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Abstract One of the main problems that most of biomedical applications face, is
represented by the massive amount of unlabeled data. Manually analyzing and clas-
sifying massive database by human expert is mostly unfeasible, being - in certain
limited conditions (still, extremely time-consuming) - partially been done, only for
simple signatures, easily recognizable by an expert. Concerning this aspect, medical
experts face two challenging problems: how to select the most significant data for
labeling, and what is the minimum size of the data set - but sufficient to define each
pathology - to perform the training of the classifier. In this chapter, we propose a
new method, based on a visual data analysis, to build an efficient classifier with a
minimum of labeled data. An encoder, part of a Convolutional Variational Autoen-
coder (CVAE), is used as a data projection for a 2D-visualization. The input vectors
are encoded into a 2D-latent space, which helps the expert to visually analyze the
spatial distribution of the training data set.

Key words: Data Visualisation, Deep Learning, Variational autoencoders, Breast
Cancer diagnosis.

1 Introduction

Artificial Neural Networks (ANNs) and Deep Learning (DL) are actually the lead-
ing Machine Learning (ML) tools in biomedical fields, as reported by recent survey
publications [46, 48, 29, 7, 34, 22, 2, 30]. With the technological and scientific
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advances, the biomedical data used by the medical practitioners are very heteroge-
neous, such as a wide range of clinical analyses, biological parameters and medical
imaging modalities. By the multitude of these data as well as the completeness of
certain atypical diseases, biomedical data are usually imbalanced [20, 42] and non-
stationary [11], being characterized by a high complexity [20]. In this context, ML
represents a tremendous opportunity: (1) to support physicians, biologists and med-
ical authorities to exploit and significantly improve big medical data analysis; (2) to
reduce the risk of medical errors; and (3) to generate a better harmonization of the
diagnosis and prognosis protocols.

The applications of the DL in the biomedical fields cover all the medical levels,
i.e. from the genomic applications to the public medical health management, and
are structured according to three main orientations [48]:

• Computer-Aided Diagnosis: to help the physicians for an efficient and early di-
agnosis, with a better harmonization and less contradictory diagnosis;

• Patients Medical care: to enhance the medical care of patients with better per-
sonalized therapies; and

• Human wellbeing: to improve the human wellbeing, for example by analyzing
the spread of disease and social behaviors in relation with environmental factors,
or to implement a brain–machine interface for controlling a wheelchair [1].

One of the main problems that most of biomedical applications face, is repre-
sented by the massive amount of unlabeled data. Manually analyzing and classi-
fying massive database by a human expert is mostly unfeasible, being - in certain
limited condition (still, extremely time-consuming) - partially been done, only for
simple signatures, easily recognizable by the expert. Concerning this aspect, med-
ical experts face two challenging problems: how to select the most significant data
for labeling, and what is the minimum size of the data set - but sufficient to define
each pathology - to perform the training of the classifier. In this chapter, we propose
a new method, based on a visual data analysis, to build an efficient classifier with a
minimum of labeled data. An encoder, part of a Convolutional Variational Autoen-
coder (CVAE) [49] [25] [50], is used as a data projection for a 2D-visualization. The
input vectors are encoded into a 2D-latent space, which helps the expert to visually
analyze the spatial distribution of the training data set.

The rest of the chapter is organized as follows : In section 2, we give a brief
introduction to the ANNs with a particular focus to some of the weaknesses usually
encountered. Then, section 3 presents some of the emerging architectures that have
recently find a great success in the biomedical applications. Section 4 is dedicated
to the Variational Autoencoder (VAE) [24], [23], [49] applied to data visualization
and data analysis. An innovative DL approach for biomedical data instantiation and
visualization is then presented. In section 5, we give some results around a practical
case study which is the Breast Cancer Wisconsin dataset, available by anonymous
ftp from ice.uci.edu [12]. Finally, critical discussion and open challenges are given
in section 6.
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2 Deep Neural Networks: A brief introduction

In this section, we first introduce a brief history of ANNs and present the main
concepts of Deep Neural Networks (DNNs). Then, we develop the two major weak-
nesses of ANNs. The first one is the difficulty to find the best neural structure while
the second is the lack of interpretability of the obtained results.

