
A Faulty IoT Network: Simulating Sensors and
Perturbations

Kenza Riahi1, Giacomo Kahn1 Baudouin Dafflon2, and Jannik Laval1

1 DISP-LAB, Univ Lyon, Univ Lumière Lyon 2
Lyon, France, firstname.lastname@univ-lyon2.fr

2 DISP-LAB, Univ Lyon, Université Claude Bernard Lyon 1
Lyon, France, baudouin.dafflon@univ-lyon1.fr

Abstract. A simulated system has certain advantages over a physical
one. It can be cheaper to implement, destroyed with little to no conse-
quences and more generally toyed with basically no cost. To test fault
detection algorithms, there is a need for the simulation of a faulty IoT
network. In this paper, we present a platform for simulating IoT ex-
changes, where sensors can be real or virtual, only editors or both editors
and consumers. The platform allows defining a wide variety of simulation
parameters such as the number of sensors to instantiate, each sensor set-
tings, perturbations to inject and stop conditions. We use the RabbitMQ
broker for message exchanging and the Open Data Format for standard-
izing messages format. We detail the global architecture and present two
case studies to show how the platform works. We build a “smart” sen-
sor that retrieves measures from other sensors and uses them to predict
the temperature value based on an artificial intelligence model and show
that any model can be instantiated as a smart sensor.

Keywords: IoT exchanges, simulation, modeling, scenario, configura-
tion.

1 Introduction

Data exchanges within IoT systems should be continuously monitored in
order to evaluate their performance and detect failures as soon as they
happen. An IoT system is composed of interconnected “things”, generally
sensors and actuators, that exchange data. Sensors capture data from the
real surroundings and send a periodic measure (e.g. image, temperature,
position). Their main role is to control the environment and prevent
risks. The actuators receive orders and apply them in the real world. In
this work, we only focus on sensors.

The implementation of monitoring systems requires to collect the ex-
changes within the IoT system, a task that can be delicate or even im-
possible when data is sensitive or irretrievable. Simulation, in this case,
can facilitate the generation of these exchanges for a better exploitation.

Another point is the composition of the simulated system: testing large
systems with only real sensors results in high costs or in the difficulty to



2 Kenza Riahi, Giacomo Kahn Baudouin Dafflon, and Jannik Laval

capture some measures. Virtual sensors can be used to generate more or
less realistic data and send them to the system.
We propose in this paper a simulation platform. It uses a RabbitMQ
broker for retrieving the measurements from the sensors. It is used with
the MQTT protocol and each message is sent to the appropriate queue.
This point is interesting for this work because we set up virtual sensors
that are both consumers and editors: they get data from the broker and
use them to generate the target measure that is sent to a specific queue.
The core of our simulator is a configuration file that enables defining the
scenario to be launched in all its details (number and type of sensors
used, the perturbations to inject, stop conditions, etc.). Once the user
fills it in, they can run the simulation and monitor it until its end when
the simulation metrics are calculated by the platform.
The format of exchanged data is also important to ensure interoperability
within the system. We use the Open Data Format (O-DF) 3 specified by
The Open Group Internet of Things Standards and based on the XML
scheme.
The implemented platform is based on a generic model that can easily
be extended. It defines the main simulation components: sensors, filters,
stop condition for each sensor, stop condition for the whole simulation
and returned metrics at the end of the run.
We show the usability and the extensibility of the model by applying
it to two case studies. The first one runs a number of virtual sensors
simultaneously with specific parameters and gets the metrics at the end
of the simulation. The second case study introduces a typical temperature
sensor that uses machine learning to predict measures on the basis of the
retrieved values of air density, humidity and pressure from the broker.
This paper is structured as follows: Section 2 presents the related work,
Section 3 details the structure of the simulation platform. In Section 4,
the two case studies are presented and evaluated. Finally, we conclude
our work, in Section 5, with some perspectives.

2 Related work

Simulation tools in the IoT area have gained a lot of interest due to
their importance in testing systems before their deployment or difficult
scenarios in the physical world.
A number of articles established a comparison between the existing IoT
simulators, for example the survey by Singh, Vyas and Tiwari [9], the
one published by Saidallah, El Fergougui and Elbelrhiti Elalaoui [8] or
the review conducted by Bakare and Enoch [1]. In [2], simulators are
divided into three categories: Full Stack Simulators, Big Data Processing
Simulators and Network Simulators. Only the third one is interesting in
the case of our study since we only need to simulate data exchanges
within an IoT system regardless to the data size and with no need to
process the exchanged data.
We briefly present the most popular and open-source tools in this cate-
gory which are used for discrete event simulation.

