĩ	-1.912271	-0.710726	-0.201186	
430	Ĥ	-2.076099	1.642061	1.044678	
431	Η	-1.190142	0.479736	2.082326	
432	Н	-0.352840	1.260972	0.704926	
433	0	-4.363495	2.092095	0.120870	
434	Н	-4.450018	2.622727	-0.671386	
435	Η	-4.234609	1.194386	-0.195520	
436					
437	Tab	ole S7. Optimized	d Cartesian Coo	ordinates of (C	CH ₃ I) ₂ .(H ₂ O) ₂ at the @B97X-D/aug-cc-pVTZ level of theory
438	2 C	H3I (2:2a)			
439	С	3.081757	-1.899383	0.573459	
440	Ι	2.186556	-0.088214	-0.131107	

441	Η	3.781850	-1.646030	1.360920
442	Η	2.292403	-2.540078	0.948874
443	Н	3.592992	-2.365730	-0.260634
444	С	-1.543864	0.047054	-1.716193
445	I	-2.501840	-0.446960	0.136091
446	н	-2 325735	0.160615	-2.457626
447	н	-0.990122	0.967665	-1 566115
448	н	-0.880539	-0 773985	-1 959882
110	$\hat{0}$	_0.268159	2 020701	1.813847
450	ц Ц	0.430033	1 383205	1.015047
450	11	1.041157	1.363293	1.240203
451	п	-1.041137	1.477500	1.023840
452	0	0.408182	2.377300	-0.830998
453	H	0.201208	2.577418	0.103395
454	Н	0.812560	3.451574	-1.010321
455				
456	2 C	H3I (2:2b)		
457	С	-2.524571	0.921063	-1.292330
458	Ι	-2.283772	-0.642602	0.153657
459	Η	-3.538010	1.292139	-1.197452
460	Н	-1.792814	1.691085	-1.070181
461	Η	-2.360696	0.480533	-2.268750
462	С	1.299805	0.246935	-1.603239
463	I	2.500446	-0.433548	0.034409
464	н	1 937258	0 269928	-2.479123
465	н	0 491495	-0.465656	-1.720633
465	ц	0.421423	1 234744	1.720033
400	0	0.105059	1.234744	-1.348314
407	U 11	0.105059	1.027011	2.023227
408	п	0.8/3143	1.03/911	1.823014
469	H	-0.640282	0.981596	1.921561
470	0	-0.112062	3.029100	-0.344552
4/1	Н	-0.020382	2.649547	0.546927
472	Н	0.039502	3.968343	-0.249154
473				
474	2 C	H ₃ I (2:2c)		
475	С	-1.395242	-0.386223	1.631930
476	Ι	-2.316589	-0.088136	-0.281590
477	Η	-2.185821	-0.375265	2.372565
478	Н	-0.894045	-1.346413	1.583388
479	Н	-0.697731	0.430656	1.777365
480	С	1.514736	1.323279	-1.252202
481	Ť	2 428441	-0.087425	0 073748
482	н	2 291389	1 700864	-1.906434
182	н	0 749727	0.796074	-1 809971
181	ц	1 083/32	2 107222	0.640340
404	0	0.039000	2.107222	-0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0+0.0
405	U 11	0.058000	-3.077137	0.115575
480	H	0.725288	-2.426543	-0.059202
487	Н	-0.613213	-2.927790	-0.5/3/95
488	0	-0.628466	3.005650	0.715742
489	Н	-1.051796	3.779950	1.086562
490	Η	-1.328587	2.515563	0.274196
491				
492	2 C	H3I (2:2d)		
493	С	1.661247	0.828440	1.608611
494	Ι	2.227108	-0.154645	-0.208699
495	Н	2.536557	0.859352	2.246013
496	Н	1.318568	1.819313	1.332110
497	Н	0.863950	0.246068	2,055005
498	C	-1 659685	-0.854195	-1.605328
499	ĭ	-2 227386	0 154637	0 197262
500	й	_2 535122	_0.896560	_2 241000
500	11	4.333144	0.070500	2.241700