2.1 From Shallow to Deep Neural Networks

ANNs were inspired - in the 1960s - by biological neural networks in the brain.
The feed forward ANNs are composed by layers of interconnected units (neurons).
The mathematical point of view of ANNs consists of a non-linear transformation
y = F(x) of the input x (Fig1.A). Compared to shallow architectures, ANNs with
more hidden layers, called DNNs [37], offer much higher capacity to learn fitting
and feature extracting from high complexity input data (Fig1.B). The starting point
of DL was in 2006, with the greedy layer-wise unsupervised learning algorithm used
for Deep Belief Networks (DBNs) ([21, 5]).

The interconnection between two units or neurons, has an associated connection
weight w ji, which is fitted during the learning phase. The input data are propagated
from the input layer, neuron after neuron, until the output layer. This propagation
will transform these data from a given space to another one, by the neurons of the
layers, in a nonlinear way. Each neuron computes a weighted sum of its inputs
and applies a nonlinear activation function to calculate its output f (x) (Fig1.C).
The most used activation functions are the sigmoid function [37] and its variant the
hyperbolic tangent function for the shallow architectures, the Rectified Linear Unit
function (ReLU) and its variant the softplus function for the deep architectures, and
the softmax function commonly used for the final layer in classification tasks.

The two main applications of the ANNs are classi f ication and regression. The
objective of the classification is to organize the input data space into several classes
by supervised or unsupervised learning techniques. In the regression applications or
function approximation, the objective is to predict an unknown output parameter,
usually by supervised learning.

In supervised learning, the predicted label is compared with the true label, for
the current set of model weights θw, to compute the output error (also called loss
function L(θw)) (Fig2.A). The loss function is high-dimensional and non-convex,
with many local optimums. The learning phase consists of tuning the connection
weights at each learning step, in order to minimize L(θw), by backward propagating
the gradient of the loss function, through the network. This back propagation gradi-
ent was the renew of the ANNs in the mid of the 80s, when the Back Propagation
(BP) algorithm was used for classification [36]. During the learning procedure, two
sets of data are usually used: training test and test set (sometime a third set is used
for validation). The training set is used for the learning while the test set is used for
the ANNs performances evaluation. An efficient learning algorithm is to converge
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Fig. 1 ANNs [48].

towards a global optimum while avoiding all the local optimums of the loss func-
tion, which looks like a landscape, with many hills and valleys. A learning rate η is
used to jump over valleys at the beginning of the training and fine-tune the weights
in later stages of the learning process. If the learning rate is too low (little jump),
it may take forever to converge with a high risk of jamming in a local optimum.
Conversely, a too high value (big jump) can cause a non-convergence of the learn-
ing algorithm (Fig2.B). Varying and adapting the learning rate during the training
process, produces better template update.

When deep architectures are used, the magnitude of the back propagated error
derivative decreases rapidly along the layers, resulting in slight update of the
weights in the first layers (Fig2.C).

This drawback was partially solved by using the ReLU and the softplus activa-
tion function which allow faster learning and superior performances compared to the
conventional activation function (e.g. sigmoid or hyperbolic tangent). Other solution
is to consider the learning rate as a hyper parameter where different learning rates
are used for different layers. However, few works in the literature use this concept
(see [8] for a review). The most popular method used to create deep architectures
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and solve the problem of the random initialization of the weight parameters, con-
sists in an unsupervised pre-training phase used before the supervised fined-tuned
learning phase. Auto-Encoders (AEs) and Restricted Boltzmann Machine (RBM)
are stacking in a layer-wise as the basic building blocks [37].
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Fig. 2 The Loss function and the backward propagation of its gradient. A- The predicted label
is compared with the true label for the current set of model weights θw to compute the output er-
ror (also called loss function) L(θw). B- The learning rate η is used to jump over valleys. If the
learning rate is too low (little jump), it may take forever to converge with a high risk of jamming
in a local optimum. Conversely, a too high value (big jump) can cause a non-convergence of the
learning algorithm. C- For deep architectures, the magnitude of the back propagated error deriva-
tive decreases rapidly along the layers, resulting in slight update of the weights in the first layers
[48].
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2.2 Some Weaknesses

The different steps to follow when using an ANN are: 1) model choosing, 2) model
building, 3) model learning, 4) model checking. In the first step, we must choose
one neural architecture (CNN, AE, DBN, ...). In the second step, we have to define
the size of the ANN: how many layers, how many units per layer, how many con-
volution filters and what is their size. In the third step, the ANN will be trained by
unsupervised or supervised techniques while avoiding over-fitting and under-fitting.
During the last step, we have to check the quality of the ANN.

