Baptiste Bauvin

Sokol Koço

Dominique Benielli

Cecile Capponi

François Laviolette

Multi-view Artificial Generation Engine: MAGE -Controlled data generator for multi-view learning

Keywords: Multi-View, Classification, Generation, Probabilistic, Supervised

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

With a growing capacity to acquire different types of data, models that can integrate several views are increasingly interesting. However, developing new multiview algorithms is a highly complex process which is made more difficult by the lack of clean data to test and develop them. Indeed, the inherent noise and uncertainty of real world multi-view datasets greatly slows the development process. Thus, there is a need for a synthetic multi-view data generator to develop new algorithms in a controlled environment.

To build such a generator, one has to integrate key concepts of multi-view learning such as view redundancy, agreement, mutual error and complementarity.

This latter concept has been a central piece in supervised multi-view learning, as it is one of the main advantages to increase the performance compared to the usual mono-view approaches. It was first introduced to improve mono-view ensemble methods by building diverse set of sub-classifiers [START_REF] Kuncheva | Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy[END_REF]. Early multi-view works introduced algorithms that relied both on ensemble methods and view complementarity such as 2-Boost [START_REF] Janodet | Boosting Classifiers built from Different Subsets of Features[END_REF], and ensemblebased multi-view algorithms that considered both disagreement among the views and individual quality [GMGA19, GKS + 20], while later contributions specialized in imbalanced problems [START_REF] Capponi | Learning from Imbalanced Datasets with Cross-View Cooperation-Based Ensemble Methods[END_REF]. Alternative methods used multiple kernels and more high-level interactions to include view complementarity and interactions [HKC18, KAC + 13, KBL + 09, CZLY16].

On the other hand, other approaches made the hypothesis that multi-view learning can profit from view that are redundant, specifically in the semi-supervised setting such as co-training [START_REF] Blum | Combining labeled and unlabeled data with co-training[END_REF], where this notion is called consensus [START_REF] Nguyen | Multiview learning for understanding functional multiomics[END_REF], but also several algorithms relying on matrix factorization [WWLG18, ZZZ + 17]. Based on these precursors, this paper focuses on multiview synthetic data generation, in order to facilitate multi-view algorithms development, study and comparison on controlled datasets.

We first focus on building a formal framework to unify the different concepts that are central to supervised multi-view classification tasks, when the number of views is greater than two. Indeed, a lot of different definitions of complementarity among multiple views have been given in multiple papers [START_REF] Baltrušaitis | Multimodal machine learning: A survey and taxonomy[END_REF], therefore, we introduce one that covers the majority of multi-view problems, alongside redundancy and mutual error. Then, we focus on exploiting this formal framework to build a multi-view generator that allows control on all the degrees of freedom, such as the error of each view on each class, the complementarity among the views and the degree of complementarity of the samples.

Finally, we show empirically that the random generator behaves as advertised and that in can be used to pinpoint an algorithms' strengths and weaknesses 2 A multi-view approach to supervised learning

In this section, we introduce the basic definitions and concepts of multi-view learning in a classification context. As an introductory example, let us consider the task of classifying different species of birds, and that the descriptions we have access to are images, sound of several individuals, and textual description of the place where these information were acquired. Naturally, each description represents a different view on the data. In order to understand each view, one has to choose the right model to extract as much information as possible from each data type, and then combine them to build a model that takes into account the strengths and weaknesses of the views. Thus, to differentiate two bird species that are endemic to the same area but look and sound different, the textual view will be confusing, while the other two should be useful.

