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Stéphane Mounier
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Abstract—The Nonnegative Canonical Polyadic Decomposition
(NN-CPD) is now widely used in signal processing to decompose
multi-way arrays thanks to non-negative factor matrices. In
many applications, a three way array is built from collections
of 2D-signals and new signals are regularly recorded. In this
case one may want to update the factor matrices after each
new measurement without computing the NN-CPD of the whole
array. We then speak of Online NN-CPD. In this context the main
difficulty is that the number of relevant factors is unknown and
can vary with time. In this paper we propose two algorithms to
compute the Online NN-CPD based on sparse dictionary learning.
We then introduce an application example of Online NN-CPD
in environmental sciences and evaluate the performances of the
proposed approach in this context on real data.

Index Terms—Third order tensor decomposition, PARAFAC,
Online tensor decomposition, Sparsity, dictionary learning, fluo-
rescence signal processing

I. INTRODUCTION

Multidimensional analysis and tensor decomposition such
as the Canonical Polyadic Decomposition (CPD) also known
as PARAFAC allows to decompose multi-way data into factors
that can be interpreted by the user [1]. Hence tensor decompo-
sitions have been successfully applied in many fields including
psychometric [2], neuroscience [3], chemometric [4], biomedi-
cal image processing [5], etc. In the last decades many iterative
algorithms have been proposed to solve this decomposition
problem. We can notably site alternating approaches such
as Alternating Least Squares (ALS) [2] or more traditional
gradient or second order descent methods [6]. In several appli-
cations such as fluorescence spectroscopy the decomposition
factors are known to be nonnegative [4]. This information
can then be used to help algorithms convergence. Indeed
nonnegative constraints can be easily implemented using a
penalty term or a projected approach. This is for instance the
case of the AO-ADMM algorithm [7].

In signal or data processing, the nonnegative CPD is usually
used as a mathematical model to fit a data tensor T of size
(I, J,K) :

∀i, j, k, Ti,j,k ' T̂i,j,k(A,B,C) =
R∑

r=1

AirBjrCkr (1)

where matrices A ∈ RI×R
+ , B ∈ RJ×R

+ , C ∈ RK×R
+ are the

so-called factor or loading matrices. Columns of A, B and C
define the CPD factors and R is the CPD rank. When the
CPD factors have a physical interpretation it is important to
distinguish between two particular values of R:

• The value of R for which the CPD is exact. This value
defines the rank of T .

• The maximal value of R for which all the factors have
a physical interpretation. We call this value the physical
rank of T . It is usually much smaller than the tensor
rank.

In practice, we only use the physical rank that is why in the
following, the term ”rank” will always refer to the physical
rank. Most CPD algorithms assume that the rank is known
and use it as an input. However, in many practical applications
we only know a magnitude order. Using a wrong value
of the rank does not only affect the number of estimated
factors but also their shape. In order to deal with this issue
two main approaches have been proposed: rank estimation
and overfactoring. Rank estimation consists in estimating the
appropriate CPD rank before the decomposition by an adhoc
method such as the CORe CONsistency DIAgnostic [8] or
AutoTen [9]. However this approach does not always allow
to clearly decide between several values. The overfactoring
approach consists in overestimating the CPD rank during
the decomposition in such a way that the contribution of
the estimated extra-factors to the model will be neglectful.
Overfactoring can thus be seen as a posterior rank estimation
method. In this purpose several CPD algorithms have been
modified to include some sparsity constraint upon the factor
matrices using the L1 norm [10], [11], the mixed norm [12]
or sparse known dictionaries [13]. Eventually, in [14], authors
showed that semi-algebraic algorithms based on SVD and joint
diagonalization were robust to rank overestimation in practice.
At this stage we have implicitly assumed that the CPD is
used to decompose the whole data tensor. In this work we
consider a slightly different situation. We firstly assume that
the data tensor is a 3-way array that gathers on its last mode a
collection of 2D signals and that new collections of signals



(sub-tensors) are recorded regularly as in Fig. 1. In other
words, the last dimension (mode C) of the data tensors grows
with time.We also assume that the rank of the tensor and the
sub-tensors are unknown and vary with time so that the CPDs
of two successive sub-tensors do not necessary share the same
factors in A and B. On one hand the data tensor can become
very large so that its CPD could be very time consuming.
On the other hand one may not want to compute the CPD
of the sub-tensors independently since we can reasonably
assume that some factors are common to several sub-tensors.
Our goal is then to update at each new time interval the
CPD factors previously estimated, without performing the
CPD of the whole tensor and taking into account possible
disappearance and/or appearance of some factors. We call this
problem Online CPD. Similar problems have been investigated
in the literature. In [15] and [16], authors compute the CPD of
successive sub-tensors in an adaptive way but they assume that
the rank is known and does not vary with time while in [17] the
sub-tensors are treated independently using AutoTen for rank
estimation. Eventually, in [18] authors introduced an Online
Tucker decomposition.