2.2.1 Finding the best neural structure

The main difficulty with the ANNs is the model building. What are the criteria that
define the number of hidden layers and neurons per layer? The user often proceeds
by trying several ANN topologies to find the best structure and try to avoid the
oversized and undersized structure.

Finding the best ANN architecture for a given problem is still challenging,
especially for the DNN learning, which remains an active research area.

This is a real and computationally expensive drawback, especially when deep
architectures are used. There is no guarantee that the selected number of hidden
layers/units is optimal. To prevent the network from over-training (usually caused
by the oversized design), some regularization techniques are used, as the dropout
[39], Maxout [17] or the weight decay [32], which is a penalty added to the error
function.

Evolutionary learning procedures give also interesting solutions where the ANN
evolved gradually during the training procedure until an optimum structure that sat-
isfy some evolutionary criteria. These adaptive ANNs are divided into three cate-
gories: constructive or growing algorithms [47], pruning algorithms [14] and hybrid
methods [18]. A good alternative to this drawback is to consider the neural archi-
tecture as a hyper-parameter evolving during the learning process. The ANN is built
step by step during the learning process, until convergence. To avoid an oversized
architecture, some of the parameters as non-significant units or connections between
neurons can be removed. Recently, several promising studies about the constructive
and pruning algorithms were published (see [47], [33] for a complete survey).

2.2.2 The interpretability of the obtained results

The other difficulty is the interpretability of the obtained results. It is very hard to
understand what happen in the hidden layers and why a trained ANN gives a positive
diagnosis for a certain pathology.
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ANNs learn to associate an output according to a given input, but they do not
learn to give any reason or interpretation associated to this response.

This black-box aspect is very restrictive, specially in medicine, where a deci-
sion interpretability is very important and can have serious legal consequences [27].
When the convolution networks are used for image processing, several methods
have been developed to visualize what happen in the intermediate layers. Some
of these algorithms are, for example, visual explanations from CNN networks via
gradient-based localization [38]; a visualization technique of the input stimuli that
excite individual feature maps at any layer in a CNN model [44] or; a deep Taylor
decomposition method [31] for interpreting generic multilayer ANNs by decompos-
ing the network classification decision into contributions of its input elements [31].
When the input data are not images, the interpretability of the hidden layers activ-
ities is less obvious. Some visualization techniques, as the t-Distributed stochastic
Neighbor Embedding projection (t-SNE) [28], converts a high-dimensional data set
into a 2D-matrix of pairwise similarities. Feature maps of the model are then ob-
tained; all the difficulty is to explain the classification decisions, according to these
maps.

3 Emergent architectures: Generative Networks

One of the most emerging architectures used in the biomedical applications are the
Generative Networks (GNs). The GNs provide a way of data augmentation to en-
large the deep representations without extensively annotated training data [9]. Two
kinds of GNs exist:

• Generative Adversarial Networks (GANs) [16], [45]
• Variational Auto-Encoders (VAEs) [24], [23], [49].

3.1 The generative adversarial networks

Proposed in 2014 by Goodfellow [16], a GAN includes two DNNs: a generator and
a discriminator. The first network is seen in a common analogy, as an art forger
that creates forgeries with the aim of making realistic images. The discriminator
represents the ”art expert” which should distinguish between the synthetic and the
authentic images. The training of a GAN requires both finding the parameters of a
discriminator and a generator, the discriminator having to maximize its classification
accuracy and the generator having to confuse the discriminator as much as possible
[45], [9]. During the training process, only one of the two networks is concerned by
the parameters updating. The second one keeps its own parameters, frozen.
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The GANs were recently applied in all the biomedical fields such as in Omics for
a protein modeling [26], where the loop modeling is seen as the image in-painting
problem and the generative network has to capture the context of the loop region
with a prediction of the missing area.

In the Brain and Body Machine Interface (BBMI) applications [48] such as car-
diac ElectroCardioGram (ECG) [41], a novel concept that embeds a generative VAE
into the objective function of Bayesian optimization is applied to estimating tissue
excitability in a cardiac electrophysiological model by [10]. In [15], a deep gener-
ative model is trained to generate the spatiotemporal dynamics of TransMembrane
Potential (TMP).