Defining a multi-view dataset

In this work, we focus on the supervised classification framework, in which the dataset S is made of samples xi and their associated labels y i , such as S = {(x i , y i) m i=1 |x i ∈ X and y i ∈ Y}. In our case, the labels are positive integers, as we work with multiclass datasets y i ∈ {1, . . . , k, . . . , K} so, as each sample xi has only one label, the dataset can be partitioned according to the labels

{S k = {(x i , y i) ∈ S|y i = k}} K k=1 with K k=1 S k = S and K k=1 S k = ∅.
We consider that each sample xi has been observed thanks to V ≥ 2 different methods (projections, sensors) and that therefore, we have V observation views of xi , xi = {x) . All these views have their own dimension d (1) , . . . , d (v) , . . . , d (V) , and furthermore, we will consider that each feature describing x

(1) i , . . . , x (v) i , . . . , x (V) i } with x (v) i ∈ X (v) and X = X (1) × • • • × X (V
(v) i has a scalar value x (v) i = {x (v) i,1 , . . . , x (v) i,j , . . . , x (v) i,d (v) } ∈ R d (v) . The concatenation of all the descriptions of a sample xi is of dimension D = V v=1 d (v) .
Let us now introduce the definition of the risk, that is central to our work. Definition 2.1 (Risks) Given a dataset S, drawn i.i.d. according to a distribution D over a set (X , Y), and a classifier C, the theoretical risk R * of the classifier is defined as

R * D (C) = P (x,y)∼D [C (x) = y] ,
while the empirical risk R is defined as

R S (C) = P (x,y)∈S [C (x) = y] .
Intuitively, the theoretical risk is the risk of the classifier on the underlying distribution D that rules the dataset S, while the empirical risk is the risk of the classifier on the available data S. Minimizing only the empirical risk leads to overfitting, but usually the underlying distribution D is unknown, so the most effective approach is to minimize a loss on S that helps to build a classifier that will have a low theoretical risk. However, as this paper's subject is data generation, it is one of the only cases where D is known.

Finally, we define the notion of Bayes classifier, as introduced in [START_REF] Mitchell | Machine Learning[END_REF] that is central to our formal setting. Even if they share the same name, the Bayes classifier that we use here is not the Bayes classifier that is used in ensemble methods and PAC-Bayesian theory.

Definition 2.2 (Bayes classifier [START_REF] Mitchell | Machine Learning[END_REF]) The Bayes classifier B on a dataset with an underlying distribution D over (X , Y) is the optimal classifier that minimizes the probability of mis-classification.

B(x) = arg max ŷ∈Y P (x,y)∼D [ŷ = y|x].
As we work with multi-view data, we suppose that the views do not carry all the information about the task, therefore their underlying distributions D (1) , . . . , D (v) , . . . , D (V) are different from D, and from each other. Based on this assumption, we define: Definition 2.3 (View Bayes classifier) The Bayes classifier B (v) on a view v with an underlying distribution D (v) over correlations (X (v) , Y) is defined by (v) ,y)∼D (v) [ŷ = y|x (v)]. Consequently, the Bayes classifier on a view B (v) is the classifier that has the lowest risk R * (v) on the view v. Intuitively, it is the best possible classifier for this view. Finding the Bayes classifier for a specific problem is a difficult task when D (v) is unknown. In the following sections, some of the most popular supervised approaches for multi-view learning are explored.

B (v) (x (v)) = arg max ŷ∈Y P (x
X (1) X (2) X (3) X (4) X B ŷ (a) Early fusion X (1) X (2) X (3) X (4) B (1) B (2) B (3) B (4) V ŷ (b) Naive late fusion

Solving a multi-view problem

With mono-view approaches Even with a multiview dataset, it is still possible to use basic mono-view algorithms to try to solve the problem. This is done by finding the best mono-view classifier for each view, and choosing the best of them to classify the dataset : v) . This method is easy to use as it reuses the knowledge about mono-view classification as is, without any more investment. Moreover, it can be very computationally interesting as it only requires to analyze one view at a time, possibly even in parallel. However, it is a very high level approach as it considers that one view has enough information to solve the problem, which is not always the case in multi-view datasets.