In the first part of this paper (section II), we propose two
algorithms based on overfactoring and using sparse dictionary
learning to compute the nonnegative Online CPD of a third
order tensor1. Here, dictionary learning allows us to use the
factors estimated at time tn−1 to compute the CPD of the
current sub-tensor Tn while a sparsity constraint on the atoms
allows us to overestimate the rank. Our two algorithms differ
in the way the dictionaries are updated between two time
intervals. In the second part (section III) we show how the
Online CPD can be used for fluorescence signal processing
in the context of environmental sciences. Our algorithms are
then evaluated thanks to real fluorescence data.

In the rest of this article, the following notations will be
used: scalars are denoted in italic letters, matrices in bold
capital letters and tensors in calligraphic bold letters. ||.||F
is the Frobenius norm of a matrix or a tensor. A,B,C ≥ 0
means that all the elements of these matrices are nonnegative.

II. ONLINE NN-CPD ALGORITHMS

We introduce two algorithms for the Online NN-CPD
problem described in introduction. Both algorithms have two
phases: the initialization phase and then the online phase.
In the initialization phase, we estimate nonnegative factor
matrices without any prior information. This phase is identical
for both algorithm. Estimated factor matrices A and B will
then be used in the online phase. Furthermore, we assume
that we know an upper bound of the physical rank and for
each phase we use a fixed CPD rank, R, greater or equal to
this bound. We denote R̃n the physical rank of the sub-tensor
Tn measured a time tn.

1Both algorithms can be easily extended to higher order tensors.

A. Initialization phase. tensor decomposition with overesti-
mation of rank using a dictionary approach

In this phase, we compute the CPD of a data tensor T0 with
an overestimated rank. The main idea is to compute the factor
matrices A and B as the product of sparse dictionaries DA

and DB by atoms VA and VB respectively:

A = DAVA and B = DBVB , (2)

where DA and DB are of size (I,R) and (J,R) respectively
and VA and VB are (R,R). We want that DA and DB

contain R̃0 true factors among their columns along with R−R̃0

factors without physical meaning. We thus expect that VA and
VB have R − R̃0 null columns and that the others columns
form a generalized permutation matrix. In this purpose we
solve the following minimization problem for T = T0 :

min
{
E1(D

A,VA,DB ,VB ,C)
}
s.t. DA,VA,DB ,VB ,C ≥ 0

where E1 =
1

2
‖T − T̂ (DAVA,DBVB ,C)‖2F + α‖VA‖1 + α‖VB‖1

(3)
with α > 0 a penalty coefficient term. Thereby the number of
non-null columns of A or B gives us a posterior estimation
of R̃0.

B. Online phase

In this phase, we want to compute the CPD of sub-tensor
Tn using the factors (An−1, Bn−1) estimated from9 Tn−1.

a) Approach 1. Online CPD using a dictionary learning
approach: For this first approach, we consider that the factors
estimated at time tn−1 are correct and we only look for the
apparition of news factors or the disappearance of old ones.
In this purpose, we first set DA = An−1 and DB = Bn−1.
Then we solve Eq. (3) for T̂ = T̂n but this time we keep
the non-null columns of DA and DB unchanged throughout
the optimization process. Indeed, these columns correspond
to the factors estimated previously. If one of these factors
has disappeared at time tn we should then obtain a zero
in VA and VA. We call this algorithm Online Sparse and
Nonnegative CPD 1 (OSNCPD 1). The different steps are sum
up in Algorithm 1.

