
HAL Id: hal-03524815
https://hal.science/hal-03524815v1

Submitted on 18 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy-efficient resource allocation in multi-tenant edge
computing using Markov decision processes

Alessandro Spallina, Andrea Araldo, Tijani Chahed, Hind Castel-Taleb,
Antonella Di Stefano, Tülin Atmaca

To cite this version:
Alessandro Spallina, Andrea Araldo, Tijani Chahed, Hind Castel-Taleb, Antonella Di Stefano, et al..
Energy-efficient resource allocation in multi-tenant edge computing using Markov decision processes.
NOMS 2022: IEEE/IFIP Network Operations and Management Symposium, Apr 2022, Budapest,
Hungary. pp.1-5, �10.1109/NOMS54207.2022.9789942�. �hal-03524815�

https://hal.science/hal-03524815v1
https://hal.archives-ouvertes.fr

Energy-efficient Resource Allocation in
Multi-Tenant Edge Computing using Markov

Decision Processes
Alessandro Spallina1,2, Andrea Araldo1, Tijani Chahed1, Hind Castel-Taleb1, Antonella Di Stefano2, and

Tülin Atmaca1

1Telecom SudParis, France; Institut Polytechnique de Paris
2Dept. of Electrical, Electronics and Information Engineering, University of Catania, Italy

{firstname.lastname}@telecom-sudparis.eu, ad@diit.unict.it

Abstract—We address the problem of a Network Operator
(NO) owning limited resources at the network edge. The NO
wishes to enable advanced services, by virtualizing and allocating
such resources among multiple tenants, i.e., third-party Service
Providers, co-existing at the edge, with different Quality of
Service (QoS) constraints. The NO applies a resource allocation
policy with the objective of minimizing energy consumption via
switching off non-used resources while guaranteeing tenants QoS
requirements. We propose a resource allocation policy based on
Markov Decision Processes (MDP). In simulation we show that
our policy is able to reduce energy consumption, by turning off
unused resources, while meeting heterogeneous SP requirements.
Our code is available as open source.

Index Terms—Resource Allocation, Energy-efficiency, Multi-
tenant Systems, Edge Computing, Markov Decision Processes.

I. INTRODUCTION

With the fast growth of new services such as augmented
reality, online games, e-health, etc., each with different QoS
requirements, the management of 5G network resources has
to face new challenges. Two of such challenges are (i) the
extremely low latency demanded by some of such services
and (ii) the huge amount of traffic needed to be transmitted. To
tackle those, the paradigm of Edge Computing (EC) consists in
deploying computational resources in edge nodes, very close to
the users, e.g. at (micro) base stations, access points, roadside
units, local central offices.

We consider a physical infrastructure, composed of an edge
node or a cluster of edge nodes, owned by a Network Op-
erator (NO). The NO virtualizes the available computational
resources, in the form of servers, which may be Kubernetes
Pods or similar, and makes them available to different Service
Providers (SPs). Each SP may serve a certain class of traffic,
e.g., vehicular, multimedia, etc., with different requirements,
e.g., latency constraints. SPs act as tenants [1] and can run
their services at the edge using the allocated resources.

The NO has to solve the resource allocation problem, i.e., to
decide the amount of resources to allocate to each SP in order
to meet their QoS requirements and at the same time minimize

power consumption by switching off the non-used servers. In
the cloud, resources may be assumed infinite and can be given
to tenants as long as they are willing to pay; in the edge nodes,
instead, resources are scarcer, which makes the allocation
problem more challenging: allocating many resources to one
SP implies allocating less to others. An appropriate allocation
policy is thus needed and is the object of our present work.

The key contributions of our paper are the following:

1) We formalize a time-slotted Markov Decision Process
(MDP) model representing our multi-tenant resource al-
location problem.

2) We make use of histograms in our model for the traffic
arrival as well as service. In this way, our approach can
be adapted to capture real-life traffic traces and the way
requests would be processed in the edge node.

3) We propose a resource allocation policy, which imple-
ments a trade-off between QoS requirements of tenants
versus energy consumption of the infrastructure.