B mono = arg min v=1..V R * (v) B (
With early fusion The first step towards purely multi-view approaches is by fusing the views [START_REF] Khaleghi | Multisensor data fusion: A review of the state-of-the-art[END_REF][START_REF] Snoek | Early versus late fusion in semantic video analysis[END_REF]. Here, we present the early fusion method that consists in concatenating all the views to create a new set X ⊂ R D that allows learning on xi =

x (1) i,1 , . . . , x (1) i,d (1) , . . . , x (V) i,1 , . . . , x (V) i,d (V) ∈ R D ,
so in this case, the best model is B the Bayes classifier on X . The process is schematized in Figure 1 a); note that some data processing may be performed before and/or after the fusion. Empirically, it is possible to use well studied conventional mono-view algorithms on X , so they have access to all the available information about the samples at the same time. However, this new dataset can be of very high dimension if each view is already large and/or there are several views. Finally, this method does not allow to learn on heterogeneous data types, and even if we supposed here that all the views are real valued, this can lead to learning difficulties; for example, when the dimensions of some views are much higher than dimensions of some others, these latter might get negligible. Finally, regularity patterns in the data might be different from one view to another, so searching for regularities in the fused space may be hard.

With naive late fusion

It is also possible to use the late fusion approach [SWS05] that learns one monoview classifier B (v) for each view then fuses their decisions in a naive majority vote V to output a multi-view

classification vote V = V V v=1 (B (v)
) with V being the majority voting operator. The process is schematized in Figure 1 b) where we do not consider possible data preprocessing. Empirically, the late fusion method has inverse advantages to the early fusion as it allows to process each view at a time to reduce dimensionality and focus on each view regularities, but is neither able to profit from the interactions among the features of every view nor even able to tackle a problem that requires to take view complementarity into account.

Innate multi-view algorithms

The three methods that we introduced are based on mono-view learning, and might not be sufficient to tackle problems that require a larger amount of interactions among the views. One of the approaches that does include interactions is Mumbo [START_REF] Koço | A boosting approach to multiview classification with cooperation[END_REF], a boosting-based algorithm which assumes that views are complementary, and that each sample of the dataset is well described in at least one view. The principle of Mumbo is to let only the relevant views decide on a specific sample thanks to a cost tensor that generalizes the cost matrix of multi-class mono-view boosting.

Another hypothesis is that some samples can only be classified when considering multiple view interactions. This is the idea behind Multiview Machines [START_REF] Cao | Multi-view machines[END_REF] that computes an interaction tensor with multiple order of views interactions and learns on a factorization of this tensor.

Both these hypotheses are relevant for specific fields of machine learning: Mumbo might be relevant to learn on datasets where views disagree on the samples, while Multiview Machines might intuitively be relevant for multi-omics learning, where the biological processes described by the data depend on all the views, so one view would not be sufficient to explain the full process for one sample.

Generating random multiview datasets

This generator results from the need of being able to test the properties of supervised multi-view algorithms on controlled datasets during their development process. Indeed, in the mono-view setting a lot of tools are available to test algorithms in controlled environments, such as scikit-learn's [PVG + 11] make classification generator, based on the Madelon dataset generator [START_REF] Guyon | Design of experiments for the nips 2003 variable selection benchmark[END_REF]. However, to the best of our knowledge, there is no multi-view benchmark that is widely used and on which one could test their approaches.

Moreover, nowadays, when developing a new approach, it is mandatory to understand its best use-case in order to determine its strengths and weaknesses. For example, even if Adaboost is a powerful algorithm, it has been showed that it is crippled by even mildly noisy data [START_REF] Long | Random classification noise defeats all convex potential boosters[END_REF]. Similarly, the Set Covering Machine, even if it is very sparse model outperformed on usual datasets, has proven to perform well on very fat data [DGD + 16].

Controlling the views errors

A core concept of the generator is the necessity of being able to control the relevance of each view in the dataset, and more finely, controlling the relevance of each view with regard to each class of the dataset.

In the multi-view setting, the confusion matrix is replaced by a confusion tensor C, whose entries are given by:

C (v) k,l = x (v) i ,yi ∈S k 1 B (v) x (v) i = l |S k | ,
where B (v) is the Bayes classifier of view v. To reduce this to a 2D matrix, let us note

e (v) k = 1 -C (v) k,k = l =k C (v) k,l ,
as the Bayes classifier error on samples of class k, for view v, or more broadly, e v) .

