

MEMBER OF

Liberté Égalité Fraternité

Sensitivity of Pressurized Water Reactors Vessels Aging to Fuel Composition

02/12/2021

Romain VUIART, PhD (presenting author)

Benjamin BENEDET (first author), Julien Taforeau and Mariya Brovchenko

Content

Introduction

Calculation Scheme

Results

Conclusion and Prospects

Study context

- Extension of PWRs operation duration
 - Vessel = 2nd confinement barrier → essential to accurately characterize its structural integrity
 - Neutron irradiation → embrittlement of the vessel material

Monitoring of embrittlement : Surveillance Programs

Accelerated irradiation of vessel material samples → mechanical strength tests

Usual calculation scheme for vessel fluence assessments

<u>First step</u>: fission neutron source term evaluation

Where are the fission neutrons emitted and what is their energy ?

Sensitivity to fuel composition perturbations ?

IRSN

<u>Second step</u>: modeling of neutron attenuation from the core to the sites of interest (vessel, capsules)

For a quantity of emitted neutrons, how many reach the vessel and what is their energy ? Sensitivity to fuel composition

perturbations?

Questioning and objectives

6

Calculation scheme – first step

Study case : French 900 MW_e PWR ; UOX/MOX

Calculation scheme – second step

Study case : French 900 MW_e PWR ; UOX/MOX

Isotopes selection

CASMO5 – depletion calculation on assemblies in an infinite medium

Criterion: contribution \geq 1% of the total emission or capture rate (for a UOX or a MOX assembly)

Isotopes selection

IRSN

CASMO5 – assemblies in an infinite medium

Criterion: contribution ≥ 1% of the total emission or capture rate (for a UOX or a MOX assembly)

Impact of fuel composition perturbation on the neutron emission rate

Assembly n°3 = UOX ; Impact of a 30% increase of the ²³⁵U density for assembly n°3 1st irradiation cycle

Significant effect of composition perturbations on the fission neutron emission rate distribution + effect linear on the range [0% ; +30%]

Impact of fuel composition perturbation on the fission spectrum

UOX assembly (equivalent results for MOX assemblies)

Negligible effect of composition perturbations on the fission spectrum

Sensitivity coefficients

Propagation of perturbed fission neutron source terms to the fast neutron flux incident on the vessel (azimuthal position 0°)

Isotope – Assembly position	C _{i,m} (%flux / %density)
U ²³⁵ - N°1	0.42 ± 0.04
Pu ²³⁹ - N°1	0.33 ± 0.04
U ²³⁸ - N°1	-0.42 ± 0.03
U ²³⁸ - N°2	-0.12 ± 0.03
Pu ²³⁹ - N°2	0.35 ± 0.04
Pu ²⁴⁰ - N°2	-0.15 ± 0.03
Pu^{241} - $N^{\circ}2$	0.24 ± 0.04
U ²³⁵ - N°3	0.78 ± 0.04
U ²³⁸ - N°3	-0.40 ± 0.03
Xe ¹³⁵ - N°3	-0.13 ± 0.03
U ²³⁵ - N°4	0.10 ± 0.04
Pu ²³⁹ - N°4	0.15 ± 0.04
U ²³⁵ - N°5	0.53 ± 0.04
U ²³⁸ - N°5	-0.24 ± 0.03
U ²³⁵ - N°6	0.20 ± 0.04
U^{238} - $\mathrm{N}^{\circ}6$	-0.09 ± 0.03

$$C_{i,m} = \frac{\delta \phi_{>1MeV} / \phi_{>1MeV}}{\delta N_{i,m} / N_{i,m}}$$

$C_{i,m}$ depends on

- Assembly position
- Assembly type
- Assembly exposure

Assembly number (cf. Fig. 1)	Fuel Type	Number of irradiation cycles	Contribution to the fast neutron flux at 0° (%)
1	UOX	3	6
2	MOX	4	43
3	UOX	1	6
4	UOX	4	17
5	UOX	1	1
6	UOX	1	1

3

6

Conclusion and Prospects

C_{i,m} were evaluated for 9 isotopes in 6 assemblies (azimuthal position 0°) Linearity on the range [0%; +30%] Hypothesis of independence between the stemis densities of the isotom

Conclusion

IRSI

Hypothesis of independence between the atomic densities of the isotopes

 $C_{i,m} = \frac{\delta \phi_{>1MeV} / \phi_{>1MeV}}{\delta N_{i,m} / N_{i,m}}$

²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu, ²⁴⁰Pu, ²⁴²Pu, ¹⁴⁹Sm, ¹³⁵Xe and ²⁴¹Am