In bioImaging histology applications, in order to classify the newly given prostate
datasets into low and high Gleason grade, an adversarial training is used to mini-
mize the distribution discrepancy at the feature space, with the loss function adopted
from the GAN [35]. In [19], a cascaded of refinement GANs for phase contrast mi-
croscopy image super-resolution is proposed.

Most of the publications using the GANs, concern the medical imaging applica-
tion for image quality enhancement, image reconstruction, crafted images genera-
tion or image registration and segmentation (see [48] for a extensive survey).

3.2 Variational auto-encoders

An AE is an unsupervised ANN trained to recreate or reproduce the input vector x
[43], [4], [13] . The AE is composed by two main structures: an encoder and a de-
coder (Fig. 3) which are multilayered ANNs parameterized by φ and θ , respectively.
The first one encodes the input data x into a latent representation z by the encoder
function z = fφ (x), whereas the second one decodes this latent representation onto
x̂ = hθ (z) which is an approximation or reconstruction of the original data. In an
AE, an equal number of units are used in the input/output layers while less units
are used in the latent layer (Fig. 3). The AEs are usually used for data compression
(i.e., feature extraction/reduction), noise removal and pre-trained parameters for a
complex network.

A VAE has the same functions as the AE; in the sense that it is composed by
an encoder and a decoder (Fig. 3). VAE becomes a popular generative model by
combining Bayesian inference [24], [23] and the efficiency of the ANNs to obtain
a nonlinear low-dimensional latent space. The Bayesian inference is obtained by an
additional layer used for sampling the latent vector z with a prior specified distribu-
tion p(z), usually assumed to be a standard Gaussian N (0,I) [24], [23], where I is
the identity matrix. Each element zi of the latent layer is obtained as follow:

zi = µi +σi.ε (1)

where µi and σi are the ith components of the mean and standard deviation vec-
tors, ε is a random variable following a standard normal distribution [24], [23]
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Fig. 3 Schematic architecture of a standard deep autoencoder and a variational deep autoencoder.
Both architectures have two parts: an encoder and a decoder.
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Fig. 4 The VAE loss function. The first term Lrec is the reconstruction loss function. The second
term LKL corresponds to the Kullback-Liebler divergence loss term that forces the generation of
a latent vector with the specified Normal distribution. When the VAE is trained, the two functions
encoder/decoder can be used separately even to reduce the space dimension by encoding the input
data or to generate synthetic samples by decoding new variables from the latent space.

(ε ∼N (0,1)). Unlike the AE, which generates the latent vector z, the VAE gen-
erates vector of means µi and standard deviations σi. This allows to have more
continuity in the latent space than the original AE. The VAE loss function given by
the equation 2 has two terms. The first term Lrec is the reconstruction loss func-
tion (equ. 3). Usually, the negative expected log-likelihood (e.g., the cross-entropy
function) is used but also the mean squared error. The second term LKL (equ. 4)
corresponds to the Kullback-Liebler (KL) [24], [23] divergence loss term that forces
the generation of a latent vector with the specified normal distribution [24, 23]. The
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KL divergence is an information theoretic measure of proximity between two den-
sities q(x) and p(x). It is asymmetric (KL(q ‖ p) 6= KL(p ‖ q)) and non-negative. It
is minimized when q(x) = p(x) [6]. Thus, the KL divergence term measures how
closely the conditional distribution density qφ (z | x) of the encoded latent vectors is
from the desired Normal distribution p(z). The value of KL is zero when the two
probability distributions are the same, which forces the encoder of VAE qφ (z | x)
to learn the latent variables that follow a multivariate normal distribution over a
k-dimensional latent space.

L = Lrec +LKL (2)

Lrec =−Eqφ (z|x)(log(pθ (x | z))) (3)

LKL = KL(qφ (z | x) ‖ p(z)) (4)

When the VAE is trained, the two functions (encoder and decoder) can be used
separately, even to reduce the space dimension by encoding the input data, or to
generate synthetic samples by decoding new variables from the latent space (Fig.
4).

4 Variational autoencoders for data visualization and analysis

In this section, we present an innovative DL approach for biomedical data instan-
tiation and visualization. This approach is based on the use of the VAE to solve
the problem of the massive high dimensionality data that is usually encountered in
biomedical applications. This section is an extension of our previous study [49].
We begin by a brief introduction on the importance of the spatial distribution of the
training data. Next, we present the framework of the visual classification methodol-
ogy as a support for data labeling.