501	Η	-0.863609	-0.276917	-2.060336
502	Η	-1.315054	-1.840294	-1.314448
503	0	0.181839	3.101143	-0.412147
504	н	-0 568556	2 507934	-0 313831
505	н	0.730712	2 687795	-1.080565
506	$\hat{0}$	_0 182278	_3.080201	0.475843
507	ч	-0.102270	-2.616085	1 108713
507	11	-0.755752	-2.010785	0.246005
500	п	0.575215	-2.302230	0.340095
509	20	II I (2.2.)		
510	2 C.	H3I (2:2e)	0 100204	0.007000
511	U L	-4.058086	-0.129304	0.097990
512	1	-1.933695	-0.228816	-0.151890
513	Н	-4.421201	0.714972	-0.475828
514	Н	-4.476995	-1.058302	-0.270287
515	Η	-4.264833	-0.000939	1.153758
516	С	1.830716	-2.375832	0.587534
517	Ι	1.998716	-0.342122	-0.060119
518	Η	2.514283	-2.525747	1.415235
519	Η	0.805807	-2.546122	0.897922
520	Н	2.090624	-3.017233	-0.246623
521	0	1.929789	2.719045	-0.800768
522	Н	1.600115	2,990630	-1.656703
523	Н	1 205952	2.879918	-0 176670
524	0	-0.047681	2 723993	1 259234
525	н	_0.692854	2.081861	0.944410
525	11 11	-0.092834	2.001001	1 870402
520	п	0.300328	2.22/199	1.870405
527				
528	20	H3I (2:21)	1.047000	1 105050
529	U U	-3.833642	1.04/303	-1.195959
530	1	-2.449162	0.128178	0.152330
531	Н	-3.273725	1.674606	-1.879900
532	Η	-4.354911	0.262890	-1.732354
533	Η	-4.528561	1.640434	-0.612826
534	С	0.947089	-1.788523	-1.027733
535	Ι	2.221732	-0.232840	-0.291313
536	Η	1.568427	-2.513269	-1.540633
537	Η	0.444540	-2.230925	-0.175195
538	Η	0.229044	-1.335010	-1.700423
539	0	4.113312	2.245794	0.685052
540	Ĥ	3,730172	2 934681	0.140729
541	н	4 952419	2.037625	0 272674
542	0	-0 288164	-1.127528	2 188496
543	н	0.485734	_0.640239	1 887285
544	н	_0.481208	_0.782533	3.060503
545	11	-0.401200	-0.762555	5.000505
545	20	$\mathbf{U}_{\mathbf{I}}$		
	2 U.	n31 (2:2g))	0.742400	1 497567
547	U T	-2.001810	0.742400	1.48/30/
548	1	-2.515596	-0.342873	-0.336218
549	H	-2.406/29	0.040126	2.289572
550	H	-1.843957	1.516442	1.438407
551	Н	-3.596782	1.162551	1.572402
552	С	1.003333	-0.251107	1.525499
553	Ι	2.331883	-0.772027	-0.070663
554	Η	1.593971	-0.177210	2.430850
555	Η	0.544087	0.695111	1.256433
556	Η	0.268364	-1.044644	1.594193
557	0	-0.189304	2.598415	0.126178
558	H	0.713328	2.816875	-0.151207
559	Н	-0.606207	2.232354	-0.655671
560	$\tilde{0}$	2.518261	2.859726	-0.682463
	\sim			0.0000000