3 https://publications.opengroup.org/c14a

https://publications.opengroup.org/c14a


A Faulty IoT Network Simulator 3

NS-2 [6, 3] and its successor NS-3 are object-oriented discrete event sim-
ulators, extensible thanks to their modular approach. However, they are
not scalable, lack available customization and have low computational
overhead.
OMNET++ [5, 12, 11] is another simulator that has an architecture
based on modules which make it extensible. However, it is not widely
used by the community.
J-Sim [10] is a Java-based simulator that has a component-based ar-
chitecture which gives the tool many advantages in terms of scalability.
However, it is relatively complicated to use.
SensorSim [7] enables hybrid simulation by integrating both hardware
and software components and offers graphical data display.
In [4], a platform is developed for simulating sensors in the context of
a factory to prevent risks that can be encountered by the workers. It
enables to generate realistic and real time observations, it uses a Sensor
Observation Service (SOS) server for storing sensor measurements.
All these simulators are interesting, but none of them includes all the
functionalities we need in our study: the possibility to inject perturba-
tions in the system and the need for an extensible model of these per-
turbations, in addition to the output metrics we need to evaluate the
system.

3 Simulation platform

3.1 Architecture

The platform is based on the class diagram of Figure 1. It represents all
the implemented classes used to run the simulation.
Our model is composed of the following classes:

– Class Simulation reads the configuration file to launch the simula-
tion with the defined parameters and sensors. It returns metrics at
the end of the run.

– The abstract class Sensor allows instantiating a sensor by defining
a number of attributes: name, measurement type (a temperature,
a pressure, etc.) , data type (double, integer, etc.), measurement
unit, sensor location, measurement interval, sending frequency and
sending routing key so that the runSensor method knows to which
queue the message will be sent.
Some information is useful for the sensor operating and others for
the content of the message sent to the broker.
This class is abstract so that it can be generic and the user can create
a sensor that works in any way. In fact, we defined two sensor types:
sensors that generate a message and send it to the broker and others
that consume messages and use them to generate the measure.
In the class diagram of Figure 1, two classes inherit from Sensor:
RandomNumericalSensor that generates a random value from the
measurement interval and sends it to the broker, and a second class
EditorConsumerSensor that is abstract. This second class retrieves
values from the broker and uses them to generate the measurement.
The class TemperaturePredictor inherits from it.



4 Kenza Riahi, Giacomo Kahn Baudouin Dafflon, and Jannik Laval

– The abstract class Perturbation generates perturbations during the
simulation. It has three child classes: DeleteDataPerturbation class
that deletes the measurement, and thus it is not sent to the broker,
AlterDataPerturbation class that changes the measurement value
before it is sent to the broker and TemporarySensorStop for stopping
the sensor temporarily.

– The abstract class Filter allows using filters before sending a value
to the broker. We defined two child classes: LowPassFilter class that
fixes a maximum value for the measurements and HighPassFilter

class for defining a minimum value. Filters adjust the measurement
if it doesn’t respect the defined maximum and/or minimum values
for the filters.

– The abstract class SensorFinalStop for defining the sensor’s stop
conditions. Two child classes were created: TimeElapsedFinalStop
and NumberOfMessagesFinalStop that respectively allow fixing the
sensor’s operating duration and the number of messages sent before
the sensor stops.

– SimulationFinalStop is an abstract class that defines stop condi-
tions for the simulation. We implemented two child classes to define
a run’s duration before it stops and to fix a maximal number of mes-
sages sent to the RabbitMQ broker: TimeElapsedBeforeStop and
SentMessagesBeforeStop.

From this model, we implemented Python classes from which a simula-
tion can be run. It is extensible thanks to the abstract classes we created
and that can be extended with classes adapted to the user needs.
The platform implements abstract classes that can be subclassed which
allows the creation of new functions for the simulator, and concrete
classes that implement useful methods for the simulations. These classes
and methods retrieve their parameters from a configuration file filled
by the user that contains the most important information for each run
such as the simulation duration, sensors types, perturbations and stop
conditions.
Data exchange uses Message Queuing Telemetry Transport (MQTT) pro-
tocol via a RabbitMQ broker. At the end of the simulation, some metrics
are calculated and written in a CSV file.
The source code of our model is available at: https://github.com/

disp-lab/IoT-Simulator.

