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Abstract

Network traffic analytics has become a crucial task in order to better understand and manage network resources, especially
in the network softwarization era where the implementation of this concept can be done easily with network function
virtualization. Currently, many approaches have been proposed to improve the performance of traffic classification.
However, as new types of traffic emerge every day (and they are generally not labeled), this opens a new challenge to be
handled. Moreover, the question of how to accurately classify traffic using a limited amount of labeled data or partially
labeled data hence becomes another important concern. In fact, labeling data is often difficult and time-consuming. In
order to tackle the previously described issues, we reformulate traffic classification into a semi-supervised learning where
both supervised learning (using labeled data) and unsupervised learning (no label data) are combined. To do so, this
paper presents a stacked sparse autoencoder (SSAE) based semi-supervised deep-learning model for traffic classification.
The main motivations of this approach are: (i) unlabeled data is often abundant and easily available; (ii) classification
performance of the whole model can be greatly improved when a large amount of unlabeled traffic is included in the
training process; (iii) there is a limit to how much human effort can be thrown at the labeling problem. To investigate the
performance of our approach, an empirical study has been conducted on a real dataset and results indicate that using a
large amount of unlabeled data in the SSAE pre-trained phase can improve significantly the classification performance of
the whole model. The proposed approach is compared against other representative machine-learning and deep-learning
models, which are Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Multi-Layer Perceptron
(MLP), eXtreme Gradient Boosting (XGBoost), and Autoencoder. Furthermore, we have also conducted experiments
on a well-known dataset including encrypted traffic (containing only time-related features) to evaluate the generalization
performance of the proposed model.

Keywords: Machine learning, deep learning, stacked sparse autoencoder, feature extraction, traffic classification,
semi-supervised learning, partial information.

1. Introduction

Network traffic classification provides a wide variety of
management in today’s Internet, such as resource alloca-
tion, Quality of Service (QoS) provisioning, anomaly de-
tection, etc. According to the latest Cisco forecast, by
2022 the number of devices connected to mobile networks
will exceed the world’s population, reaching 12.3 billion.
Meanwhile, mobile data traffic will be 77 exabytes per
month, which is 7 times that in 2017 [1]. Traditional tech-
niques such as port-based classification and deep packet
inspection (DPI) are becoming less efficient to handle and
classify this heterogeneous traffic (i.e. application) [2] [3].

In this line, Machine Learning (ML) is opening the ways
to develop network traffic classifiers, which achieve an ac-
ceptable trade-off between computation complexity and
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accuracy [4]. Most of the classifiers are based on super-
vised learning where only labeled data are used as well
as this learning process requires a large volume of labeled
data. However, under the explosion of new traffic and
applications, it is very difficult if not impossible to col-
lect sufficient labeled samples for all existing applications.
At the same time, labeling all the traffic requires a huge
effort of human annotators sometimes with a specific do-
main of expertise. On the other hand, since the unla-
beled data provide informative characteristics, they could
improve the performance of the supervised learning algo-
rithms [5]. Therefore, a semi-supervised learning that uses
a large amount of unlabeled data together with a limited
amount of labeled data in order to build a better learner
is a promising solution and has attracted more and more
attention in network traffic classification [6] [7].

Apart from the previous issue, building models using
traditional ML is also bottle-necked by the amount of fea-
tures engineering effort required since there are limits to
how much human effort can be thrown at the problem
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as well [8]. With this regard, Deep Learning (DL) has
gained popularity in the machine learning community be-
cause of its unique nature for solving complex problems,
and it outperforms the other machine-learning methods
in several fields such as healthcare, computer vision, net-
work resource management, and has shown success in net-
work traffic classification [9] [10] [11]. DL provides a vari-
ety of algorithms that allows exploiting unlabeled data to
learn useful patterns in an unsupervised manner; for exam-
ple, an autoencoder is one of the most popular and most
widely used models for feature extraction [12]. Specifically,
Stacked Sparse Autoencoder (SSAE) is an efficient unsu-
pervised feature learning algorithm. In fact, SSAE has
many advantages such as conducting learning based on
unlabeled data and benefiting from its abundance. Also,
learning the features from unlabeled data automatically in
advance, which is called pre-training, is much better than
learning them from hand-crafted features [13] [14].

1.1. Motivations and Key challenges

Applying semi-supervised learning and deep-learning for
traffic classification is a promising solution but it is accom-
panied by key challenges, which are listed below:

• Extracted features for the traffic classification should
distinguish applications from each other as much as
possible.

• Finding the representative features using only a lim-
ited amount of labeled data (with the help of numer-
ous unlabeled data) should be done automatically.

• Finding DL architecture and model hyper-parameters
that should learn robust features and classify new net-
work traffic very well.

1.2. Key Contributions

Facing the above challenges, we propose our semi-
supervised model, of which some preliminary results ap-
peared in [6]. In this paper, we investigate deeper into the
variable ratios of unlabeled data as well as their impact
on the accuracy. Extensive experiments have been con-
ducted to obtain a robust model, which is then compared
against representative models using supervised machine-
learning as well as deep-learning approaches. In brief, the
contributions of this paper can be summarized as follows:

• A robust SSAE model based on both unlabeled and
labeled traffic has been proposed.

• Performance evaluation and comparison against semi-
supervised learning (e.g., Autoencoder) as well as
supervised learning (well-known supervised models)
have been conducted.

• Performance evaluation of the proposed model using
both non-encrypted and encrypted network traffic.

The rest of the paper is organized as follows. Section 2
summarizes the work related to this paper. Section 3.1,
firstly presents essential backgrounds for a better compre-
hension of this work, then Section 3.2 introduces our algo-
rithm for traffic classification and feature extraction based
on semi-supervised deep-learning. Experimental settings
and results as well as the datasets are presented in Sec-
tion 4. Discussion and analysis of the results are provided
in Section 5. Finally, conclusions and future works are
given in Section 6.

2. Related Work

This section first provides an overview of state-of-the-
art methods that adopt the Stacked Sparse AutoEncoder
(SSAE) in several domains. Then, it also reviews recent
achievements of state-of-the-art approaches that have been
proposed to solve the traffic classification problem using
ML/DL models.