4) We show, through simulations, the performance of the
policy in the presented scenario with heterogeneous re-
quirements’ SPs.

5) To ensure reproducibility, we provide an open-source
implementation of our policy and the simulation envi-
ronment. [2]

The remainder of this paper is organized as follows. Section
II contains the description of our system and model. We
then illustrate our results in Section III. Finally, section IV
concludes the paper.

II. SYSTEM MODEL

We assume, as indicated above, an edge node owned and
managed by a single NO with a limited quantity of general-
purpose computational resources, in the form of servers. The
aim of the NO is to allocate these resources to different tenants,
each with specific QoS requirements, while minimizing energy
consumption by switching off non-used servers.978-1-6654-0601-7/22$31.00 © 2022 IEEE

A. Queuing model of Service Providers

Let smax denote the maximum number of servers available
in the system. We discretize the time into slots of duration T .
In each time-slot, the number of requests arriving to the i-th
SP is a discrete random variable with finite support. We denote
by Arrivals Histogram Harr

i its probability mass function.
The server performance for each SP is also represented by a
discrete random variable with finite support, which counts the
number of requests that can be processed by a server of SP i in
a time-slot. We denote by Server Capacity Histogram Hcap

i its
probability mass function. Observe that this formulation allows
requests of different SPs to have different complexities, thus
requiring different processing times, which would be reflected
into different Hcap

i .
When requests of SP i arrive, they are placed in the queue

of SP i, of maximum size mmax
i . Such queue is served by

si servers. The number si can change at every time-slot: the
NO decides at each time-slot k the number si(k) of servers
allocated to SP i. As a consequence, the number of requests
that an SP can process (i.e., departures) in a given time-slot is
the sum of si identical random variables Hcap

i defined above,
which is also a discrete random variable with finite support.
More formally, the probability mass function of departures of
SP i is given by the following convolution:

Departures Histogram Hsi
dep , Hcap

i ~ · · ·~Hcap
i︸ ︷︷ ︸

si times

(1)

Although our model is time-slotted, the underlying system
is in reality continuous. We represent the state of SP i as a pair
(mi(t), si(t)), indicating the number of requests in the queue
and the number of allocated servers, respectively, at instant t.
Such a state continuously evolves with t ∈ [0,+∞[, as mi(t)
can change at any moment. To discretize the formulation, we
sample the system and update the states of SPs only in the
initial instant of the time-slots. For T denoting the duration
of a time-slot, for instance T = 1 sec, the k-th time-slot is
k = [tk, tk + T [, where tk is the starting instant of the time-
slot. We associate a state to each time-slot corresponding to the
sampling of (mi(t), si(t)) at the beginning of that time-slot:

mi(k) = mi(k − th slot) , mi(tk) (2)

si(k) = si(k − th slot) , si(tk) (3)

B. System Evolution

The NO decides at each time-slot how many servers si to
allocate to each SP i. Within time-slot k = [tk, tk + T [, we
simplify the system evolution assuming the following order of
events:

1) The NO observes the current state {(mi(k), si(k))}Ni=1 =
{(mi(tk), si(tk))}Ni=1, i.e., the number of requests in the
queue and the number of allocated servers for SP i =
1, . . . , N .

2) The NO decides the number of servers (s1, . . . , sN) for
each SP, constrained to

∑N
i=1 si ≤ smax. We assume that

the number of servers changes instantaneously after tk,
i.e., si(t) = si, t ∈ [tk, tk + T [.

3) The requests that have arrived within time-slot k − 1 =
[tk−T, tk[for SP i, whose number we denote by ai(k−
1), are placed in the respective queue, up to mmax

i ; all the
exceeding requests are lost.

4) Each SP i dequeues a request from its queue whenever
one of its si servers becomes free. The number of
processed requests in time-slot k = [tk, tk+T [is denoted
by pi(k).