b) Approach 2. Online CPD using a dictionary transfer
learning approach: In this approach we allow some modifi-
cation of the factors estimated at time tn−1 thanks to linear
combination. We first replace null columns of An−1 and Bn−1

by columns of random numbers. We then look for An and Bn

as:
An = UAAn−1V

A and Bn = UBBn−1V
B (4)

where UA and UB are two square matrices of sizes I and
J respectively. With respect to approach 1, UAAn−1 and
UBBn−1 play the role of the dictionaries. While VA and
VB matrices are still sparse atoms. Therefore the optimization
problem becomes:

min
{
E2(U

A,VA,UB ,VB ,C)
}
s.t UA,UB ,C,VB ,VB ≥ 0

where E2 =
1

2
‖T − T̂ (UAAn−1V

B ,UBBn−1V
B ,C)‖2F

+α‖VA‖1 + α‖VB‖1
(5)



Algorithm 1 Online Sparse and Nonnegative CPD 1
• STEP 1: Initialization phase
Input : T0, R overestimated
Solve Eq. (3) with T = T0 using the Nadam algorithm
Compute matrices A0andB0 using Eq. (2)
Output : A0 and B0 and C0

• STEP 2: Online phase
Input : Tn and An−1,Bn−1

Initialize DA = An−1, DB = Bn−1

Fill the null columns of DA and DB by random
numbers, exclude the others columns from the
optimization problem Eq. (3) and solve it for T = Tn
Update current matrices factors : An = DAVA and
Bn = DBVB

Output : An,Bn,Cn and R̃n

• STEP 3: Return to Step 2 with n=n+1

We call this algorithm Online Sparse and Nonnegative CPD 2
(OSNCPD 2). The different steps are sum up in Algorithm 2.

Algorithm 2 Online Sparse and Nonnegative CPD 2
• STEP 1: Initialisation phase
Identical to the initialization of the algorithm 1
• STEP 2: Online phase
Input : Tn, and An−1,Bn−1

Fill null columns of An−1,Bn−1 by random numbers
and Solve Eq. (5) for T = Tn
Update current matrix factors : An and Bn using
Eq. (4)
Output : An,Bn,Cn and R̃n

• STEP 3: Return to Step 2 with n=n+1

C. Optimization scheme

Here we use a Stochastic Gradient Descent (SGD) algorithm
called Nadam [19] in order to solve Eq. (3) or Eq. (5). SGD
algorithms have been introduced to compute the CPD in [20].
Nadam is a variant of Adam, a popular SGD algorithm, less
sensitive to the step size [19]. We thus need to compute the
gradients of E1 or E2. For Eq. (3) we obtain:

∂E1

∂VA
= −(DA)>(TI,KJ

(1) −DAVAL>(1))L(1) + α1R,R

∂E1

∂VB
= −(DB)>(TJ,KI

(2) −DBVBL>(2))L(2) + α1R,R

∂E1

∂DA
= −(TI,KJ

(1) −DAVAL>(1))L(1)(V
A)>

∂E1

∂DB
= −(TJ,KI

(2) −DBVBL>(2))L(2)(V
B)>

∂E1

∂C
= −(TK,JI

(3) −CL>(3))L(3)

(6)

Matrices TI,KJ
(1) ,TJ,KI

(2) ,TK,JI
(3) are obtained by unfolding the

tensor T with respect to the first, second and third modes
respectively. Let L(1) = C� (DBVB), L(2) = C� (DAVA)
and L(3) = (DBVB) � (DAVA), where operator � is the
Khatri-Rao product. 1R,R is a (R,R) matrix of 1.

For Eq. (5) we get:

∂E2

∂VA
= −(UAAn−1)

>(TI,KJ
(1) −UAAn−1V

AZ>(1))Z(1) + α1R,R

∂E2

∂VB
= −(UBBn−1)

>(TJ,KI
(2) −UBBn−1V

BZ>(2))Z(2) + α1R,R

∂E2

∂UA
= −(TI,KJ

(1) −UAAn−1V
BZ>(1))Z(1)(V

A)>(An−1)
>

∂E2

∂UB
= −(TJ,KI

(2) −UBBn−1V
BZ>(2))Z(2)(V

B)>(Bn−1)
>

∂E2

∂C
= −(TK,JI

(3) −CZ>(3))Z(3)

(7)
with Z(1) = C� (UBBn−1V

B); Z(2) = C� (UAAn−1V
A)

and Z(3) = (UBBn−1V
B)� (UAAn−1V

A).
In order to ensure the nonnegativity of matrix entries, these

are projected on R+ at each iteration. For both phases, VA and
VB are initialized as identity matrices and C is initialized with
nonnegative random values. For the initialization phase, DA

and DB are initialized with nonnegative random values. For
the online phase of Algorithm 2, UA and UB are initialized
with the identity matrix.