2.1. SSAE related work

Sagheer and Kotb [14] used LSTM-stacked autoencoders
for unsupervised time-series event prediction including
bike rent demands and air quality. The proposed approach
is tested and validated using two different case studies and
two public datasets. Their results show that the unsuper-
vised pre-training approach improves the performance and
leads to better and faster convergence than Deep LSTM.

Xiao et al. [15] proposed a semi-supervised deep-learning
strategy called the stacked sparse auto-encoder (SSAE) to
classify and predict cancer tumor. The proposed SSAE-
based method employs the pre-training layer approach and
a sparsity penalty term to capture and extract important
information from the high-dimensional data and then clas-
sify the samples. The proposed SSAE model was tested
on three public RNA-seq data sets of three types of can-
cers. The proposed SSAE-based semi-supervised learning
model achieves the best classifications compared with sev-
eral commonly used classification methods such as Autoen-
coder, SVM, and Random Forest.

Sun et al. [16] proposed SSAE-DNN model using SSAE
combined with DNN for bearing fault diagnosis. First, the
sparse denoising autoencoder was used to learn more ro-
bust features from the unlabeled vibration data. Then, the
learnt feature representations were used to train a DNN
classifier for identifying induction motor running status.
A comparison with traditional neural network shows that
SSAE-based DNN achieves superior performance for fea-
ture learning and classification in induction motor fault
diagnosis.

Yan and Han [17] applied the stacked sparse auto-
encoder to generate a low-dimension feature subset, which
is then used with three basic classifiers (KNN, Random
Forest, and SVM). Also, several hyper-parameters (sparse
constraint, hidden layers, number of output layer neurons)
have been tested in order to improve the performance of
the final model.
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2.2. Network traffic classification related work

Most of the existing traffic classification solutions are
based on supervised learning algorithms [18] and have fo-
cused only on the totally labeled data without taking ad-
vantage of the unlabeled data. Consequently, in such con-
ditions, the models tend to learn over-fit spaces to the
labeled samples. In the following, we briefly review some
representative contributions in the literature that are used
to solve the traffic classification problems using ML/DL
models.

Uddin and Nadeem [19] introduced a traffic classifica-
tion framework, called TrafficVision that identifies the ap-
plications and their corresponding flow-type in real-time.
TrafficVision is deployed on the controller, and one of the
kernel modules of TrafficVision is named TV engine, which
has three major tasks: 1) Collecting, storing and extract-
ing flow statistics and ground-truth training data from end
devices and access devices. 2) Building the classifiers from
the training data. 3) Applying these classifiers to identify
the application and flow-types in real-time and providing
this information to the upper layer application. As a proof
concept, the authors developed two prototypes of ”network
management” services using the TrafficVision framework.
The classification task of the TV engine has two modules,
which are application detection using Decision Tree (C5.0)
and flow-type detection using KNN. However, this solution
uses only totally labeled data.

Amaral et al. [20] presented a traffic classification archi-
tecture based on SDN environment deployed in an enter-
prise network using ML. In this architecture, the controller
collected the flow statistics from the switches, and then
the preprocessing step is used through principal compo-
nent analysis (PCA). Then, several supervised classifiers
were applied (Random Forest, Stochastic Gradient Boost-
ing, and Extreme Gradient Boosting). The accuracy of
each application is used as an evaluation metric. However,
PCA assumes that the relations between variables are lin-
ear, which is not always the case. Also, only labeled data
have been used during the training process.

Wang et al. [21] have developed encrypted data clas-
sification framework called DataNet, which is embedded
in SDN home gateway. This classification was achieved
through the use of several DL algorithms, which are mul-
tilayer perceptron (MLP), stacked autoencoder (SAE),
and convolutional neural networks (CNN). Although this
framework used several DL algorithms, it did not benefit
from the unlabeled data.

Zhao et al. [22] proposed an unsupervised feature ex-
traction and clustering algorithm to obtain pure clusters.
To build feature extraction model, autoencoder has been
deployed. Then, K-means has been applied as clustering
algorithm on the extracted features in order to identify
the unknown traffic. However, the experiments were car-
ried out on private dataset with only non-labeled data.

In the network domain, Stacked Autoencoder (SAE) has
recently been applied to the field of traffic classification.

For instance, Zhang et al. [23] proposed a deep learning
network in the SDN-based environment to classify the traf-
fic to one of several classes (Bulk, Database, Interactive,
Mail, Services, WWW, P2P, Attack, Games, Multimedia).
It consists of a SAE and Softmax classifier. SAE was used
as an unsupervised-learning based feature extractor and
Softmax was used as a supervised classifier. The experi-
mental results demonstrate that the proposed method out-
performs SVM in terms of accuracy, recall, and F1-score.
Also, Vincent et al. [24] proposed a DL-based traffic clas-
sification framework, namely, deep packet. Deep packet
used deep-learning (CNN and SAE) for encrypted traffic
classification working at packet-level. However, here only
labeled data were used. Moreover, Li et al. [25] presented
an Improved Stacked AutoEncoder (ISAE) model for net-
work traffic classification. To do so, SAE and Bayesian
theory have been used where the Bayesian probability is
applied to predict the final parameters of each autoen-
coder. The performance of this model is tested on only
six applications and using only labeled data. Last but not
least, D’Angelo and Palmieri [26] proposed a new model
using SAE with convolutional and recurrent neural net-
work in order to extract the spatial and temporal features.
Their solution was used for coarse-grained network traffic
classification. However, to evaluate the performance of
their solution, they used UNIBS-2009, which is quite an
old dataset and can miss modern network behavior. Also,
only labeled data have been used.

Furthermore, a semi-supervised learning framework of
network traffic classification to QoS classes was proposed
in [7]. DPI has been used to label a part of traffic flows
of known applications and each labeled application is cat-
egorized into four QoS classes (Voice/Video Conference,
Interactive Data, Streaming, Bulk Data Transfer). Then,
this data is used by semi-supervised learning algorithms,
which is Laplacian SVM to classify the traffic flows of un-
known applications. However, this solution uses shallow
learning model and hence cannot scale very well.