3.2 Simulation configuration

The model we detailed in the previous section allows defining a configura-
tion file for the simulation. It contains information about the simulation:
name, date, stop conditions and the list of the sensors to instantiate.
Each sensor should be well defined with all its parameters: type, fre-
quency of sending messages, sending routing key, used filters, injected
perturbations and stop conditions for the sensor.
The method Simulation.runSimulation()uses this file to run the sim-
ulation. It launches all the defined simulators using the specified pa-
rameters, uses the stop conditions to stop the simulation, computes the
metrics at the end of the simulation and returns the calculated values.

https://github.com/disp-lab/IoT-Simulator
https://github.com/disp-lab/IoT-Simulator


A Faulty IoT Network Simulator 5

Fig. 1. Architecture of the simulator model.

3.3 Format of exchanged data

For messages exchanging, we defined a standardized data format 4 based
on the Open Data Format (O-DF) proposed by the Open Group In-
ternet of Things Standards. It uses the XML scheme and specifies, for
each message, information about the component that sends the data and
information about the data itself.

4 https://github.com/disp-lab/IoT-Simulator/blob/main/sensors/src/

messages_format.xml

https://github.com/disp-lab/IoT-Simulator/blob/main/sensors/src/messages_format.xml
https://github.com/disp-lab/IoT-Simulator/blob/main/sensors/src/messages_format.xml


6 Kenza Riahi, Giacomo Kahn Baudouin Dafflon, and Jannik Laval

3.4 Metrics

Previously, we presented the architecture of our model for launching
a simulation after defining all its parameters. We added another ab-
stract class Metric that calculates and returns a metric at the end
of the run. We defined some classes that inherit from this abstract
class: TimeElapsed, SentMessages, FiltredValues, DeletedMessages,
StopsNumber, StopsDuration and AlteredMessages. Those last four met-
rics come from the perturbations that can be injected during a sensor
operating. FiltredValues, however, calculates the number of values that
were filtered before sending them to the broker. The values of these met-
rics are written in a CSV file at the end of the run.

4 Experiments

4.1 Overview

This section presents two scenarios defined for the simulator. The first
one is simple and runs a number of sensors in order to prove that the
simulator works well. In the second one, we extend sensors to build a
virtual sensor that both consumes messages from the broker and sends
a calculated temperature value, based on a machine learning algorithm.
The computer we used to launch these case studies has an Intel Core i5
7th generation processor with a 2.71 GHz CPU and a RAM memory of
8 Go.

4.2 First case study

In the first case study5, we run 50 sensors that simultaneously publish
messages with random measurements to the RabbitMQ broker. We set
the simulation stop condition to 1000 messages sent.
We choose three sensor types: air density sensors, humidity sensors and
pressure sensors each one sending messages respectively to the three
queues with the routing keys “airdensity”, “humidity” and “pressure”.
Fifteen sensors will send messages to the first queue, 15 to the second
one and 20 sensors to the third queue.
For each sensor, we choose a data interval and introduce filters and per-
turbations so that all the implemented classes are tested in this case
study.
Table 1 presents the simulation parameters defined in the configuration
file. In this case study, some of the sensors are air density sensors. The
definition of one of them is presented in Figure 2. We first choose the
sensor name, specify the measurements type, data unit, how they are
generated (randomly in this case study), the measurements interval –if
needed–, the sending frequency and the queue to which data will be sent.
We then define filters. In this case, we used a low pass filter and a high

5 https://github.com/kenzarh/IoT-Simulator/blob/main/simulation_config_

casestudy1.json

https://github.com/kenzarh/IoT-Simulator/blob/main/simulation_config_casestudy1.json
https://github.com/kenzarh/IoT-Simulator/blob/main/simulation_config_casestudy1.json


A Faulty IoT Network Simulator 7

Table 1. First case study simulation parameters.