III. ONLINE DECOMPOSITION OF REAL
FLUORESCENCE TENSORS

Figure 1. Example of online CPD with overlapping.

A. The NN-CPD model of real-time fluorescence measure-
ments

In environmental sciences the CPD of three-way fluores-
cence tensors is notably used in order to characterize dis-
solved organic matters (DOM) in natural water samples [21].
Fluorescence data tensors are built by concatenation of 2D
signals called Emission and Excitation Matrices (EEMs) of
fluorescence measured from a set of liquid samples. Each entry
of an EEM corresponds to the fluorescence intensity of one
liquid sample at a given couple of excitation and emission
wavelengths. Each sample is a mixture of an unknown number
of fluorescent components (fluorophores). The CPD of the
fluorescence tensor allows to recover the individual emission
and excitation spectra of the fluorophores present in the
different samples along with their respective contribution in
order to characterize and track online the chemical components
present in the sample set (Fig. 1). Online CPD of fluores-
cence tensors means that several fluorescence sub-tensors are
measured successively at different time intervals, assuming



that each new tensor is a slight modification of the previous
one. Therefore we can use the result of the previous CPD
to compute the CPD of the current tensor. The number of
fluorophore present at time tn define the physical rank of the
corresponding fluorescence sub-tensor. It can vary with time
and these variations reflect changes in the environment. Online
CPD of fluorescence tensors could be used for environmental
monitoring, detection of pollution etc.

B. Experimental setup

In order to evaluate our approach under similar condi-
tions, we made in laboratory series of controlled injections
of four well-known fluorophores at different time intervals
under quasi-real conditions. 50 EEMs of size (49, 44) were
recorded online with a spectrofluorimeter Hitachi F7000.
The corresponding fluorescence tensor was partitioned into 4
successive sub-tensors (T0...T3). We considered two kind of
partitions. In the first partition (50% overlapping), each sub-
tensor contains 20 EEMs and two consecutive sub-tensors have
10 EEMs in common. In the second partition (no overlapping),
sub-tensors have not any EEMs in common: T0 contains 20
EEMs and the other sub-tensors contain only 10 EEMs. The
second partition should make the decomposition more difficult.
However it is more interesting from a practical point of view
since it requires less computations as the online phase deals
with smaller tensors. During the acquisition, we observed the
presence of an additional fluorescence signal in all the EEMs
due to the experimental device. A preliminary study showed
that this signal can be captured by only one additional factor
in the CPD model. Therefore, the rank of the sub-tensors vary
from 3 to 5. Both partitions were processed with OSNCPD 1
and OSNCPD 2. We chose R = 10 in order to overestimate
the rank.
C. Results and discussion

We first compare the values of the physical ranks esti-
mated by OSNCPD 1 and OSNCPD 2 with those estimated
by AutoTen [9] and the actual values. Results are reported
in tables I and II for the 50 % overlapping case and no
overlapping case respectively. We also indicate the value of
the penalty coefficient term (α) used in our two algorithms.
AutoTen fails for two sub-tensors in the 50 % overlapping case
and consistently underestimate the rank in the no overlapping
case. This is explained by the weaker contribution of several
fluorophores in the last EEMs. In contrast, OSNCPD 1 and
OSNCPD 2 find the correct rank of every sub-tensors in both
cases.

Removing null columns of Â and B̂ and the corresponding
columns of Ĉ we can compare the factor matrices estimated
by OSNCPD 1 and OSNCPD 2 with the true factors by means
of normalized root mean squared errors:

EA =
‖A− Â‖F
‖A‖F

, EB =
‖B− B̂‖F
‖B‖F

and EC =
‖C− Ĉ‖F
‖C‖F

(8)
Results are reported in tables III and IV for the 50 %
overlapping case and no overlapping case respectively.

Table I
RANK ESTIMATION IN THE OVERLAPPING CASE.