4.1 Massive amount of unlabeled data

One of the main issue faced by most of the biomedical applications, concerns
the massive amount of unlabeled data. Manually analyzing and classifying huge
database by a human expert is mostly unfeasible, being partially been done, only
for simple signatures, easily recognizable by the expert. Concerning this matter, the
medical experts face two challenging problems: how to select the most significant
data for labeling, and what is the minimum size of the data set - sufficient to define
each pathology - in order to perform a proper training of the classifier.
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Usually, one consider that classification improves with the number of labeled
data, but this is usually, not enough. In fact, the quality of the classification
depends on the spatial distribution of the training data set, which is a very
important parameter to be considered before processing the training.

Size of the data set : N1
Spatial distribution : S1
Accuracy of the classification : A1

Size of the data set : N2
Spatial distribution : S2
Accuracy of the  classification : A2

 N1 >>> N2
AND

 S1 <<<  S2
 A1 <<<  A2

Conflict Area

Fig. 5 Basic illustration of an arbitrary 2D-representation of two different training data sets with
two different spatial distributions. The data set #1 has more samples than the data set #2 but the
accuracy of the classification is better for the data set #2. The spatial distribution of the data is
more important than the size of the dataset [49].

Fig. 5 gives a basic illustration of two different training data sets. The first set
has more samples than the second one, but the spatial distribution of the second
data set is better than the first one. The grey zone represents the conflict area, where
most of the false positive predictions are produced by the classifier. Better the spatial
distribution of the training data set, better the accuracy of the prediction. To reduce
this ”dead zone”, the expert must choose some new points belonging or being near
to this conflict area, for labeling.

Many research have been recently focusing on improving learning from imbal-
anced data, but none of these methods rely on a visual analysis of the learning data
- one of the most intuitive approach. We consider that the visualization of the learn-
ing data to understanding its nature and to extracting more information from the
2D-space distribution, is an essential step during the design of the diagnosis model.
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One of the main limitations of ANNs, is the lack of interpretability of the ob-
tained results. It is very hard to understand what happens in the hidden layers and
why a trained ANN gives a positive diagnosis for a given input sample. This ”black-
box” aspect is very restrictive in many medical application fields, where a decision
interpretability can lead to serious legal consequences [27].

When the CNNs are used for medical image processing, several methods have
been developed to visualize what happen in the intermediate layers. Some of these
algorithms are for example visual explanations from CNNs via gradient-based lo-
calization [38]; a visualization technique of the input stimuli that excites individual
feature maps at any layer in a CNN model [44] or; a deep Taylor decomposition
method for interpreting generic multilayer ANNs by decomposing the network clas-
sification decision into contributions of its input elements [31]. When the input data
are not images, as for the industrial measurements, the interpretability of the hidden
layers activities is less obvious.

4.2 Visual Support for data labeling

Fig. 6 shows the framework of the visual classification methodology as a support
for data labeling. An encoder, part of a VAE, is used as a data projection for a 2D-
visualization. The input features vectors are encoded into a 2D-latent space, which
helps the expert to visually analyze the space distribution of the training data set.
At the beginning, few data points from the big unlabeled database are selected from
the 2D-latent space. These points are labeled by the expert and used to train a neural
classifier. The obtained classifier is then tested over all the unlabeled data set.

To identify the conflict area, i.e., the gray zones illustrated in the Fig. 5, several
classifiers are trained on the same initial labeled data set, and tested over all
the unlabeled data set. The conflict zones are identified on the 2D-space by
analyzing the conflicts results of all the trained classifiers.

As we can see on the Fig. 5, if the conflict zone is too large, the boundary between
classes, fixed by the classifier, is too uncertain. Usually, most of the false predictions
occur near this conflict zone. To reduce the proportion of these false predictions, new
points – near or belonging to these conflict zones – are then selected and labeled by
the expert. These new labeled samples are added to the initial training set for a new
training iterations. Therefore, several interactions between the diagnostic expert and
the DL expert are necessary, in order to refine and reduce the boundary zone.
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Fig. 6 The framework of the visual classification methodology using an encoder function of a
VAE as a data projection for a 2D-visualization. The input features vectors are encoded into a 2D-
latent space. If the conflict zone, identified on the 2D-space, is too large, new points near these
conflict zones are selected and labeled by the expert. These new labeled points are then added to
the initial training set for new training/testing iterations [49].