561	Η	2.748410	1.924341	-0.639240
562	Η	3.164909	3.310825	-0.139160
563				
564	2 (1	H.I (2·2h)		
565		1 941760	1 802726	0.708000
505	T	1.741700	-1.802720	0.798900
500	1	2.3/3/88	0.021359	-0.232776
567	H	2.4//9//	-2.59/155	0.293986
568	Н	2.279594	-1.690087	1.821998
569	Η	0.869725	-1.955338	0.749506
570	С	-1.641265	0.417592	-1.619113
571	Ι	-2.133358	-0.782851	0.088551
572	Η	-2.353801	0.167172	-2.395911
573	Н	-1.716053	1.456945	-1.315400
574	н	-0 629827	0 158066	-1 908520
575	0	-0.216884	1 932432	1 783529
576	ц	0.624748	1.552452	1.705525
570	11 TT	0.024740	1.054/10	1.424103
5//	п	-0.793380	1.108178	1.089988
5/8	U U	-1.344065	3.452697	-0.516925
579	H	-0.947970	3.054199	0.473961
580	Н	-1.862379	4.192168	-0.001332
581				
582	2 CI	H3I (2:2i)		
583	С	-4.033673	-0.180420	0.015353
584	Ι	-1.910671	-0.043831	-0.226804
585	Η	-4.474475	0.707770	-0.421343
586	Н	-4.367442	-1.073627	-0.499145
587	н	-4 244132	-0 239590	1 076456
588	C	2 688375	-1 587228	-0.861775
589	ī	2.000373	0.296860	_0.063986
505	й	2.000+00	-1 569589	_1.931096
501	U II	2.515057	1 703000	-1.551050
591	11	2.005125	-1.703090	-0.042370
592	П	2.095155	-2.333213	-0.374089
593	0	0.255945	2.965542	0.954840
594	H	-0.503782	2.378535	0.928786
595	Н	0.234393	3.428417	0.116486
596	0	0.366945	-2.722840	1.464830
597	Н	-0.419859	-2.376039	1.037779
598	Η	0.785246	-1.945801	1.841573
599				
600	2 CI	H3I (2:2j)		
601	С	3.296608	-2.031918	-0.402920
602	I	1.934437	-0.449623	0.068795
603	н	4 132718	-1 976172	0 284289
604	й	2 766874	-2.970606	_0 289493
605	и П	2.700074	1 808021	1 426475
605	C II	1 909019	-1.898921	-1.420473
606	Ţ	-1.808918	-0.399049	1.0191/9
607	1	-2./1/930	-0.12/822	-0.300441
608	Н	-1.100880	0.410/49	1.753334
609	Н	-2.598529	-0.372333	2.360523
610	Η	-1.309238	-1.360217	1.607438
611	0	0.086782	2.148846	0.585116
612	Η	-0.588640	2.106092	-0.094790
613	Η	0.806468	2.676086	0.209649
614	0	2.529644	3.188402	-0.469390
615	Н	2.848524	2.283797	-0.549461
616	Н	3.083421	3,593947	0.198826
617		2.000 121	2.2222717	
618				
610				
019				

621 Table S8. Calculated wavenumbers (cm⁻¹) and intensities (I in km/mol) of CH₃I monomer, HH and HT

dimers and THT and TTH trimers. The IR bands are predicted at the ωB97X-D/aug-cc-pVTZ-PP level

623 of theory. The frequency shifts are calculated with respect to the monomer position ($\Delta v = v - v_{\text{monomer}}$).

624

Vib	rational Modes	CH ₃ I	(CH ₃ I) ₂ din	iers			(CH ₃ I) ₃ trimers					
		monomer	НТ	Δν	HH	Δν	ТНТ	Δν	ТТН	Δν		
v 4	C-H stretching degenerated	3214 (0)	3221 (0)	7	3214 (0)	0	3221 (0)	7	3215 (1)	1		
			3217 (1)	3	3214 (1)	0	3216 (1)	2	3214 (0)	0		
			3215 (0)	1	3211 (1)	-3	3214 (1)	0	3213 (2)	-1		
			3214 (1)	0	3211 (1)	-3	3213 (1)	-1	3211 (0)	-3		
							3210(1)	-4	3210 (2)	-4		
							3206 (1)	-8	3206 (1)	-8		
v1	Sym CH ₃ stretching	3101 (11)	3103 (8)	2	3100 (9)	-1	3101 (8)	0	3097 (10)	-4		
			3099 (13)	-2	3100 (14)	-1	3097 (10)	-4	3096 (10)	-5		
							3094 (14)	-7	3093 (11)	-8		
v5	CH ₃ deformation	1477 (6)	1485 (14)	8	1477 (8)	0	1482 (3)	6	1486 (7)	9		
	degenerated		1480 (7)	3	1477 (6)	0	1479 (12)	2	1485 (3)	8		
			1477 (5)	0	1474 (10)	-3	1477 (8)	0	1478 (7)	1		
			1474 (2)	-3	1473 (12)	-4	1474 (2)	-3	1477 (7)	0		
							1473 (12)	-4	1474 (3)	-3		
							1470 (2)	-7	1470 (9)	-7		
v2	Sym CH ₃ deformation	1297 (23)	1300 (41)	3	1297 (12)	0	1300 (39)	3	1305 (2)	8		
			1297 (1)	0	1296 (40)	-1	1297 (10)	0	1296 (46)	-1		
							1295 (16)	-2	1294 (27)	-3		
v6	CH ₃ rocking degenerated	903 (5)	913 (15)	10	906 (7)	3	921 (8)	18	914 (7)	11		
			910 (4)	7	905 (7)	2	917 (15)	14	911 (10)	7		
			909 (4)	6	902 (3)	-1	911 (7)	8	909 (15)	6		
			908 (5)	5	901 (4)	-2	910 (7)	7	907 (3)	4		
							906 (10)	3	906 (7)	3		
							904 (2)	1	905 (4)	2		