The related work papers with their key contribu-
tions/findings and limitations are summarized in Table 1.

2.3. Novelties of this paper

The current literature shows that SSAE has been used
to solve several problems in different domains and it gives
a promising result as well as outperforms the performance
of traditional machine learning algorithms. However, it
is not yet been well investigated for traffic classification.
Furthermore, as presented previously, most of the existing
traffic classification solutions use supervised learning algo-
rithms and have focused only on the labeled data where
the unknown flows were not considered.

In addition, even a few semi-supervised models and
SSAE-based models have been used in traffic classifica-
tion; they did not study the impact of unlabeled ratio
on the performance of the final model, neither the effect
of hyper-parameters (i.e., dropout and corruption noise)
on the generalization performance of the SSAE model nor
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Table 1: Summary of related works

Ref. Methods used Contributions/Findings Limitations
[19] Decision Tree and KNN An application detection module

and flow-type detection module.
The classification rule is learned us-
ing only the labeled training data.

[20] PCA, Random Forest,
Stochastic Gradient Boost-
ing, and Extreme Gradient
Boosting

A method using PCA for dimension-
ality reduction and Decision tree-
based models for classification.

Dimensionality reduction is done us-
ing the linear transformation tech-
nique and only labeled data have
been used for model training.

[21] Multilayer perceptron
(MLP), stacked autoencoder
(SAE), and convolutional
neural networks (CNN)

A method using deep learning mod-
els to achieve more than 95% for all
evaluation metrics.

Only the labeled data have been
used to train the deep learning mod-
els.

[22] Autoencoder and K-means A method using autoencoder for fea-
tures extraction and clustering al-
gorithm for partitioning the traffic
packets into clusters.

Only unsupervised learning has
been used.

[23] Stacked autoencoder (SAE) The results demonstrate that the
SAE model outperforms SVM in
terms of all evaluation metrics.

Only labeled data have been used for
model training as well as the com-
parison was carried out only with
SVM.

[24] SAE and Convolutional Neu-
ral Network (CNN)

A method using SAE and CNN for
encrypted traffic classification.

Only labeled data have been used.

[25] SAE and Bayesian theory The results demonstrate that the
improved stacked auto-encoder out-
performs the traditional one in
terms of classification accuracy.

Only labeled data have been used as
well as the comparison has carried
out only with traditional SAE (i.e.,
without Bayesian theory).

[26] SAE, CNN, and Recurrent
Neural Network (RNN)

A method using SAE with CNN and
RNN to extract the spatial and tem-
poral feature for traffic classifica-
tion.

Only labeled data have been used
and only four traffic classes were
considered.

[7] Wrapper feature selection
and Laplacian SVM

A method using semi-supervised
learning algorithm, which is Lapla-
cian SVM to classify the traffic flows
of unknown applications.

Using shallow learning model and
hence cannot scale very well.
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a comparative analysis with several machine-learning and
deep-learning models, which have been provided in this
study.

3. Proposition

This section presents the main components integrated
into the proposition of this paper as well as the architec-
ture of the proposed DL-based semi-supervised learning.

3.1. Components

To better understand our proposition, first of all, each
concept of which compose our proposition is explained and
the arguments of why they are deployed in the solution are
provided.

3.1.1. Autoencoder

Autoencoder (AE) is an unsupervised three-layer neural
network, including an input layer, a hidden layer, and an
output layer (also referred to as reconstruction layer). The
typical structure of AE is shown in Figure 1. More specifi-
cally, the encoder obtains the input and converts it into an
abstraction, which is generally known as a code, then the
input can be reconstructed from the code layer through
the decoder. It uses non-linear hidden layers to perform
dimensionality reduction [27]. Its working process consists
of two core segments placed back-to-back that have the
same number of layers.

1. The encoder takes input data and maps it to a hid-
den representation (code), when the hidden layer has
a lesser dimension than the input data, the encoder
reduces/compresses the initial data.

2. The decoder uses the hidden representation (code) to
reconstruct the input.

Figure 1: General autoencoder process

This structure is formulated as below where equation
(1) presents the encoder and (2) the decoder respectively:

Z = f(W1X + b1) (1)

X ′ = f(W2Z + b2) (2)

where X = (x1, x2, ..., xn) is the input vector, and
Z = (z1, z2, ..., zm) is the vector extracted from the in-
put X known as code, X ′ = (x′1, x

′
2, ..., x

′
n) is the output

reconstruction of the input X, where n is the dimension of
the input vector and m is the number of code units. W1

and b1 are the weight matrix and bias between the input
layer and the second layer (i.e., code). W2 and b2 is the
weight matrix and bias between the second and the output
layer; f(.) is the activation function.

The difference between X and X ′ is usually called the
reconstruction error (RE), which is represented in the form
of a cost function that the model tries to reduce during the
training process. The cost function of the AE is computed
using Equation 3, where the parameter set is denoted by
θ = {W1, b1,W2, b2}.

J(θ) =

n∑
i=1

RE(xi, x
′
i) (3)

We have deployed the concept of autoencoder because
unlike supervised deep neural networks, it is an unsuper-
vised feature learning neural network that can extract fea-
tures from unlabeled data automatically.

3.1.2. Stacked Autoencoder

To obtain a better performance and learn more complex
and abstract features than classical autoencoder, we de-
ploy a more complex architecture and training procedure,
known as stacked autoencoder (SAE) [24].

Several autoencoder layers are stacked together and
form an unsupervised pre-training stage where the encoder
layer computed by an autoencoder will be used as the input
to its next autoencoder layer. Each layer in this stage is
trained like an autoencoder by minimizing its reconstruct-
ing error. When all the layers are pre-trained, the network
goes into the supervised fine-tuning stage. At the super-
vised fine-tuning stage, a Softmax layer is added to the
encoding layer of the unsupervised pre-training stage for
the classification task and discarding the decoding layers
of SAE (Figure 2).