(v) k = E S k R (v) B (
The e

(v)
k matrix is a relevant input for the generator as it allows to customize the error of each view on each class. In order to generate random data while controlling the error and building a model that represents many real-life scenarios, we use Gaussian distributions to build views on which the Bayes classifier is known. Figure 2 shows a view on which the Bayes classifier is a decision tree of depth 2. In this view, by controlling the standard deviation of the Gaussian distributions along each axis, we are able to generate a dataset with the necessary error.

Indeed, an interesting property of the Gaussian distributions is that it is possible to evaluate the probability to have a sample at distance d of the distribution center, depending on the standard deviation.

By using this property, we are able to build a distribution for each view and each class that would approximately output the necessary error:

σ k = d (v) erf inv 2 n 1 -e (v) k -1 . (1)
Thanks to Equation 1, we can compute the variance of the Gaussian distributions σ k to fit the error e (v) k and distance d (v) . The full proof of this result is given in Appendix B, and the empirical validity in Section 4.1.

Allowing view complementarity

One of the most recurrent problem with simple tasks such as generated ones is that the naive early and late fusion approaches often work as well or even a little better than more complex multi-view algorithms. In order to build a more complex problem, the generator must include the ability to use view interactions.

In the following, we call "mis-described" a sample in a view if the Bayes classifier of this view is unable to classify it well, and inversely for the "well-described" samples. As the Bayes classifier is considered the optimal classifier on the view, we suppose that if it is not able to classify well a specific sample, it means that the description on this view for this sample is not relevant enough. To analyse the interactions among the views, we need to define three concepts. Definition 3.2 (Mis-described sample) A sample x (v) i is considered mis-described in the view v if the Bayes classifier of this view B (v) is not able to classify it well B (v) x (v) i = y i Definition 3.3 (Complementarity) The complementarity in a multi-view dataset is given by the Bayes classifiers for each view:

C S = P (x,y)∈S ∃v, v ∈ {1, ., V } |B (v) (x (v)) = y; B (v) (x (v)) = y
And for a sample (x i , y i) its degree of complementarity is given by

D C i = V v=1 1 B (v) x (v) i = y i V
Intuitively, the complementarity of a multi-view dataset is the probability that there exists a view in which a sample is mis-described and another one in which it is well described, but the main notion that we will use is the complementarity level, which is the ratio of views that do not describe well a specific sample. Definition 3.4 (Mutual error) The mutual error in a multi-view dataset is given by the Bayes classifiers for each view :

M S = P (x,y)∈S ∀v ∈ {1, . . . , V } |B (v) (x) = y
The mutual error samples have a complementarity level of 1, they are mis-described in every view.

Definition 3.5 (Redundancy) The redundancy error in a multi-view dataset is given by the Bayes classifiers for each view :

R S = P (x,y)∈S ∀v ∈ {1, . . . , V } |B (v) (x) = y
The redundant samples have a complementarity level of 0. They are well described in all the views. With these notions, it is possible to build a dataset that includes the need to take complementarity into account as some description confuse the multi-view classifier.

Generating custom-tailored views

Finally one of the most central characteristics of multiview datasets is that each view has its own data type and regularities, that is understandable (learnable) with specific models. For example, in the very dynamic field of neural network, it has been empirically established that CNN [LBD + 90] is the best approach for image recognition, and that RNN [START_REF] Hochreiter | Lstm can solve hard long time lag problems[END_REF] is the best one for natural language processing. So a multi-view dataset with images and their textual descriptions will be best understood by an approach that include both the methods. Thus, for the generator to replicate real life multiview situations, its views information must have specific models that are relevant on them. To build such a dataset, we propose to use two different generators that output views for which the usual hypothesis spaces are far from each other.

The first generator model is the same as previously, a 2-D Gaussian-based ellipses generator to which noise is added. Learning a classifier on such a view is easy with a decision tree. The second type is a concentric hyper-spheres generator that is typically learnable with any RBF kernel-based approach. The main advantage of this type of problem is that usual decision trees have much lower performance on it. Moreover, as the RBF kernel is sensitive to noise, so it will not be able to decrypt the noisy decision-tree problem.