625

- Table S9. Calculated wavenumbers (cm⁻¹) and intensities (I in km/mol) of CH₃I.H₂O complexes 627
- compared to the calculated wavenumber (cm⁻¹) and intensities (I) of CH₃I monomer and H₂O monomer 628
- 629 and dimer. The IR bands are predicted at the @B97X-D/aug-cc-pVTZ-PP level of theory. The frequency 1.:0 6

30	shifts are calculate	d with respect to the	he monomer position	$(\Delta v = v - v_{\text{monomer}})$).
----	----------------------	-----------------------	---------------------	---------------------------------------	----

Vibra	tional Mode	H ₂ O monomer	H ₂ O dimer	CH ₃ I monomer	CH ₃ I-H ₂ O (1 :1a)	Δν	CH ₃ I-H ₂ O (1 :1b)	Δν
$\nu_3 H_2 O$	anti sym	3986 (63)	3974 (85)		3958 (106)	-28	3975 (63)	-11
	stretching		3954 (86)	1				
$v_1 H_2 O$	sym	3879(5)	3871 (11)		3838 (48)	-41	3869 (11)	-10
	stretching		3751 (339)					
$\nu_2 H_2 O$	bending	1637 (63)	1658 (39)		1642 (49)	5	1636 (67)	-1
			1637 (94)					
V4	C-H stretching			3214 (0)	3215 (0)	1	3207 (1)	-7
					3213 (5)	-1	3207 (1)	-7
v ₁	Sym CH ₃ stretching			3101 (11)	3096 (12)	-5	3097 (15)	-4
V5	CH ₃			1477 (6)	1484 (5)	7	1478 (6)	1
	deformation				1474 (4)	-3	1478 (6)	1
v ₂	Sym CH ₃ deformation			1297 (23)	1301 (22)	4	1296 (23)	-1
V ₆	CH ₃ rocking			903 (5)	925 (7)	22	900 (5)	-3
					909 (5)	6	899 (5)	-4

Table S10. Calculated wavenumbers (cm⁻¹) and intensities (I) of CH₃I.(H₂O)₂ complexes compared to the calculated wavenumber (cm⁻¹) and intensities (I in km/mol) of CH₃I monomer and H₂O monomer and dimer. The IR bands are predicted at the ω B97X-D/aug-cc-pVTZ-PP level of theory. The frequency shifts are calculated with respect to the monomer position ($\Delta v = v - v_{\text{monomer}}$)