3.1.3. Sparse Autoencoder

Since the number of units in hidden layers is large in
the Stacked Autoencoder, we impose a sparse constraint
on the hidden layers to capture high-level representations
of the data. The sparsity penalty term is included in the
loss function to prevent identity mapping by keeping only
a selected set of neurons ”active” at any instance. In prac-
tice, if the output of a neuron is close to 1, the neuron is
considered to be ”active”, otherwise it is ”inactive”, and
thus the stacked autoencoder is converted into Stacked
Sparse AutoEncoder (SSAE). To achieve this, the sparse
term is added to the objective function that penalizes ρ̂j
(the average activation of the hidden unit j) if it deviates
significantly from ρ (the sparsity parameter). These terms
are expressed as:
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Figure 2: General Stacked Autoencoder process

ρ̂j =
1

n

n∑
i=1

[fj(x(i)] (4)

ρpenalty =

S∑
j=1

KL(ρ||ρ̂j) (5)

Where S is the number of neurons in the hidden layer.
KL(.) is the Kullback–Leibler divergence (KL divergence),
which is defined as:

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(6)

Here the goal is that ρ̂j approaches a constant ρ, which
is close to zero. Adding the sparse penalty term to the
cost function, it can be modified as:

Jsparse(θ) = J(θ) + β

S∑
j=1

KL(ρ||ρ̂j) (7)

3.1.4. Dropout

Dropout is a technique applied in the training phase to
reduce over-fitting effects and hence help the neural net-
work model to learn more robust features and reduces the
interdependent learning among the neurons [28]. The term
”dropout” refers to dropping out units in a neural network
(as shown in Figure 3). Technically, the ”dropout” can be
realized by setting the output a = f(WX + b) of some
hidden neurons to zero so that these neurons will not be
involved in the forward propagation training process. By
dropping a unit (i.e., neuron) out, we mean temporarily
removing it from the network, along with all its incoming
and outgoing connections, and the choice of which units
to drop is random. Consequently, random dropout makes
it possible to train a huge number of different networks in
a reasonable time [29].

Figure 3: Dropout technique

In this study, the dropout technique is applied to train
our semi-supervised learning in order to avoid the extrac-
tion of the same features repeatedly (overfit). It should
be noted that the dropout is turned off during testing and
used just within the training stage.

3.1.5. Denoising autoencoder

Denoising autoencoder was proposed in [30] to improve
the robustness of feature representation. It is trained to
reconstruct a clean input from a corrupted version of it
(Figure 4). Therefore, similar to the conventional autoen-
coder network, it is trained in order to learn a hidden rep-
resentation that allows it to reconstruct its input. How-
ever, the main difference with denoising autoencoder is
that the model should reconstruct the original input from
a corrupted version in order to force even very large hid-
den layers to extract more relevant features. This cor-
ruption of the data is done by first corrupting the initial
input X to get a partially destroyed version X ′. The in-
put can be corrupted in many ways. In this study, we
set a certain percentage of random units of each sparse
autoencoder (neurons) to zero (i.e., a fraction of the in-
put is deleted randomly). To train a stacked sparse de-
noising autoencoder, each denoising sparse autoencoder is
pre-trained independently. By doing so, the definition of
good representation is changed into the following: ”a good
representation is one that can be obtained robustly from a
corrupted input and that will be useful for recovering the
corresponding clean input” [30].

The main reasons for deploying denoising SSAE are:
(i) it is expected that a higher-level representation should
be stable and robust under corruptions of the input, and
(ii) performing the denoising can help our model to cap-
ture useful structure in the input data. The experiments
demonstrate that the denoising autoencoders can improve
the generalization performance of the network.

3.2. Methodology

In this section, we describe our proposed methodology:
SSAE based semi-supervised method for traffic classifi-
cation. Figure 5 presents the structure of the proposed
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Figure 4: Training process of individual denoising autoencoders

model. It consists of the unsupervised feature extraction
task and the supervised classification task. Therefore, both
unlabeled and labeled data have been used to extract more
valuable information and make a better classification. We
present the methodology in the following.

3.2.1. Data Preprocessing

Our model uses flow and packet-based features (at-
tribute) for network traffic classification tasks (e.g., flow
duration, packet length, port number, etc.). A flow is a
set of network packets with the same source/destination
IP addresses, source/destination port numbers, and pro-
tocol [10]. These features can have different types of data,
including numerical and categorical values. Therefore, it
is important to pre-process this traffic in order to build
the proposed model.

Further, to reduce impacts from an imbalanced dataset
of the labeled set [31], we create a new set with more bal-
anced data samples for each application. For that, we have
used a random over-sampling technique for the minority
classes and a random under-sampling technique for the
majority classes and we got a fair distribution of each class.
As a result, the balanced subset has a total of 504,731 ob-
servations. Then, we have separated the re-sampled data
into unlabeled and labeled sets, where the labeled set split
into training (80%), validation (10%), and testing (10%).

When the flow has several features containing different
data types whereas some ML models can only work with
numeric values, it is hence necessary to convert or reassign
numeric values. In this work, we have converted initial
values of timestamp and IP address to numerical values.
Moreover, when the dataset consists of different features
with values in different scales, it needs to be scaled and to
center the feature values. This can be done by calculating
the standard scores for each data feature. The standard
score x′ of a data feature x is given by:

x′ =
x− µ
σ(x)

where σ(x) is the standard deviation and µ is the distri-
bution mean value for x. Standardized features have ap-

proximately zero mean and unit standard deviation thus
eliminating high variability and scaling effects.

3.2.2. Semi-supervised traffic classification

When the number of labeled data is limited compared to
the unlabeled data, sometimes supervised models cannot
obtain an accurate classification. A solution to overcome
this limitation is to apply a semi-supervised classification.
Semi-supervised learning uses unlabeled data for training-
typically a limited amount of labeled data with a large
amount of unlabeled data. In the network environment,
the data X=[Xl, Xu] is composed of labeled data Xl and
unlabeled data Xu. Semi-supervised learning classification
problem benefits from unlabeled data to extract relevant
information for new data discrimination Xnew. This prob-
lem is showed in Table 2.