Sensor Type Air density Humidity Pressure

Number of sensors 15 15 20

Seconds between two messages 10 10 10

Filters
Low-pass fil-
ter

1300 g/m3 - 1000 mbar

High-pass fil-
ter

1000 g/m3 - 900 mbar

Perturbations
Data alter-
ation

Random:
[5,20]

Random:
[5,20]

-

Data deletion - - Random:
[3,15]

Temporary
stops

Each 8 sec-
onds, Stop
duration: 2
seconds

Each 8 sec-
onds, Stop
duration: 2
seconds

-

Final stop
Elapsed time 2 minutes - -
Sent messages - 60 messages -

pass filter to bound the values between 1000 and 1300. The perturbations
we inject are an alteration of data each 5 to 20 seconds, this frequency
is chosen randomly between these two values, and a second perturbation
that pauses the sensor each 8 seconds for 2 seconds. The final stop con-
dition in this example is the sensor operating time that we limit to 120
seconds. Each sensor of the 50 used in this case study are defined the
same way in the configuration file.

The results of the simulation, taken from the CSV file that contains
metrics are presented as follows:

– Simulation duration: 6min 25s

– Number of sent messages: 1000

– Message sending frequency: 2.59

– Number of deleted messages: 459

– Message deletion frequency: 1.19

– Number of altered messages: 413

– Message alteration frequency: 1.07

– Number of stops: 283

– Stops frequency: 0.73

– Total duration of stops: 9min26s

– Number of filtered values: 262

This case study shows that the simulation respects the configuration file:
it stops when 1000 messages are sent, filters and perturbations are used
throughout the simulation.

It would be interesting to clarify the value of the metric “total duration of
stops” which is greater than the simulation duration. The metric sums
up stop durations from all the sensors in the simulation, we can have
multiple sensors stopping at the same time which explains the value of
9min26s.



8 Kenza Riahi, Giacomo Kahn Baudouin Dafflon, and Jannik Laval

Fig. 2. Definition of a sensor and its operating parameters in the configuration file.

4.3 Second case study

In this second case study, we present a “smart” virtual sensor that uses
a machine learning model to predict temperature using measurements of
air density, humidity and pressure received from the RabbitMQ broker.
We create a new class TemperaturePredictor that inherits from the
abstract class EditorConsumerSensor. It enables the instantiation of a
virtual sensor that retrieves air density, humidity and pressure values
from the appropriate queues and predicts the temperature value on the
basis of the three measurements using a pre-trained machine learning
model.

The database The data comes from a Kaggle competition6. It consists
of meteorological data measured in the German city of Jena every 10
minutes for 8 years, resulting in a total of 420 551 measurements. The

6 https://www.kaggle.com/pankrzysiu/weather-archive-jena

https://www.kaggle.com/pankrzysiu/weather-archive-jena


A Faulty IoT Network Simulator 9

Table 2. Output metrics for the sensors - second case study.

Sensor type Number
of sent
mes-
sages

Sensor
oper-
ating
time

Number
of fil-
tered
values

Number
of
deleted
mes-
sages

Number
of al-
tered
mes-
sages

Number
of stops

Stops
dura-
tion in
seconds

Air density 150 30min
4s

127 150 150 149 298

Humidity 192 30min
1s

0 0 116 126 252

Pressure 357 30min1s81 147 0 0 0

Temperature 150 30min4s0 0 0 0 0

database consists of 15 columns, only 4 were used for our study : the
temperature in degrees Celsius, air density, humidity and pressure. The
goal of this selection is to simplify the study, since model evaluation is
not central for this application.

Metrics used to evaluate the model For the evaluation of the
machine learning model, we used some metrics that suit regression prob-
lems since temperature is a continuous measure.

– Root Mean Square Error (RMSE) is the most widely used metric for
regression tasks. This index provides an indication of the dispersion
or variability of the prediction quality. It tells how concentrated data
is around the line of best fit. Its formula is:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

where N is the sample size, yi the actual value and ŷi the predicted
value using the model.

– Mean Absolute Error (MAE) is the sum of the absolute value of
errors divided by the number of data points.

MAE =
1

N

N∑
i=1

|yi − ŷi|

The machine learning model After testing the different regres-
sion algorithms on our dataset, the best results are obtained with the
Nearest Neighbours (NN) algorithm. We used the scikit-learn predefined
algorithm “KNeighborsRegressor” set to 6 neighbours. The choice of 6
neighbours was done after testing different numbers of neighbours. Fig-
ure 3 represents the root mean squared errors for this model using 2 to
15 neighbours. The lowest RMSE is attained with 6 neighbours.
This sensor is integrated in our simulator to show that it is extensible
and it can use any kind of sensors depending on the user’s needs.