Thank you for your attention

SANS Winter Meeting & Expo

Romain VUIART

Romain VUIART

Effect of neutron irradiation of the RPV material

Neutron irradiation → material embrittlement

Resilience (daJ/cm²)

 $(t_c \ll a_f ewl \varphi g) ps)$

Case of study

Representative of a French 900 MW_e PWR

- Fuel composition → middle of a UOX/MOX equilibrium cycle
- 0° in-vessel detector*
 - Neutron flux > 1 MeV

* : covers the entire active height of the core

Fuel loading

IRSN

number = irradiation cycle

Data of perturbed assemblies

Table 1. Data of perturbed assemblies

Assembly number (cf. Fig. 1)	Fuel Type	Number of irradiation cycles	Contribution to the fast neutron flux at 0° (%)
1	UOX	3	6
2	MOX	4	43
3	UOX	1	6
4	UOX	4	17
5	UOX	1	1
6	UOX	1	1

Isotopes selection

Criterion: contribution \geq 1% of the total emission or capture rate (for a UOX or a MOX assembly)

Isotopic fission spectrum

TABLE I. Data used for fission spectrum modeling

		. <u> </u>		
Nuclide	Incident	Fission	а	Ь
	neutron	Spectrum	(MeV)	(MeV ⁻¹)
	energy	type		
²³⁵ U	Thermal	Watt	0.988	2.249
²³⁸ U	2.6 MeV	Watt	0.920	3.121
²³⁹ Pu	Thermal	Watt	0.966	2.842
²⁴¹ Pu	Thermal	Maxwell	1.3597	-

Impact of fuel composition perturbation on the neutron emission rate

Significant effect of composition perturbations on the fission neutron emission rate distribution + effect linear on the range [0% ; +30%]

Impact of the fast neutron flux incident on the RPV

Composition perturbation in the MCNP6 calculation has no impact on the fast flux assessments

 \rightarrow Propagation only of perturbed fission neutron emission distributions

Study Methodology

Assembly-by-Assembly Composition Perturbation (CASMO MxN):

3

6

Atomic density perturbation (%)

Ass	emblage	Nucléide	$C_{i,a}^0 \; (\% \phi_{>1MeV} / \% N_i)$	$C_{i,a}^0$ a priori (% $\phi_{>1MeV}$ /% N_i)
N°1		$^{235}\mathrm{U}$	$0{,}42\pm0{,}04$	0,39
		^{238}U	$-0,42 \pm 0,03$	-0,35
	(UOV OVOLE 9)	²³⁹ Pu	$0,33 \pm 0,04$	0,32
	(UOX - CYCLE 3)	240 Pu	$-0,10 \pm 0,03$	-0,12
		241 Pu	$0,07 \pm 0,04$	0,10
		$^{135}\mathrm{Xe}$	$-0,06 \pm 0,03$	-0,07
N°2	(MOX - CYCLE 4)	$^{235}\mathrm{U}$	$0{,}00\pm0{,}03$	0,01
		^{238}U	$-0,12 \pm 0,03$	-0,08
		239 Pu	$0{,}35\pm0{,}04$	0,29
		240 Pu	$-0,15 \pm 0,03$	-0,15
		²⁴¹ Pu	$0,\!24\pm0,\!04$	0,22
N°3	(UOX - CYCLE 1)	$^{235}\mathrm{U}$	$0{,}78\pm0{,}04$	0,82
		^{238}U	$-0,40 \pm 0,03$	-0,41
		²³⁹ Pu	$0,\!06\pm0,\!04$	0,11
		135 Xe	$-0,\!13 \pm 0,\!03$	-0,09
	(IIOV CVCIE 4)	$^{235}\mathrm{U}$	$0{,}10\pm0{,}04$	0,10
IN 4	(00A - 010LE 4)	²³⁹ Pu	$0{,}15\pm0{,}04$	0,14
		$^{235}\mathrm{U}$	$0{,}53\pm0{,}04$	0,49
N°5	(UOX - CYCLE 1)	^{238}U	$-0,24 \pm 0,03$	-0,21
		²³⁹ Pu	$0,\!07\pm0,\!04$	0,06
		$^{135}\mathrm{Xe}$	$-0,03 \pm 0,03$	-0,05
	(HOV CVCLE 1)	$^{235}\mathrm{U}$	$0,\!20\pm0,\!04$	0,18
N°6	(00X - 0YOLE I)	^{238}U	$-0,09 \pm 0,03$	-0,07

TABLE 3.1 – Coefficients de sensibilité du flux à la cuve à l'azimut 0° à la variation de la composition isotopique du combustible (et leur incertitude à un σ).