The number of requests in the queue of the i-th SP during
the k + 1 time-slot is (see Sec. 3 of [3]):

mi(k + 1)︸ ︷︷ ︸
mi(tk+T)

= min

mmax
i ,mi(k)︸ ︷︷ ︸

mi(tk)

+ ai(k)

− pi(k) (4)

The number of lost requests of the i-th SP during the k + 1
time-slot is:

li(k + 1) = max{0,mi(k) + ai(k)−mmax
i } (5)

Observe that the first term of the state of each SP, i.e., the
number mi(k) of requests in the queue, evolves independently
from the other SPs; the second term, the number si(k) of
allocated servers, is instead coupled to the others, which makes
the resource allocation problem challenging.

C. Markov Decision Process model

We model the entire system as an MDP, where the set of
states and actions are:

S ,

{
{(mi, si)}Ni=1|mi ≤ mmax

i , i = 1, . . . , N,

N∑
i=1

si ≤ smax

}
(6)

A ,

{
(ŝ1, . . . , ŝN)|

N∑
i=1

ŝi ≤ smax

}
(7)

We decompose the probability of transition from a state
to another for each SP in isolation. To this aim, let us first
define P(proci = x|y), the probability for SP i of processing
x requests given that y requests are found in the queue at the
instant when the server starts to pick requests from the queue:

P(proci = x|y) ,


Hsi

dep(x) if x < y∑∞
x=yH

si
dep(x) if x = y

0 otherwise
(8)

The transition probability from (mi, si) to (m′i, s
′
i), when

the NO decides to allocate ŝi servers (i.e., the action is ŝi) is
then:

Qŝi(mi, si → m′i, s
′
i) =

{
Q(mi, si → m′i, s

′
i) if s′i = ŝi

0 otherwise
(9)

where, denoting with pi the number of requests processed in
a time-slot, we define

Q(mi, si → m
′
i, s
′
i) , P

(
mi → m

′
i

∣∣∣∣∣si currently active servers and

s
′
i active servers in the next time-slot

)

=
∞∑

a=0

P(arrivalsi = a) · P
(
mi → m

′
i and

arrivalsi = a

∣∣∣∣∣si currently active servers and

s
′
i active servers in the next time-slot

)

=

mmax
i −mi∑

a=max{0,m′
i
−mi}

P(arrivalsi = a) · Pi(pi = mi + a−m′i|a+mi) (10)

+
∞∑

a=mmax
i
−mi+1

P(arrivalsi = a) · Pi(pi = m
max
i −m′i|m

max
i) (11)

The equality on the second line holds because of the formula
of total probability, considering all the possible discrete events
of having a requests arriving in the considered time-slot, for
a = max{0,m′i−mi}, . . . ,∞. To obtain the last equality, we
have to consider that, thanks to (4)

0 ≤ pi =

{
mi + a−m′i if a+mi ≤ mmax

i

mmax
i −m′i otherwise.

(12)

which also implies, by simple calculation, that a ≥ m′i −mi.
This justifies why we start the summation from max{0,m′i−
mi} instead of 0.

D. Cost

The NO aims to minimize an overall cost, which takes into
account the tradeoff between the QoS experienced by each
SP traffic and the cost for providing servers, which consists in
the energy consumption, along with the related monetary cost,
for the NO. The system cost is computed as C ,

∑N
i=1 Ci,

where Ci is the cost related to the i-th SP, calculated in each
time-slot:

Ci , cmi ·mi + csi · si + cli · E(li) + c∆+
s
·∆+

si + c∆−s ·∆
−
si

(13)

where
• cmi is the unitary cost to have a waiting request in the

queue for one time-slot;
• mi is the number of requests waiting in the queue;
• csi is the unitary cost to have a running server during one

time-slot;
• si is the number of servers allocated to the SP;
• cli is the unitary cost to have a lost request;
• E(li) is the expected value of lost requests;
• c∆+

s
, c∆−s are the costs of switching on/off one server,

respectively;
• ∆+

si ,∆
−
si is the number of servers switched on/off in the

current time-slot.
Via the cost coefficients, all terms in the cost are converted

to a monetary metric. Note that, for what concerns the lost
requests (the ones that arrive when the queue is full), we
decided not to insert them into the state, which would have
caused the state space to explode. We take them into account
directly in the cost function as an expected value. In the
numerical results we will show that this approximation does

not impede our policies to work in practice. Note also that,
while we use the expected number of losses in the MDP policy
computations, we report in the plots of the numerical results
the actual losses measured in the simulations.