Vibrational N	Aode	H ₂ 0	H ₂ O	CH ₃ I	CH ₃ I-2H ₂ O	Δν	vCH ₃ I-2H ₂ O	Δν	CH ₃ I-2H ₂ O	Δν
		monomer	dimer	monomer	1 :2a		1 :2b		1 :2c	
$v_3 H_2 O$	anti sym	3986 (63)	3974 (85)		3950 (74)	-36	3960 (18)	-26	3978 (66)	-8
	stretching		3954 (86)		3940 (131)	-46	3960 (188)	-26	3955 (107)	-31
$v_1 H_2 O$	sym	3879(5)	3871 (11)		3782 (256)	-97	3845 (35)	-34	3872 (13)	-7
	stretching		3751 (339)		3674 (358)	-205	3845 (35)	-34	3828 (77)	-51
$v_2 H_2 O$	bending	1637 (63)	1658 (39)		1662 (40)	25	1639 (92)	2	1642 (45)	5
			1637 (94)		1638 (61)	1	1638 (9)	1	1636 (73)	-1
v_4	C-H stretching			3214 (0)	3215 (1)	1	3216 (1)	2	3210 (1)	-4
					3205 (34)	-9	3215 (14)	1	3209 (2)	-5
ν_1	C-H stretching			3101 (11)	3087 (28)	-14	3093 (9)	-8	3095 (14)	-6
v ₅				1477 (6)	1491 (4)	14	1484 (3)	7	1484 (4)	7
	Sym CH ₃ stretching				1475 (4)	-2	1478 (2)	4	1476 (4)	-1
v ₂	CH ₃ deformation			1297 (23)	1312 (27)	5	1303 (20)	6	1300 (21)	3
V ₆				903 (5)	935 (4)	31	937 (9)	33	921 (6)	18
					917 (5)	14	925 (5)	22	905 (4)	2

636

637

638

639

Table S11. Calculated wavenumbers (cm⁻¹) and intensities (I in km/mol) of CH₃I.(H₂O)₃ complexes compared to the calculated wavenumber (cm⁻¹) and intensities (I) of CH₃I monomer and H₂O monomer and dimer. The IR bands are predicted at the ω B97X-D/aug-cc-pVTZ-PP level of theory. The frequency shifts are calculated with respect to the monomer position ($\Delta v = v - v_{monomer}$).

Vibrational modes	H ₂ O monomer	H ₂ O Dimer	CH ₃ I monomer	CH ₃ I-3H ₂ O 1 :3a	Δν	CH ₃ I-3H ₂ O 1 :3b	Δν	CH ₃ I-3H ₂ O 1 :3c	Δν	CH ₃ I-3H ₂ O 1 :3d	Δν
$v_3 H_2 O$	3986 (63)	3974 (85)		3950 (60)	-36	3962 (54)	-24	3961 (94)	-25	3949 (74)	-37
		3954 (86)		3948 (99)	-38	3961 (124)	-25	3951 (71)	-35	3948 (132)	-38
				3861 (205)	-125	3960 (119)	-26	3941 (140)	-45	3943 (78)	-43
$v_1 H_2 O$	3879(5)	3871 (11)]	3716 (294)	-63	3849 (19)	-30	3848 (29)	-31	3761 (354)	-118
		3751 (339)		3663 (358)	-216	3848 (32)	-31	3788 (246)	-91	3660 (499)	-219
				3557 (276)	-322	3848 (32)	-31	3680 (342)	- 199	3606 (545)	-273
$v_2 H_2 O$	1637 (63)	1658 (39)		1669 (27)	32	1640 (27)	3	1661 (40)	24	1677 (36)	40
		1637 (94)]	1653 (138)	16	1640 (27)	3	1640 (74)	3	1662 (32)	25
				1647 (58)	10	1638 (94)	1	1639 (37)	2	1636 (76)	-1
$v_4 CH_3 I$			3214 (0)	3219 (2)	5	3216 (12)	2	3216 (2)	2	3215 (0)	1
				3218 (2)	4	3213 (13)	-1	3206 44)	-8	3199 (50)	-15
$v_1 CH_3 I$			3101 (11)	3101 (6)	0	3088 (2)	-13	3085 (18)	-16	3079 (47)	-25
v ₅ CH ₃ I			1477 (6)	1485 (21)	8	1484 (1)	7	1493 (3)	16	1491 (5)	14
				1475 (7)	-2	1484 (2)	7	1476 (3)	-1	1474 (4)	-3
$v_2 CH_3 I$			1297 (23)	1310 (27)	13	1305 (20)	8	1314 (26)	17	1316 (28)	19
$\nu_6 CH_3 I$			903 (5)	918 (5)	15	946 (7)	44	951 (5)	48	940 (3)	37
				916 (11)	13	945 (7)	43	929 (5)	26	919 (5)	16

Table S12. Calculated wavenumbers (cm⁻¹) and intensities (I in km/mol) of (CH₃I)₂.(H₂O) complexes compared to the calculated wavenumber (cm⁻¹) and intensities (I) of CH₃I monomer and H₂O monomer and dimer. The IR bands are predicted at the ω B97X-D/aug-cc-pVTZ-PP level of theory. The frequency shifts are calculated with respect to the monomer position ($\Delta v = v - v_{\text{monomer}}$).