10 Kenza Riahi, Giacomo Kahn Baudouin Dafflon, and Jannik Laval

Fig. 3. RMSE using 2 to 15 neighbours

The simulation 7 We define four sensor instances: three sensors that
send random values of air density, humidity and pressure respectively to
the RabbitMQ broker and a fourth sensor, an instance of a smart sensor
with the TemperaturePredictor class.
Table 2 presents the metrics for each of the four sensors at the end of
the simulation .
This case study shows that our platform can integrate any kind of sensor,
the extensible code facilitates this integration and enables to try different
scenarios depending on the context and the user’s needs.

5 Conclusion

In this paper we introduced a platform for simulating IoT exchanges. We
presented it as a generic model that can be easily extended. It enables to
define the sensors to use in the simulation and all their characteristics,
filters, perturbations to be injected and stop conditions. We built a vir-
tual sensor that predicts temperature using other sensors’ measurements
and based on a pre-trained machine learning model. This shows the ex-
tensibility of the model and its ability to introduce any kind of sensor in
the platform. At the end of the simulation, metrics are returned enabling
the evaluation of the simulation.
The remaining component of our platform is the real time visualization of
the exchanged data so that the user can easily supervise the simulation.
The long-term perspectives of this work are to be able to supervise IoT
systems [X]We plan to define realistic scenarios of running with and with-
out events. These scenarios will be shared and will allow us to compare
different algorithms for decision-making, state monitoring and system
resilience.

7 https://github.com/disp-lab/IoT-Simulator/blob/main/simulation_config_

casestudy2.json

https://github.com/disp-lab/IoT-Simulator/blob/main/simulation_config_casestudy2.json
https://github.com/disp-lab/IoT-Simulator/blob/main/simulation_config_casestudy2.json


Bibliography

[1] Bakare B, Enoch J (2019) A Review of Simulation Techniques for
Some Wireless Communication System. International Journal of
Electronics Communication and Computer Engineering 10(2):60–
70

[2] Chernyshev M, Baig Z, Bello O, Zeadally S (2017) Internet of Things
(IOT): Research, Simulators, and Testbeds. IEEE Internet of Things
Journal 5(3):1637–1647

[3] Downard IT (2004) Simulating Sensor Networks in ns-2. Tech. rep.,
NAVAL RESEARCH LAB WASHINGTON DC

[4] Giménez P, Moĺına B, Palau CE, Esteve M (2013) SWE Simulation
and Testing for the IoT. In: 2013 IEEE International Conference on
Systems, Man, and Cybernetics, IEEE, pp 356–361

[5] Mallanda C, Suri A, Kunchakarra V, Iyengar S, Kannan R, Dur-
resi A, Sastry S (2005) Simulating Wireless Sensor Networks with
OMNeT++. submitted to IEEE Computer

[6] Naoumov V, Gross T (2003) Simulation of Large Ad Hoc Networks.
In: Proceedings of the 6th ACM international workshop on Modeling
analysis and simulation of wireless and mobile systems, pp 50–57

[7] Park S, Savvides A, Srivastava MB (2000) SensorSim: A simula-
tion Framework for Sensor Networks. In: Proceedings of the 3rd
ACM international workshop on Modeling, analysis and simulation
of wireless and mobile systems, pp 104–111

[8] Saidallah M, Fergougui A, Elalaoui AE (2017) A Survey and Com-
parative Study of Open-Source Wireless Sensor Network Simulators.
International Journal of Advanced Research in Computer Science
7(3)

[9] Singh CP, Vyas O, Tiwari MK (2008) A Survey of Simulation in
Sensor Networks. In: 2008 International Conference on Computa-
tional Intelligence for Modelling Control & Automation, IEEE, pp
867–872

[10] Sobeih A, Hou JC (2003) A simulation framework for sensor
networks in J-Sim. University of Illionis at Urbana-Champaign
UIUCDCS

[11] Varga A (2019) A Practical Introduction to the OMNeT++ Sim-
ulation Framework. In: Recent Advances in Network Simulation,
Springer, pp 3–51

[12] Varga A, Hornig R (2008) An overview of the OMNeT++ simulation
environment. In: Proceedings of the 1st international conference on
Simulation tools and techniques for communications, networks and
systems & workshops, pp 1–10


	A Faulty IoT Network: Simulating Sensors and Perturbations