Figure 4 pictures a multi-view dataset with both types of sub-problems. In Section 4.3 , we empirically show that the information in each type of view is not learnable by the Bayes classifier of the other one.

Implementation

MAGE has been developed in Python3 using continuous integration in Gitlab1 to ensure its stability and to be as user friendly as possible, we provide several tutorials and use-cases in the form of Jupyter notebooks2 . This technical framework allows for community development, to improve the generator in the most needed directions. Indeed, in this paper, we present only two different view generation processes. However, the modular nature of the generator allows collaborative development to easily add new types of specific views. In Appendices C and D, we introduce some technical details about the implementation and a first use case.

In addition, the generator is configured thanks to an easily shareable yaml file that, in particular sets the seed controlling the whole random number, to allow reproducibility. In this paper, we mainly present datasets including a maximum of four views and classes, but the generator allows any given number of views and classes. However, configuring the error matrix for datasets with a high number of views and classes can be cumbersome.

Empirical analysis

In order to be usable, the framework introduced in this paper must be empirically relevant. In this study, we show that that empirical error matrix is close to the input one, then we highlight the complementarity among the views to finally present a benchmark on a generated dataset pinpointing the advantage of a multi-view algorithm.

An accurate generated error

In this section, we show that the output dataset is close to the input matrix in terms of error.

For this experiment, we draw a random input error matrix with error values in range [0.1, 0.4] for a dataset with 4 views and 4 classes, each view described by 2 features and using the basic Gaussian generation process (an example with 2 classes and the RBF-compatible generator is given in Appendix A).

In order to show relevant results, we generated 20 datasets with different seeds, and computed the mean output matrices. The Bayes classifier matrix computes what the optimal classifier outputs when given this dataset, and the output matrix gives the error of a real classifier on the generated data, here a decision tree of depth 2. We can see in Figure 5 that the difference between the input matrix and the Bayes classifier matrix is very small : the maximum difference is 0.03 for class 3, view 4. And the maximum difference between the input and the output is 0.06 for class 3 view 2. This means that the process seems to reliably generate views with pre-defined errors.

Truly complementary views

In order to add the necessity for the learning algorithm of using view interaction to process the dataset, the generator assigns some samples as complementary. It is also possible to generate redundant samples, and mutual error ones.

To highlight this, we use SuMMIT's [START_REF] Baptiste Bauvin | Integrating and reporting full multiview supervised learning experiments using summit[END_REF] visualization tool that outputs a matrix showing the result of each classifier on each sample. For the experiment, we run a mono-view decision tree on each view, a late fusion classifier that outputs the vote of all the decision trees, and an early fusion fitted on the concatenation of all the views. The dataset is comprised of 80 samples, described by 4 views, and generated according to a random error matrix which values are drawn in range [0.15, 0.20] As reported on Figure 6, this experiment shows that the user-specified complementarity is respected by the generator with some random-related errors, and that the early fusion classifier is confused by even a lowlevel of complementarity, while the late fusion one can tackle the problem, even if, naturally, it fails if the level of complementarity is superior to 50%. Indeed, in Figure 6, the all-white line of LateF shows how well the late fusion behaves.

Controlling the artificial data

In this experiment, we show an example of a dataset that highlights the superiority of a dedicated approach for multi-view learning. The goal is to show that, by tuning the generator for coercing some inter-view properties, it is possible to build a controlled dataset illustrating a situation in which a multi-view algorithm, here Mumbo, outperforms basic approaches.

We generate a multi-view dataset that confused mono-view approaches, alongside early and late fusion. Table 1: Train and test accuracy for several approaches on a generated multi-view dataset. Each mono-view model is fitted on each of the 4 views. The scores were obtained learning on 80% of the dataset and testing on 20%. To avoid any lucky split, we repeated the process 5 times, to output the mean and std of the 5 iterations.

To do so, we generated 4 views with complementarity; two are generated with the Gaussian ellipses (V1, V4), and two with the concentric circles (V2, V3). Table 4.3 shows that the SVM with an RBF kernel has very low test error (0.3) on V2 and V3 (that were designed to be easily learnable by an RBF-based approach), but overfits a lot (0.0 error on train, 0.63 on test) on the ellipses views as they are comprised of only 2 relevant features for 50 noisy features, which confuse the RBF-based approaches.