648

Vibrational	H ₂ O	H ₂ O dimer	CH ₃ I	2CH ₃ I-H ₂ O	Δν								
modes	monomer		monomer	2:1a			•	2:10					
v_3 H ₂ O	3986 (63)	3974 (85)		3925 (106)	-61	3957 (114)	-29	3957 (114)	-29	3925 (106)	-61	3959 (103)	-27
		3954 (86)											
$v_1 H_2 O$	3879(5)	3871 (11)		3825 (84)	-54	3825 (65)	-54	3825 (66)	-54	3833 (28)	-46	3842 (40)	-32
		3751 (339)]										
$v_2 H_2 O$	1637 (63)	1658 (39)	1	1643 (70)	6	1634 (63)	-3	1633 (61)	-4	1646 (71)	9	1640 (49)	3
		1637 (94)]										
v ₄ CH ₃ I			3214 (0)	3217 (1)	3	3218 (0)	4	3218 (0)	3	3214 (2)	0	3213 (3)	-1
				3216 (0)	2	3217 (8)	3	3216 (9)	2	3214 (0)	0	3213 (1)	-1
				3212 (4)	-2	3215 (2)	1	3214 (1)	0	3212 (2)	-2	3210 (1)	-4
				3211 (2)	-3	3209 (1)	-5	3209 (2)	-5	3211 (2)	-1	3208 (7)	-6
v ₁ CH ₃ I			3101 (11)	3097 (11)	-4	3099 (4)	-2	3098 (4)	-3	3097 (16)	-4	3098 (9)	-3
				3095 (11)	-6	3096 (7)	-5	3096 (7)	-5	3096 (3)	-5	3091 (7)	-10
v ₅ CH ₃ I			1477 (6)	1483 (11)	6	1496 (7)	19	1495 (6)	18	1488 (3)	11	1484 (5)	7
				1477 (3)	0	1483 (25)	6	1482 (28)	4	1481 (19)	4	1481 (3)	4
				1473 (2)	-4	1477 (8)	0	1478 (8)	1	1475 (10)	-2	1478 (9)	1
				1469 (8)	-8	1472 (12)	-5	1474 (9)	-2	1470 (7)	-7	1472 (9)	-5
$v_2 CH_3 I$			1297 (23)	1302 (35)	5	1308 (10)	11	1307 (8)	10	1302 (16)	5	1302 (27)	5
				1297 (5)	0	1301 (45)	0	1301 (48)	4	1298 (28)	1	1297 (21)	0
$v_6 CH_3 I$			903 (5)	926 (6)	23	924 (8)	21	925 (8)	22	925 (8)	22	930 (12)	27
				916 (11)	13	914 (2)	11	913 (5)	10	921 (6)	18	915 (4)	12
				913 (7)	10	913 (5)	10	913 (3)	10	910 (8)	7	911 (8)	7
				908 (4)	5	910 (7)	7	908 (7)	5	907 (5)	4	904 (6)	1

Table S13. Calculated wavenumbers (cm⁻¹) and intensities (I in km/mol) of $(CH_3I)_2.(H_2O)_2$ complexes compared to the calculated wavenumber (cm⁻¹) and intensities (I) of CH_3I monomer and H_2O monomer and dimer. The IR bands are predicted at the $\omega B97X$ -D/aug-cc-pVTZ-PP level of theory. The frequency