Table 2: Classification problem based semi-supervised learning

Learning Model Training data Test data

Supervised learning {(Xl, y)} Xnew

Semi-supervised learning {(Xl, y), Xu} Xnew

By taking advantage of unlabeled and labeled data, a
semi-supervised classification model has been proposed as
illustrated in Figure 5. Our semi-supervised classification
model consists of (i) the unsupervised feature extraction
stage using unlabeled data, and (ii) the supervised classi-
fication stage using labeled data. As shown in Figure 2,
the unsupervised learning algorithm pre-trained in a bot-
tom–up way. Then, the decoder layers of the SSAE model
have been ignored and we directly linked the last hidden
layer (i.e., code) to a neural network classifier (i.e., Soft-
max layer); hence, we get a new deep-learning model. In
this study, the fine-tuning was done in a top-down fash-
ion by training the pre-trained layers as a single model
using a supervised learning process. The backpropagation
algorithm is employed to get the gradient to update the
parameters of the whole model.

In order to find the optimal model architecture, several
experiments have been conducted with different architec-
tures varying hidden layers and hidden nodes. Then, under
different ratios of unlabeled data, we measure the perfor-
mance of the proposed model. Next, using the optimal
model architecture and optimal unlabeled data ratio, we
also varied the sparse hyper-parameters in order to im-
prove the performance of the SSAE model. Finally, to
extract more robust features and prevent the over-fitting
problem during the training process, we injected other
hyper-parameters such as denoising coding and dropout.

4. Experimental study and results analysis

In this section, we evaluate the performance of the pro-
posed SSAE model by performing extensive experiments.
Then, results are analyzed and discussed.
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Figure 5: Structure of the semi-supervised network traffic classification model

4.1. Objectives

• Evaluate the performance of the SSAE under different
ratios of unlabeled data.

• Evaluate the impact of the sparse parameter on the
SSAE performance.

• Evaluate the impact of dropout and corruption noise
hyper-parameters on the SSAE performance.

• Evaluate the impact of features extracted by the
SSAE on the performance of other learning models.

• Evaluate SSAE against well-known models including
simple autoencoder (deep-learning) and supervised
machine-learning models that use 100% labeled data.

• Evaluate SSAE against supervised SSAE using the
same architecture and hyper-parameters.

• Evaluate the classification performance on the well-
known applications through confusion matrix.

• Evaluate the proposed model in terms of training and
classification time.

• Evaluate and position our approach in the literature
using one of the most popular traffic datasets, called
(ISCX VPN-nonVPN 2016).

4.2. Dataset

The dataset used in our experiment was presented in a
research project [32]. It consists of 87 meta-data features,
3,577,296 instances, and 75 classes (Facebook, Google,
YouTube, Yahoo, Dropbox, and so on)1. This dataset was
collected in a network section from Universidad Del Cauca,
Popayàn, Colombia. It was constructed by performing
packet captures at different hours, during the morning and
afternoon over six days in 2017. We choose this dataset
because it can be useful to find many traffic behaviors as it

1https://www.kaggle.com/jsrojas/ip-network-traffic-flows-
labeled-with-87-apps

is a real dataset and rich enough in diversity and quantity.
However, for facilitating computation, we have used only
the traffic collected from one day, which is 09/05/2017.
Therefore, our sub-dataset consists of 404,528 flows and
54 applications. However, we used the balanced set that
has a total of 504,731 observations.

As presented in our previous paper [6], the sim-
ulation of a partially-labeled dataset has been done
through the selection of a portion of the known ap-
plications randomly and remove the application labels
of their instances. Table 3 presents the statistical
information (unlabeled/labeled observations along with
train/validation/test split) used in this work after apply-
ing the re-sampling methods.

Table 3: The statistical information of dataset.

Unlabeled Labeled
Train Validation Test

384,366 96,293 12,036 12,036
364,155 96,293 12,036 12,036
283,217 96,293 12,036 12,036
202,322 96,293 12,036 12,036
161,868 96,293 12,036 12,036
40,484 96,293 12,036 12,036
20,259 96,293 12,036 12,036

4.3. Evaluation metrics

After the model training, it needs to be tested to verify
its performance. To determine the quality of our proposed
model and to evaluate the classification quality, several
performance metrics have been used; time-related metrics
(classification and training time), accuracy, F1-score, pre-
cision, and recall, which are calculated respectively as:

Accuracy is the proportion of correct classification (TP
and TN) from the overall number of cases.

Accuracy =
TP + TN

TP + FP + FN + TN
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F1-Score is the harmonic mean of precision and recall.
If, its value is high and closer to accuracy, the performance
of classification is better.

F1− score =
2× Precision×Recall
Precision+Recall

where:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

To calculate these metrics, there are four important
terms:

• TP (True Positive): Predicted to be positive and the
actual value is positive.

• FP (False Positive): Predicted to be positive, but the
actual value is negative.

• TN (True Negative): Predicted to be negative and the
actual value is negative.

• FN (False Negative): Predicted to be negative but the
actual value is positive.

4.4. SSAE based semi-supervised architecture and hyper-
parameters

In this section, we study the impact of several hyper-
parameters on the performance of the whole model. At
beginning, since in a deep neural network, there is no clear
mathematical proof to interpret its architecture. There-
fore, to find the optimal model, we tested different ar-
chitecture as well as hyper-parameters that maximize the
accuracy of the classification. The configuration, with 4
hidden layers [100, 200, 400, 50] is selected for further
experiments since it provides the best results. Also, it is
important to note that, after extensive simulations and as
used in our previous work [6], we have selected a learn-
ing rate equal to 0.0001. Besides, the selected activation
of hidden layers is ReLU (rectified linear unit) because it
provides better convergence performance than sigmoid and
tanh [33].