E. Proposed allocation policy

As we want to take into account priorities between SPs
in the system (based on their traffic types, QoS requirements
and/or willingness to pay for the resources), we can apply
MDP to each SP “in sequence”, going from the highest to the
lowest priority SP.1 This does not guarantee us cost-optimality
for the whole system but allows us to enforce cost-optimality
within each SP, along with the scalability advantage, since the
state and action space of each MDP i (corresponding to single
SP i) is much smaller than the one corresponding to the entire
system at once (Sec. II-C). Note that in case of shortage of
resources, SPs with lower priority will unavoidably be the ones
suffering from degraded performance, or even get blocked.

The policy we propose is based on the observations above.
We call it ConservativeMDP. It combines multiple MDPs, one
per SP, as follows. The SPs are divided into two groups: (i) a
group with statically allocated servers and (ii) a group with
dynamically allocated. This distinction corresponds to serving
SPs with high QoS requirements (static group) versus SPs with
lower QoS requirements (dynamic group); the second group
allows more energy saving.

Assume that the SPs are ordered from highest to lowest
priority. The sub-policy related to the static group is obtained
by (i) calculating the optimal MDP policy for SP 1, (ii) taking
the maximum number of servers smax

1 used in such a policy,
(iii) statically fixing the number of servers of SP 1 as s1 =
smax

1 , (iv) calculating another MDP policy for SP 2 considering
that now the available servers in the system are smax’ = smax−
smax

1 and statically fixing the number of servers in SP 2 as
s2 = smax

2 . We proceed similarly for the other SPs, in the
order of priority.

The sub-policy related to the dynamic group is obtained by
(i) calculating the optimal MDP policy for SP 1, (ii) reserving
the maximum number of servers smax

1 dictated by such MDP
to SP 1 even if these are not always used all, (iii) calculating
the optimal MDP policy for SP 2, considering that the only
servers available are now smax’ = smax − smax

1 . We proceed in
the same manner for the other SPs, in the order of priority.

III. NUMERICAL RESULTS

In order to evaluate the performance of the proposed policy,
we developed a Python simulator. We used MDPToolbox [4]
to calculate the MDPs. The code used to obtain the following
results is available as open-source [2].

We assume 1-second slot duration. The plots in this work
represent the average of 40 simulations each with 10K time-
slots, corresponding to 2.8 hours. Using cost parameters in-
spired by reality (table I).

1Note that in case multiple SPs have the same priority and requirements,
we could consider them as a single SP, in terms of policy application.

TABLE I
REFERENCE VALUES FROM [3] (SEC. 1.1)

Server cost 300$ per year
Waiting request cost 6.2 ∗ 10−6$

Lost request cost 6.2 ∗ 10−6$

TABLE II
REQUIREMENTS

Services
Requirements SP1: High Priority SP2: Low Priority

Latency < 60 ms [5] 5 sec [6]
Loss probability < 0.1% [5] “1 percent” [7]

We compare our ConservativeMDP policy with a Baseline
consisting in a static policy that equally divides all available
servers among SPs, without using any MDP.

We consider a NO infrastructure with two SPs. We assume
SPs 1 and 2 deploy services of different types: SP 1 has strin-
gent time and reliability constraints (small response time and
low probability of unserved/lost requests), as in Table II, while
SP 2 has less stringent delay constraint and loss probability.

We may assume that in such a case SP 1 has a more
expensive contract, which is equivalent to saying that every
request correctly processed in SP 1 represents a higher revenue
for the NO and that a failure to process SP 1 requests induces
a higher cost for the NO than the failure to serve requests of
SP 2. We model this situation by giving greater weight to the
cost coefficients of SP 1, as shown in Table III.

We considered several scenarios with different arrival his-
tograms but for reasons of space we only show results with
arrivals histogram generated from a Gaussian window with
σ = 2. The performance trends shown next remain the
same for the other arrival histograms. Table IV shows all the
parameters considered for the simulation. Note that we set a
small queue size for SP1, as a longer queue would be useless,
since requests being in the tail would not meet the stringent
latency constraint.