Vibrational	H ₂ O	H ₂ O	CH ₃ I	2CH ₃ I-2H ₂ O	Δν	2CH ₃ I-2H ₂ O	Δν	2CH ₃ I-2H ₂ O	Δν	2CH ₃ I-2H ₂ O	Δν	2CH ₃ I-2H ₂ O	Δν
modes	3986 (63)	3974 (85)	monomer	2:2a 3949 (77)	-37	2:20	-36	2:2c 3954 (126)	-28	2:20 3937 (146)	_49	2:2e 3948 (74)	-38
V ₃ Π ₂ Ο		2054 (86)	_	3949 (17)	-37	3950 (74)	122	3937 (120)	20	3037 (140)	52	3022 (111)	-30
		3934 (80)	_	3888 (104)	-98	3804 (233)	-122	3937 (94)	-39	3934 (29)	-52	3922 (111)	-04
v_1 H ₂ O	3879(5)	3871 (11)		3793 (152)	-86	3787 (142)	-92	3818 (151)	-61	3823 (159)	-56	3803 (156)	-76
		3751 (339)		3631 (310)	-248	3607 (370)	-266	3814 (58)	-65	3822 (18	-57	3685 (318)	-194
$v_2 H_2 O$	1637 (63)	1658 (39)		1655 (49)	18	1665 (42)	28	1643 (42)	6	1642 (3)	5	1665 (39)	32
		1637 (94)		1645 (81)	8	1646 (82)	9	1631 (57)	-6	1642 (136)	5	1649 (82)	12
$\nu_4 CH_3 I$			3214 (0)	3217 (3)	3	3213 (3)	-1	3216 (1)	2	3219 (1)	5	3213 (0)	1
				3213 (17)	-1	3211 (4)	-3	3215 (10)	1	3218 (1)	4	3213 (0)	-1
				3208 (1)	-6	3209 (24)	-5	3214 (11)	0	3216 (8)	2	3206 (1)	-8
				3208 (1)	-6	3206 (13)	-8	3213 (1)	-1	3213 (7)	-1	3203 (1)	-11
$\nu_1 CH_3 I$			3101 (11)	3098 (13)	-3	3091 (26)	-10	3096 (10)	-5	3097 (11)	-4	3100 (12)	-1
				3095 (15)	-6	3088 (10)	-13	3092 (9)	-9	3095 (12)	-6	3095 (16)	-6
v ₅ CH ₃ I			1477 (6)	1492 (13)	15	1496 (4)	19	1486 (20)	9	1488 (16)	11	1478 (4)	1
				1478 (5)	1	1486 (13)	9	1482 (7)	5	1486 (4)	9	1478 (3)	1
				1477 (6)	0	1476 (7)	-1	1473 (14)	-4	1471 (9)	-6	1476 (7)	-1
				1475 (8)	-2	1473 (9)	-4	1472 (2)	-5	1470 (2)	-7	1476 (7)	-1
$\nu_2 CH_3 I$			1297 (23)	1312 (28)	15	1312 (17)	15	1304 (36)	7	1303 (37)	6	1296 (29)	-1
				1296 (21)	-1	1307 (34)	10	1304 (12)	7	1300 (0)	3	1296 (22)	-1
$\nu_6 CH_3 I$			903 (5)	931 (5)	28	932 (5)	29	937 (7)	34	932 (2)	29	902 (4)	-1
				917 (6)	14	932 (5)	29	922 (4)	19	931 (10)	28	901 (5)	-2
				901 (3)	-2	916 (9)	13	921 (7)	18	913 (9)	10	900 (6)	-3
				900 (6)	-3	914 (4)	11	914 (9)	11	913 (6)	10	898 (3)	-5

652 shifts are calculated with respect to the monomer position ($\Delta v = v - v_{\text{monomer}}$).

Table S13. (continued)