4.4.1. Trade-off between performance and unlabeled ratio

One of the importance concerns in this paper is to study
the impact of the unlabeled data ratio on the performance
of the proposed model. It is important to note that during
this experiment, we fix the amount of labeled data and
vary only the amount of unlabeled data (Table 3).

Therefore, in this section, we explore in-depth the trade-
off between the performance of the proposed model and
the amount of unlabeled data. To do so, we trained our
system using different ratios of unlabeled samples called
Ru, which is expressed below.

Ru =
nb unlabeled data

nb labeled data
(8)

The accuracy of the model while varying Ru is presented
in Figure 6. It can be seen that increasing the amount of
unlabeled data (increasing Ru) boosts the classification
performance of the model. This can be explained by the
fact that increasing the amount of the unlabeled data pro-
vides more informative characteristics and deep learning
can benefit from this data in the pre-training process and
in turn improves the classification performance for unseen
samples Xnew. As a result, we use Ru=3.2 (where the
number of unlabeled observations are 384,366) for the rest
of the experiments .

Figure 6: Performance of model with different unlabeled ratios.

4.4.2. Impact of the sparse parameter

Since the number of neurons in hidden layers is large,
using a sparse constraint can allow discovering better the
complex structure behind the data. However, like all the
hyper-parameters, it is crucial to select an optimal sparsity
parameter for a better traffic classification. As presented
in Figure 7, we have tested the effect of the sparse pa-
rameter on the performance of our model. Here, the rate
varied between 0.01 and 0.07 (we stopped when the per-
formance started to decrease). It can be seen that when
the value of the sparse parameter is 0.06, the SSAE model
gives the best accuracy (94.40%) and training time. Larger
than this value, the training time of the model begins to
increase.

4.4.3. Impact of dropout and denoising coding

Although SSAE works well, we can further improve
its generalization performance through other hyper-
parameters. Our previous work [6] shows that dropout and
denoising code hyper-parameters can improve the perfor-
mance of the classification. As presented in Figure 8 and
Figure 9, we have tested the impact of dropout and cor-
ruption noise on the accuracy of our model. Here, the rate
varied between 0 and 0.05 (we stopped when the perfor-
mance started to decrease). The results show that the best
classification performance was obtained at a dropout rate
and corruption equal to 0.02 and 0.02 respectively. Based
on the results shown in these figures, it can be seen that
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Figure 7: Accuracy and training time of different sparse parameter

the SSAE has the ability to restore a good reconstruction
from a corrupted input version even with a high corruption
level. Moreover, we can interpret that too much dropout
can decrease the classification performance.

To verify the impact of these hyper-parameters on the
generalization performance of the proposed model, we
compare the combined solution against a simple SSAE
(without enhancement). The results are shown in Fig-
ure 10. It can be seen that the SSAE with dropout and
denoising code combined has shown a better performance
(i.e. test accuracy) with 95.03% accuracy. In addition, the
generalization capability of the model has been improved
(i.e. the difference between the training and testing accu-
racy has been reduced). This can be explained by the fact
that the denoising rate can help to extract robust features
and the dropout prevents the co-adaptation between the
hidden neurons and hence avoids over-fitting.

4.5. Comparison Analysis

To evaluate the performance of the proposed model,
we perform a comparative analysis against other machine-
learning and deep-learning models including the following
two categories: semi-supervised and supervised.

4.5.1. Comparison with semi-supervised learning models

To verify the classification efficiency of the proposed
model labeled as SSAE* (for SSAE+denoising+dropout),

Figure 8: Effect of dropout

Figure 9: Effect of denoising coding

Figure 10: Accuracy of our model without/with enforcement
(dropout/denoising)
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we compared it to four reference ML classification algo-
rithms namely Decision Tree (DT), Random Forest (RF),
Support Vector Machine (SVM), and eXtreme Gradient
Boosting (XGBoost) as well as simple SSAE (without
dropout+denoising). To create semi-supervised models
(SSAE+DT, SSAE+RF, SSAE+SVM, SSAE+XGBoost),
these algorithms are built on top of our proposed model
(feature extraction part) and benefit from its automatic
feature extraction and unlabeled data. In fact, the labeled
data is passed through the SSAE that is trained by the
unlabeled data and obtain X ′, the transformed data. The
last layer of our model (the encoding vector) has only 50
neurons, which is a smaller dimension than X (i.e., 87
features). Finally, these features are used with the afore-
mentioned classifiers.

Furthermore, we also used the autoencoder (AE ) model
for the comparison as it has a deep-learning architecture
similar to SSAE. After learning with the autoencoder (i.e.,
unsupervised learning), the decoder is removed and a Soft-
max layer is attached and the whole model is fine-tuned
for the classification task (i.e., supervised learning). As
shown in Figure 11, the autoencoder here reconstructs the
input then classifies through the encoder part. It should
be noted that the used AE has the same network struc-
tures as SSAEs except that there is no sparse constraint
as well as the noise and dropout hyper-parameters.

Figure 11: Classification process with Autoencoder

Table 4 summarizes the experimental results of the five
semi-supervised models (previously described), SSAE, and
SSAE*. It can be seen that our proposed model outper-
forms every of them. In fact, DT, RF, XGBoost, and SVM

cannot fine-tune the features extracted by the SSAE and
this may explain their lower performance. Also, it can
be seen that deep-learning based models (i.e., SSAE and
AE) perform better than the conventional machine learn-
ing models (i.e., RF, DT, XGBoost, and SVM). Further-
more, the results clearly demonstrate that the SSAE mod-
els with/without denoising and dropout hyper-parameters
are more accurate than AE. Moreover, it performs bet-
ter in terms of precision, recall, and the trade-off between
them (i.e., F1-score). These results are attributed to the
pre-training process of each AEs layers (Figure 2) and the
sparse constraint used with the SSAE models.

Table 4: Comparison with semi-supervised models.