Sub-tensor 0 1 2 3 α
True rank 3 4 5 5 -
AutoTen 3 4 4 4 -
OSNCPD1 & OSNCPD2 3 4 5 5 1

Table II
RANK ESTIMATION IN THE NO OVERLAPPING CASE

Sub-tensor 0 1 2 3 α
True rank 3 4 5 5 -
AutoTen 3 2 2 2 -
OSNCPD1 & OSNCPD2 3 4 5 5 0.5

Table III
MEAN ESTIMATIONS ERRORS IN THE OVERLAPPING CASE.

Algorithm 1 (OSNCPD1) Algorithm 2 (OSNCPD2)
Sub-tensor 0 1 2 3 0 1 2 3
Mean EA 0.17 0.19 0.19 0.2 0.17 0.18 0.2 0.34
Mean EB 0.14 0.15 0.15 0.16 0.14 0.16 0.19 0.24
Mean EC 0.25 0.25 0.16 0.20 0.25 0.26 0.18 0.29

Table IV
MEAN ESTIMATIONS ERRORS IN THE NO OVERLAPPING CASE.

Algorithm 1 (OSNCPD1) Algorithm 2 (OSNCPD2)
Sub-tensor 0 1 2 3 0 1 2 3
Mean EA 0.17 0.28 0.35 0.35 0.17 0.18 0.21 0.33
Mean EB 0.14 0.15 0.31 0.32 0.14 0.16 0.19 0.24
Mean EC 0.25 0.32 0.31 0.32 0.25 0.31 0.32 0.29

Figure 2. Emission and excitation and spectra of the fluorophores in
the initialization phase (T0). Top: Emission spectra, bottom : Excitation
spectra. Red dots: estimated spectra, black lines: true spectra. All spectra
are normalized

Figure 3. Fluorophore contributions in the initialization phase (T0). Top:
”true” contributions (the contribution of the additional fluorophore is un-
known). Bottom: estimated contributions. All contributions are normalized



In order to give some physical meaning to these error terms
we have plotted on figures 2 and 3 the normalized factors
obtained from our approach in the initialization phase (sub-
tensor T0) along with the true factors. We observe a good
agreement between the true and estimated factors. However
there is an offset in the estimated contributions. We explain
this deviation by the fact that the ”true” contributions are not
exactly known since they were established theoretically from
the characteristics of our injection and evacuation devices. In
addition this theoretical model does not take into account the
additional fluorophore. This offset explains the higher values
of EC with respect to EA and EB . Eventually, the estimated
contribution of the additional fluorophore is constant as it
could be expected for a background noise.

In the overlapping case both algorithms give similar results
for sub-tensors T1 and T2. In addition these are closed to those
obtained from the initialization sub-tensor T0 meaning that
the online phase has been performed correctly. Regarding T3,
OSNCPD1 still works well (indeed) whereas the performances
of OSNCPD2 T3 have decreased. This is explained by the very
weak contributions of some factors in T3. Here, OSNCPD1 has
taken advantages of its strongest link with the previous CPD.

In the no overlapping case OSNCPD2 consistently outper-
forms OSNCPD1 especially for sub-tensors T2 and T3. Here
it appears that the value of EA obtained with OSNCPD1 on
T1 is already quite high and then the error propagates to the
successive sub-tensors. This is probably due to the small size
of the sub-tensors. In this context the greater flexibility of
OSNCPD2 alleviates this problem. Regarding the estimation
of A and B, it is worth mentioning that OSNCPD2 results do
not vary from the overlapping case to the no overlapping case.

IV. CONCLUSION & PERSPECTIVES

In this study, we have introduced two algorithms (OS-
NCPD1 and OSNCPD2) for the online nonnegative canon-
ical polyadic decomposition of sub-tensors and a real word
application example in fluorescence signal processing. Our
algorithms are based on dictionary learning and incorporate
sparsity and nonnegativity constraints in order to deal with
unknown rank variations. We have shown that both algorithms
can be successfully applied on real experimental data. In par-
ticular the ranks of the sub-tensors are estimated correctly even
in difficult conditions. It seems that OSNCPD1 is more robust
than OSNCPD2 when an overlapping between consecutive
sub-tensors is possible. In contrast OSNCPD2 offers a more
versatile solution, able to deal with the no overlapping case.
Further investigations are planed to test these conclusions in
diverse situations, evaluate the influence of the penalty term
and use the two first modes conjointly to estimate the rank.
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