Vibrational	H ₂ O	H ₂ O	CH ₃ I	2CH ₃ I-2H ₂ O	Δν	2CH ₃ I-2H ₂ O	Δν	2CH ₃ I-2H ₂ O	Δν	2CH ₃ I-2H ₂ O	Δν	2CH ₃ I-2H ₂ O	Δν
modes	monomer	dimer	monomer	2 :2f		2 :2g		2 :2h		2 :2i		2 :2j	
$v_3 H_2 O$	3986 (63)	3974 (85)		3977 (64)	-19	3945 (132)	-41	3951 (77)	-35	3955 (102)	-31	3946 (129)	-40
		3954 (86)		3950 (122)	-36	3911 (106)	-75	3870 (200)	-116	3935 (83)	-51	3901 (173)	-85
$v_1 H_2 O$	3879(5)	3871 (11)		3871 (12)	-8	3782 (236)	-97	3794 (134)	-85	3844 (44)	5	3817 (112)	-62
		3751 (339)]	3803 (132)	-76	3683 (360)	- 196	3659 (411)	-200	3843 (46)	4	3710 (288)	-169
$v_2 H_2 O$	1637 (63)	1658 (39)		1638 (67)	1	1672 (59)	35	1663 (37)	26	1646 (100)	9	1653 (60)	16
		1637 (94)		1636 (65)	-1	1635 (36)	-2	1646 (120)	9	1639 (63)	2	1638 (45)	1
$v_4 CH_3I$			3214 (0)	3217 (2)	3	3214 (5)	0	3218 (0)	4	3215 (0)	1	3221 (4)	7
				3210 (1)	-4	3212 (1)	-2	3216 (0)	2	3214 (0)	0	3216 (2)	2
				3206 (1)	-8	3210 (5)	-4	3209 (30)	-5	3210 (0)	-4	3209 (1)	-5
				3205 (1)	-9	3201 (16)	-13	3206 (3)	-8	3207 (3)	-7	3208 (1)	-7
$v_1 CH_3I$]		3101 (11)	3099 (10)	-2	3094 (17)	-7	3094 (11)	-7	3101 (10)	0	3100 (11)	-1
				3096 (16)	-5	3084 (15)	-9	3091 (24)	-10	3093 (15)	-8	3098 (13)	-3
v ₅ CH ₃ I			1477 (6)	1482 (16)	5	1490 (6)	13	1491 (7)	14	1487 (4)	10	1506 (8)	29
				1478 (6)	1	1483 (16)	6	1477 (4)	0	1476 (6)	-1	1478 (7)	1
				1478 (5)	1	1475 (6)	-2	1474 (3)	-3	1476 (7)	-1	1478 (11)	1
				1474 (7)	-3	1469 (10)	-8	1471 (4)	-6	1474 (4)	-3	1477 (0)	0
$v_2 CH_3 I$			1297 (23)	1302 (23)	5	1306 (26)	9	1310 (27)	13	1298 (14)	1	1304 (26)	7
				1295 (26)	-2	1301 (25)	4	1298 (13)	2	1296 (41)	-1	1296 (26)	-1
$\nu_6 CH_3 I$			903 (5)	921 (5)	18	937 (5)	34	934 (4)	31	920 (7)	17	935 (8)	32
				907 (7)	4	926 (9)	23	920 (10)	17	907 (5)	5	914 (5)	11
				899 (7)	-4	915 (7)	12	912 (9)	9	904 (3)	1	901 (5)	-2
				897 (4)	-6	908 (5)	5	909 (4)	6	902 (4)	-1	898 (4)	-5

655

Dr. Sophie Sobanska CNRS Researcher ISM UMR CNRS 5255 – Université de Bordeaux Bât A12, 351 cours de la Libération 33405 Talence, France Tel: +33 5 40 00 31 88 E-mail: sophie.sobanska@u-bordeaux.fr

February 20th, 2021

Credit author statement

Ref: MS MOLSTRUC-D-20-05163

Title "Infrared matrix-isolation and theoretical studies of interactions between CH₃I and water." as a regular research paper in Journal of Molecular Structure.

Authors: Sophie Sobanska, Hanaa Houjeij, Stéphane Coussan, Christian Aupetit, Sonia Taamalli, Florent Louis, Laurent Cantrel, Anne Cécile Gregoire, Joëlle Mascetti

We declare that the work was carried out by all the authors associated with the manuscript. The tasks were distributed as follows:

S. Sobanska is the PI of the project and the corresponding authors. She participates to the interpretation of the experimental results and writing of the manuscript.

S. Coussan and J. Mascetti conducted the matrix experiments, help in the interpretation of the experimental and theoretical results and writing of the manuscript.

H. Houjeij, C. Aupetit did the matrix experiments

S. Taamalli and F. Louis did the theoretical calculations

AC Gregoire and L. Cantrel participates to the global project and read the final manuscript version

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Sophie Sobanska