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-

score

(%)

SSAE+DT 88.89 90.02 89.02 87.42

SSAE+SVM 56.19 63.65 55.09 57.11

SSAE+RF 90.07 90.91 89.68 88.11

SSAE+XGBoost 91.70 93.01 91.11 92.21

AE 92.58 93.11 92.84 92.65

SSAE 94.40 94.78 93.10 93.31

SSAE* 95.03 96.40 94.01 94.40

4.5.2. Comparison with the commonly-used supervised
classification models (100% labeled data)

To verify the efficiency of our model for traffic classi-
fication, we also compared it with five references super-
vised classification algorithms including: (i) simple clas-
sifiers, which are Decision Tree and Support Vector Ma-
chine (SVM), (ii) ensemble learning such as XGBoost and
Random Forest, (iii) neural network classifier, which is
Multi-layer Perceptron (MLP) classifier. We select these
classifiers as our baselines because Random Forest and De-
cision Tree are easy to train [34], SVM is widely used and
proved to be useful in several applications [35], and MLP
is a neural network model as well as XGBoost because it is
an effective model for the classification task. In contrast to
the above section, these classifiers use all the labeled data
for their learning process and use all the original feature
X. In fact, they used three times more labeled data (i.e.,
100% labeled data) compared to our proposed model.

Table 5 presents the results achieved by our proposed
model compared with the supervised classifiers. It is very
clear that our proposed model outperforms the ensem-
ble models (i.e., XGBoost and RF), simple deep-learning
model (i.e., MLP) as well as the simple classifiers (SVM
and DT). Specifically, although the competitive results of
XGBoost with 100% labeled data, our model gets the best
results with less amount of labeled data. It means that
the proposed model with a limited labeled data can get
competitive accuracy compared with the well-known su-
pervised models. This may be attributed to the fact that
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the proposed semi-supervised model based on SSAE gener-
ates deeply learned features that yield far superior results
compared to the initial statistical features. Moreover, it
uses pre-trained process that can boost the accuracy in-
stead of the supervised models that trained from scratch
using all labeled data. From this, we can conclude that
our model is a robust model, extracts relevant features as
well as can differentiate the applications very well.

Table 5: Comparison with supervised models.

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-

score

(%)

DT 92.56 93.36 93.00 93.16

RF 93.15 93.79 93.62 93.67

XGBoost 94.88 95.43 94.12 94.39

SVM 32.38 55.20 30.38 38.87

MLP 89.28 91.04 89.08 89.51

SSAE* 95.03 96.40 94.01 94.40

4.5.3. Comparison with supervised SSAE* models (using
only the labeled ratio)

In order to further validate the efficiency of the pro-
posed solution, which demonstrated the best performance
against the semi-supervised model (using labeled and un-
labeled data) and shallow supervised model (using more
labeled data), we compared our model with itself in a su-
pervised manner. In other words, we evaluated the per-
formance of our model (SSAE*) using only the labeled
portion of data for its learning process without taking ad-
vantage of the unlabeled data. Table 6 illustrates the com-
parison of our model with and without the unlabeled data.
It can be seen that our model in a supervised manner per-
forms worse than with the one using unlabeled data. This
is because unlabeled data can provide informative char-
acteristics and hence can boost the performance of traffic
classification. This advantage will become even more sig-
nificant in the case of larger training data.

Table 6: Comparison with supervised SSAE*.

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-

score

(%)

Supervised
SSAE*

83.74 84.54 84.98 83.86

SSAE* 95.03 96.40 94.01 94.40

4.5.4. Confusion matrix (CM) comparison

We now analyze a subset of results limited to some well-
known applications using confusion matrix. CM com-
pared the efficiency of the proposed model against two
methods (one based on non deep-learning and another
based on deep-learning). According to the above results,
we selected XGBoost as supervised (non-deep learning)

(a) Confusion matrix for the proposed model

(b) Confusion matrix for Autoencoder

(c) Confusion matrix for XGBoost

Figure 12: A confusion matrix of the proposed model against AE
and XGBoost under the most popular applications.
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classifiers because it gives the best results and we select
Autoencoder (deep learning) as a semi-supervised model.

Figure 12 shows the classification results of these 3 mod-
els using CM where columns correspond to the true labels,
rows refer to the predicted labels, and the elements on the
diagonal present the accurately classified results. The CM
provides information about the classes that are correctly
or incorrectly classified and the type of misclassification.

It can be seen that with XGBoost, many Youtube and
Gmail flows, are incorrectly classified as Google, and vice
versa. Moreover, we can see some interesting confusions
between Google and Youtube, Gmail and Google, and
Facebook and Gmail with AE. Finally, our proposed model
incorrectly classifies Google as Youtube but not the oppo-
site. As a result, we can conclude that our proposed model
provides a slightly better classification results compared
to AE. It also performs slightly better than XGBoost but
without the need to label all the data as with XGBoost.

4.5.5. Cost in terms of training and testing times

As a continuation from the previous subsection, we also
compared the computational efficiency of the proposed
model against XGBoost and Autoencoder (AE). This com-
parison has been done in terms of training and classifica-
tion time. Experiments are performed on a PC with,
8.00 GB of RAM and two cores Intel® Core™ i5-
7200U CPU@2.50GHz processor.

As shown in Figure 13 and Figure 14 that in terms of
training time, the deep-learning based model (our model
and the simple AE) need longer training time compared
to the boosting model (i.e., XGBoost). However, once
these models were trained, they were actually more ef-
ficient compared to the XGBoost in terms of classifica-
tion time. In fact, as explained in Section 3.2, our model
consists of two main phases (pre-training, and fine-tuning
process) and this may explain its high training time. In
contrast to the training, it is very fast for the classification
task. We assume that the training time can be proceeded
offline and thus does not impact on the real-time utilisa-
tion of the classification process.

Figure 13: Training time comparison

Figure 14: Classification time comparison per sample

4.6. Experiments on the VPN-nonVPN dataset

To validate the effectiveness of the proposed model, we
also conduct experiments based on another dataset, which
includes encrypted data (VPN and non-VPN data). This
is one of the most popular encrypted traffic classification
datasets. It contains only time-related features. For more
details on the captured traffic and the traffic generation
process, please refer to [36].