Inversely, the decision tree is able to process the information on V1 and V4 but not on the other two, as it is hard for it to reproduce the concentric hyper-sphere distributions with linear decision functions.

Concerning the early fusion, two architectures are used: one with a decision tree learnt on the concatenation of views and one with a SVM-RBF on the same concatenation. It has a lower error rate than the purely mono-view approaches, but as we required some complementarity in the dataset, and as a unique algorithm cannot read all the information, some samples cannot be well classified and each algorithm over-fits.

The late fusion algorithm was configured with a decision tree on V1 and V4 and an SVM-RBF on the other two. So all the information is understood, however, as the complementarity level here is higher than 50%, it is not possible for the late fusion to classify correctly all the dataset, but it does not overfit.

Finally, as introduced in Section 2.1.1, Mumbo is a boosting algorithm for the multi-view setting, and it is supposed to perform well on tasks where there is a lot of complementarity among views. It is here the best approach of the ones that we showed, and it barely overfits as it has been configured with a decision stumps as weak classifiers for V1 and V4 and SVM-RBFs for the other two.

Conclusion

In this work, we established a well-founded framework for multi-view datasets, defining complementarity among the views as well as redundancy and mutual error. Based on these definitions, we built a random-based multi-view generator, MAGE, that allows to forge fully customizable datasets.

MAGE relies on Gaussian distributions properties to control the confusion matrix allowing view quality management. In addition, it includes the possibility to add complementarity among the views. Finally, to highlight even more advantages of multi-view learning, we added multiple types of view in the same dataset, mimicking real world situations where views are not compatible.

To improve the generator, it would be interesting to be able to customize the quality of the description of a sample, while still being easily understandable and not too complex for a user to configure. Moreover, another addition would be to add view interaction in the form of conjunctions, but it first need a convincing theoretical work to control them.

B Theoretical reasoning on the Gaussian distribution

The probability that a random variable Z drawn according to a Gaussian distribution of standard deviation σ centered in 0 is superior to d is given by

P r[Z ≤ d] = 1 2 + 1 2 erf (d √ 2σ
).

As we do not use any covariance, each direction's probability is independent, moreover, we suppose ∀j ∈ [0, d (v)]σ k,j = σ k . So, in our dataset, for a sample x i , in a view v, P r x

(v) i,1 ≤ d ∧ • • • ∧ x (v) i,j ≤ d ∧ • • • ∧ x (v) i,d (v) ≤ d = d (v) j=1 P r[X j ≤ d] - d (v) j=1 P r[X j > d] = 1 2 + 1 2 erf (d √ 2σ k) n - 1 2 - 1 2 erf (d √ 2σ k) n . So 1 -e (v) k = 1 2 + 1 2 erf (d √ 2σ k,j) n - 1 2 -1 2 erf (d √ 2σ k,j
) n . In our case, to simplify the solution, we consider that the variance is the same in every direction, and

that 1 2 -1 2 erf (d √ 2σ k) n is negligible compared to 1 2 + 1 2 erf (d √ 2σ k) n as ∀x, erf (x) < 1. So : 1 -e (v) k = 1 2 + 1 2 erf d (v) √ 2σ k n =⇒ n 1 -e (v) k = 1 2 + 1 2 erf d (v) √ 2σ k =⇒ 2 n 1 -e (v) k -1 = erf d (v) √ 2σ k =⇒ erf inv 2 n 1 -e (v) k -1 = d (v) √ 2σ k .
C Implementation details MAGE as been implemented as a modular Python package. In this appendix, we will present some of the technical aspects of the data generation, and some implementation aspects that are useful for improving the package. Disclaimer : This appendix is an overview of the code in the state it is on the 28th of May 2021, it might not be relevant for later versions of MAGE.

C.1 Data generation in the code

In MAGE, the generation of each view is done thanks to a class for each type of data generation. The classes all inherit from the base class BaseSubProblem. Each class must provide a

• gen data method used to generate a view,

• get bayes classifier that returns and instance of sklearn's BaseEstimator representing the Bayes classifier (see Definition 2.2) for this type of problem.