Fig. 1. Performance comparison between ConservativeMDP and Baseline

TABLE III
COST COEFFICIENTS

Cost Coefficients ($) SPs
Description Symbol S1: High Priority S2: Low Priority
Waiting request cmi , i = 1, 2 3.1e-5 6.2e-6
Running server csi , i = 1, 2 9.64e-6 9.64e-6
Lost request cli, i = 1, 2 3.1e-5 6.2e-6
Server switch on c

∆
+
s

9.64e-6 9.64e-6

Server switch off c
∆
−
s

1.0e-8 1.0e-8

TABLE IV
SIMULATION PARAMETERS

Harr
1 Gaussian window, σ = 2, support from 0 to 16

Hcap
1 [0, 0, 0.5, 0.5]

Queue size of SP 1 mmax
1 16

Harr
2 Gaussian window, σ = 2, support from 0 to 20

Hcap
2 [0, 0.5, 0.5]

Queue size of SP 2 mmax
2 100

Fig. 2. Average server utilization per time slot of the overall system

In Fig. 1 we represent the (i) requests processed in time,
(ii) the ones whose processing finished after the deadline of
Table II (too late) and (iii) the requests lost, as the relative
queue was already full. It is clear that ConservativeMDP meets
the requirements, even with scarce resources, e.g., 14 available
servers. At the same time, it keeps the energy cost and server
utilization low (Fig. 2), by opportunistically turning off the
servers for the low priority SP, when they are not strictly
needed.

IV. CONCLUSION

We considered in this paper dynamic allocation of virtual-
ized computational resources, owned by a Network Operator
(NO) at the edge. The NO needs to allocate such resources
to several 3rd party Service Providers (SPs) each with differ-
ent QoS requirements. We devised an MDP-based allocation
policy that minimizes system costs, including energy con-
sumption, while meeting SP QoS requirements. Our policy
implements priorities between different SPs and is solved in
a computationally efficient manner.

V. ACKNOWLEDGEMENT

This work was partially funded by Beyond5G, a project of
the French Government’s recovery plan “France Relance” and
carried out in the Plateforme Très Haut Débit (THD), a Fiber-
To-The-Home platform of Télécom SudParis.

REFERENCES

[1] Araldo, A., Di Stefano, A., and Di Stefano, A. (2020). Resource
Allocation for Edge Computing with Multiple Tenant Configurations.
ACM/SIGAPP Symposium On Applied Computing.

[2] A. Spallina, Multi-Tenant Resource Allocation with MDP: GitHub
Repository, https://github.com/AlessandroSpallina/resource-allocation-
mdp, 2021

[3] M. Bayati, Power Management Policy for Heterogeneous Data Center
Based on Histogram and Discrete-Time MDP, Electron. Notes Theor.
Comput. Sci. 337 (2018) 5-22.

[4] I. Chadès, G. Chapron, M-J. Cros, F. Garcia, R. Sabbadin, MDPtoolbox:
a multi-platform toolbox to solve stochastic dynamic programming
problems – Ecography 37: 916–920 (ver. 0), 2014.

[5] K. Antonakoglou et al., On the Needs and Requirements Arising from
Connected and Automated Driving, Journal of Sensor and Actuator
Networks 9.2 (2020): 24.

[6] Sun, L., Zong, T., Wang, S., Liu, Y., and Wang, Y. (2021). Towards
Optimal Low-Latency Live Video Streaming. IEEE/ACM Transactions
on Networking.

[7] J. Wu, B. Cheng, C. Yuen, Y. Shang and J. Chen, Distortion-Aware
Concurrent Multipath Transfer for Mobile Video Streaming in Hetero-
geneous Wireless Networks, IEEE Transactions on Mobile Computing,
vol. 14, no. 4, pp. 688-701, 1 April 2015.

	Introduction
	System Model
	Queuing model of Service Providers
	System Evolution
	Markov Decision Process model
	Cost
	Proposed allocation policy

	Numerical Results
	Conclusion
	Acknowledgement
	References