From this dataset, we have selected two representative
scenarios: (i) scenario A (Sc A), which is a binary clas-
sification to indicate whether the traffic flow is VPN or
not, and (ii) scenario D (Sc D) that mixes all the applica-
tions to perform the multi-classification task (e.g., Chat,
Streaming, VNP-chat, etc). Note that all flows in the
dataset are labeled. However, to evaluate our model, we
only use a small portion of class labels during training
process. Specifically, we split the data into 80% for train-
ing, 10% for validation, and 10% for the test. Then, we
distribute the training set into half labeled and half un-
labeled. In addition, with our encoder layer, we have re-
duced the features from 23 to 15 features.

It can be seen from Table 7 and Table 8 that with half
amount of labeled observations the accuracy of our model
can achieve accuracy over 88%, 84% for Sc A and Sc B,
respectively. Also, it can be seen that with few labeled
observations as well as the fewer amount of features, our
model performs better than the simple classifiers like SVM
and MLP. However, ensemble-based models (RF and XG-
Boost) using totally labeled data, give better accuracy.

In order to further validate the efficiency of our model,
we compare it with some state-of-the-art approaches. The
experimental results are presented in Table 9. It can be
seen that the DL-based supervised model such as [37]
and [38] outperforms all the approaches and specifically
our model because they are more complex. However, this
is not the case with the DT-based approach [36], where our
model gives better results. This is maybe attributed to the
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Table 7: Comparison with supervised models on Sc A (using 100%
labeled data).

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-

score

(%)

RF 90.30 90.35 90.18 90.24
XGBoost 93.02 93.18 92.85 92.97
SVM 60.98 61.71 59.77 58.69
MLP 73.72 73.63 73.68 73.65
SSAE* 88.04 88.05 88.02 88.03

Table 8: Comparison with supervised models on Sc D (using 100%
labeled data).

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-

score

(%)

RF 82.84 82.31 79.36 80.49
XGBoost 87.10 85.27 83.51 84.17
SVM 43.44 50.28 27.24 26.89
MLP 58.90 51.35 52.48 50.34
SSAE* 84.13 80.70 79.55 79.93

deep architecture used in our case. Also, our model out-
performs the DL-based semi-supervised learning proposed
by [39], and this is because of the pre-training process of
each AEs layer as well the use of the hyper-parameters
such as denoising and dropout rate.

Table 9: The classification accuracy (%) of baseline and ensemble
methods on VPN-nonVPN Dataset.

Approach Model Sc A Sc D
Supervised([36]) DT 89.7 81.77
Supervised([37]) CNN-LSTM 99.7 91.7
Supervised([38]) Attention

Based LSTM
99.7 91.2

Semi-
supervised([39])

Multi-task
model based
CNN

N/A 80.67

Semi-
supervised(SSAE*)

SSAE+NN 88.04 84.31

5. Discussion

In this study, we propose a complete and robust traffic
classification system that makes use of both unlabeled and
labeled data. We have analyzed the impact of the unla-
beled data ratio on the performance of the proposed model.
The evaluation demonstrates that this model needs lim-
ited amount of labeled to get an accuracy over 95%. Next,
hyper-parameters tuning has been done in order to im-
prove the performance. These hyper-parameters are spec-
ified to make the trained model lie on the balance point,
which is neither under-fitting nor over-fitting.

Specifically, the proposed model has proved to classify
the unknown applications very well and demonstrates the
usefulness of the sparsity, denoising, and dropout for model
generalization. Moreover, the performance of our model
may be attributed to the use of all the data contained in
the dataset as well as the layer-wise pre-training where
each single AE is trained to exploit the relationship be-
tween high-level features and helps the deep neural net-
work models to yield much better results with local ini-
tialization than random initialization. Then, the global
fine-tuning process optimizes the parameters of the entire
model, which greatly improves the classification task.

Pros and cons of the proposed semi-supervised classifier
based on deep-learning

• Our proposed model has several advantages. First,
it is simple and easy to implement. Second, it auto-
matically provides feature extraction without human
intervention and avoids time-wasting as maximum as
possible. Third, tuning the model hyper-parameters
helps improving the performance of the final model.
Finally, its performance continually improves when it
is trained with more unlabeled data. Therefore, these
ensure that the model is suitable for a real network
environment containing a huge amount of unlabeled
data.

• One of the disadvantages of this system is choosing
the appropriate architecture and hyper-parameters.
Furthermore, it requires an important time for the
training task as well as needs some pre-processing
like feature transformation and normalization. How-
ever, these are the normal procedures for any machine
learning approach.

6. Conclusion

In this paper, a semi-supervised network traffic clas-
sification system based on Stacked Sparse Autoencoder
(SSAE) using two real network dataset has been pro-
posed. It extracts features from unlabeled data and trains
the classification model with limited amount of labeled
data. To do this, the SSAE model captured high-level fea-
ture representations in an unsupervised manner through
the pre-trained strategy and without human intervention.
Then, a supervised neural network classifier is linked to
the SSAE for the fine-tuning process and the classification
task. Furthermore, different unlabeled data ratios have
been investigated in order to obtain the optimal perfor-
mance based on the accuracy of the whole model. Next,
dropout and denoising code hyper-parameters have been
injected to improve the generalization performance of the
SSAE.

The simulation results show that our enhanced model
SSAE* performs better than SSAE (i.e., without denois-
ing and dropout hyper-parameters), simple AE (i.e., with-
out stacked AEs pre-training and sparsity parameter), tra-
ditional machine learning models (DT, SVM), ensemble
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learning models (RF and XGBoost), as well as supervised
SSAE* (using only the labeled ratio). Moreover, we have
evaluated this model for computation efficiency and the
experimental results show that it outperforms XGBoost
in terms of the classification time. In addition, the per-
formance of the proposed model has also been evaluated
against baseline approaches using a well-known dataset
with different use cases and scenarios (binary classifica-
tion and multi-classification).

In the future, we will focus on further improvement by
using Federated Learning as a way to collaboratively train
learning model with privacy-preservation. Additionally,
the model’s training time can be further reduced by the
implementation of the model in GPU acceleration.
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