• gen report that returns a string describing the view's properties, that is used in the report generation for the whole multi-view dataset.

In this paper, we present a view generator based on the decision tree algorithm. In the code, it is implemented in the StumpsGenerator class that builds a set of Gaussian ellipses.

C.1.1 Generating the ellipses

To generate the dataset, it first builds a unit hypercube with the number of dimensions specified by the user. vertices = np . array ([np . array ([coord for coord in coords]) for coords in itertools . product (* zip ([-1 for _ in range (self . n _ r e l e v a n t _ f e a t u r e s)] ,

[1 for _ in range (self . n _ r e l e v a n t _ f e a t u r e s)]))])

For example, in a four class problem, such as the one presented in Figure 2, two dimensions are sufficient. Then, if the number of vertices of this structure is greater than the number of classes, it randomly selects the right amount of vertices for the problem. Finally, the data is generated and the well-and misdescribed samples are stored for the complementarity distribution.

C.1.2 Generating the concentric hyperspheres

The process to generate the concentric hyper-spheres is similar to the one for the ellipses. The main difference is that it does not need to build an hyper-cube. Indeed, the centres of the Gaussian distributions are distributed along a single dimension, spaced with the class sep argument. Thus, the trick used in this code is to generate the dataset using the polar coordinate, so with a Gaussian radius and n relevant features -1 uniformly random angles and to convert it in Cartesian coordinates.

C.2 Assigning complementarity

Once the view are all generated, MAGE assigns the complementarity, redundancy, and mutual error based on the stored mis-described and well-described samples for each view. Therefor, a complementary multiview sample is comprised of well-and mis-described data points in different views. Thus, MAGE randomly selects views that will provide a mis-description and others that provide the right description for a complementary sample.

Concerning the mutual error and redundancy, the assignation is made easier as they only rely on welldescribed or misdescribed views. The figure shows us the dataset with a 3D-subplot for each view. It is possible to remove the samples of a specific class by clicking on a label in the legend.

D.2.4 Getting the outputted error matrix

In order to measure the outputted error matrix, as the views have been generated with make classification, the DecisionTree is a good approximation of the Bayes classifier.

In order to estimate the test error in the dataset for each class with a Decision Tree, we use a StratifiedKFold : Then, we get a Decision Tree of depth 3 (as each view has 3 features), and fit it on each view, for each fold. The ouptuted score is the cross-validation score on the 5 folds.

[12]: from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix dt = DecisionTreeClassifier(max_depth=3) confusion_mat = np.zeros((n_folds, n_views, n_classes, n_classes)) n_sample_per_class = np.zeros((n_views, n_classes, n_folds))

For each view for view_index in range(n_views):

Figure 1 :

 1 Figure 1: Basic multi-view methods

Figure 2 :

 2 Figure 2: A view v built with overlapping Gaussian distributions. B (v) is the decision tree represented by the black decision limits. The hatched zones being the error of the Bayes classifier on class 4 : e (v) 4

Figure 3 :

 3 Figure3: Example of a complementary, redundant and mutual error sample. The redundant sample xr is well described in all the views, while the complementary one xc is well described in two and mis-described in one and the mutual error sample xm is mis-described in all of them.

Figure 4

 4 Figure 4: 4 class, 4 view dataset with views 1 and 4 being understandable by a decision tree, and views 2 and 3 by an RBF-based algorithm.

Figure 5 :

 5 Figure 5: Comparing the error matrices at different steps of the generation.

Figure 6 :

 6 Figure 6: The matrices of the output of the classifiers. The rows are the classifiers, and the columns the samples. A black square means the sample is mis-classified, and a white one that is has been well-classified.SVM-RBF DecisionTree EF+DT EF+SVM LF Mumbo V1-DT V2-RBF V3-RBF V4-DT V1-DT V2-RBF V3-RBF V4-DT Train 0.0±0.0 0.29±0.01 0.27±0.0 0.0±0.0 0.21±0.01 0.6±0.03 0.6±0.0 0.27±0.01 0.03±0.01 0.0±0.0 0.13±0.01 0.12±0.0 Test 0.63±0.02 0.3±0.02 0.3±0.02 0.68±0.02 0.23±0.04 0.63±0.02 0.64±0.03 0.31±0.04 0.25±0.03 0.63±0.03 0.17±0.03 0.14±0.04

Figure 7 :

 7 Figure 7: Comparing the error matrices at different steps of the generation for the concentric circle generative model, with two classes.

 s e l e c t e d _ v e r t i c e s = self . rs . choice (np . arange (len (vertices)) , self . n_classes , replace = False) Then, the vertices are scaled with the parameter class sep that represents half the distance between the centers d (v) presented in Equation B. self . s e l e c t e d _ v e r t i c e s = vertices [selected_vertices , :] * class_sep Then, using this equation's result, the standard deviation of the distributions are computed, based on the errors and distances specified by the user. scale = (class_sep / math . sqrt (2)) * (1 / (erfinv (2 * (1 -error) ** (1 / self . n _ r e l e v a n t _ f e a t u r e s) -1)))

[

 11]: from sklearn.model_selection import StratifiedKFold n_folds = 5 folds_generator = StratifiedKFold(n_folds, random_state=random_state, shuffle=True) # Splitting the array containing the indices of the samples folds = folds_generator.split(np.arange(generator.y.shape[0]), generator.y) # Getting the list of each the sample indices in each fold. folds = [[list(train), list(test)] for train, test in folds]

 x=generator.view_data[view_index][concerned_examples, 0], y=generator.view_data[view_index][concerned_examples, 1], z=generator.view_data[view_index][concerned_examples, 2], text=[generator.example_ids[ind] for ind in concerned_examples],

	hoverinfo='text',
	legendgroup="Class {}".format(lab_index),
	mode='markers', marker=dict(size=1,
	color=DEFAULT_PLOTLY_COLORS[lab_index],
	opacity=0.8),
	name="Class {}".format(lab_index),
	showlegend=show_legend),
	row=row, col=col)
	show_legend = False
	col += 1
	if col == 3:
	col = 1
	row += 1
	fig.show()

https://gitlab.lis-lab.fr/dev/multiview_generator

https://dev.pages.lis-lab.fr/multiview_generator

Acknowledgements

We thank Riikka Huusari for her stimulating help and the anonymous reviewers for their relevant and helpful comments. This work is supported by National Science and Engineering Research Council of Canada (NSERC) Discovery grant 262067, and granted by Lives Project (ANR-15-CE23-0026).

D.1.1 Basic configuration

Let us suppose that you want to build a multiview dataset with 4 views and three classes :

[2]: name = "demo" n_views = 4 n_classes = 3

In order to configure the dataset, you have to provide the error matrix that gives the expected error of the Byaes classifier for Class i on View j as the value in row i column j : -----+-----+------+------ -----+-----+------+------+ Once this has been defined, you can set all the other parameters of the dataset : * the number of samples, * the number of features of each view, * the proportion of samples in each class.

[Here, we see that the output shape is 999 instead of 1000 as the classes are supposed to be equivalent.

D.1.3 Get a description of it

Now, if you wish to get information about the generated dataset, run :

[6]: description = generator.gen_report(save=False)

This will generate a markdown report on the dataset. Here, we used save=False so the description is not saved in a file.

To print it in this notebook, we use :

[7]: from IPython.display import display,Markdown display(Markdown(description))

D.2 Generated dataset description

The dataset named demo has been generated by MAGE and is comprised of This will save the description in the current directory, in a file called demo.md as the name of the dataset is "demo".

D.2.2 Save it in an HDF5 file

Moreover, it is possible to save tha dataset in an HDF5 file, compatible with SuMMIT with

[9]: generator.to_hdf5_mc(saving_path='supplementary_material')

D.2.3 Visualizing the dataset with plotly

Here, we purposely used ony 3 featrues per view, so the generated dataset is easily plottable in 3D.

Let us plot each view :

[10]: from plotly.