4.3 Identification and reduction of the conflict area

As described in the previous section, the conflict zone is the area in the data space
definition where most of the false predictions occur. This is due to the poor cover-
age of the learning data space caused by the selection of only clear examples when
designing the classifier. Because the human brain can only perceive two or three-
dimensional space, it is impossible for humans to process the n-features dimensional
space used to define the input vector of a biomedical data. It is even worse when try-
ing to compare data between them. Therefore, projecting data in the 2D-latent space
will help the expert to easily identify clusters of similar data and locate boundary
or conflict zone on which he needs to work. When the conflict zone is too large,
the boundary between classes, fixed by the classifier, leaves a large number of data
with uncertain classification. This means that two different classifiers Ci and C j with
i 6= j will definitely have two opposite responses for the same input data k:

Ψi(k) 6=Ψj(k) (5)

where Ψi(k) and Ψj(k) are respectively the output class obtained by the classifiers
Ci and C j for the input sample k. To identify these conflict zones, several classifiers
Ci were trained with the same 2D training data set Ω 2D

train. Subsequently, all the
trained classifiers have been tested over the entire data set. For each input sample k
of the data set, if two classifiers have two opposite responses, the input sample k is
then considered as a conflict sample.
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To reduce the proportion of false predictions, the size of the conflict zone must
be reduced.

Therefore, the expert will choose new learning points in these poorly covered
areas, in order to adjust the learning of the classifier. These new samples are then
labeled by the expert and added to the previous training set. The entire procedure
is then repeated until the conflict zone is considered as acceptable by the medical
expert, without having to consider all the data but just a few additional points located
in the conflict zone.

5 Case Study: The Breast Cancer Wisconsin dataset

In this section, we present a step-by-step practical case study which concerns the
diagnosis of the breast cancer [3]. We show how the VAE can be practically used to
solve the problem of labeling the minimum of data to quickly improve the learning
process. The proposed DL approach has been developed using Keras1 DL frame-
work on a PC machine with 4.0-GHz Intel Xeon CPU and 32-GB memory.

5.1 Description of the dataset

The Breast Cancer Wisconsin dataset used as a case study is available by anony-
mous ftp from ice.uci.edu [12]. This dataset consists of 569 breast cancer patterns
from the university of Wisconsin. Each pattern has 30 attributes and the dataset is
divided into two classes, 212 are malignant and 357 are benign. The original dataset
was proposed by Nick Street, Wolberg and Mangasarian [40].

5.2 Evaluation Metrics

To be able to evaluate the performance of various classification methods, there is
a need to introduce quantitative criteria. A confusion matrix is commonly used to
calculate these performance parameters (fig. 7). This matrix contains information
about the actual and the predicted classifications:

• True Positive (TP) values are the number of Positive classification correctly clas-
sified as Positive,

• True Negative (TN) values represent the number of Negative classifications cor-
rectly classified as Negative,

1 https://keras.io/
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• False Positive (FP) values are the number of Negative classifications incorrectly
classified as Positive,

• False Negative (FN) values represent the number of Positive classification incor-
rectly classified as Negative,

• Not Classified (NC) values represent the number of samples belonging to the
conflict area.

Based on these values, the following metrics are thus calculated:

• Accuracy (Acc) =
T P+T N

T P+T N +FP+FN +NC

• Negative Predictive Value (NPV) =
T N

FN +T N

• Positive Predictive Value (PPV) =
T P

FP+T P

• True Negative Rate (TNR) =
T N

FP+T N

• True Positive Rate (TPR) =
T P

T P+FN

Positive

NegativeTrue Positive

False Positive

True Negative

False Negative

Not Classified

Conflict Area

Fig. 7 Confusion matrix

5.3 The variational auto-encoder used as visual support

The VAE architecture used is illustrated by the Fig. 8. This architecture includes two
parts, an encoder and a decoder, which are two symmetrical and reversed structures.
Each one is composed by three fully connected layers. The latent two-dimensional
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space is represented by two layers for the encoder: the mean and the standard devi-
ation layers (i.e., µ and σ ), and one sampling layer (Z) for the decoder.

Training the VAE does not need the label information of the input data. How-
ever, for an efficient data encoding, we used an indirect labeling, since all
training samples belong to one of the classes described above.

The first step was to train the whole VAE architecture for the reconstruction of
the feature vector (Ŝ = F (S)). When the training process of the VAE is done, the
encoder part is then used jointly with a neural classifier, as presented in Fig. 8.
The mean layer µ of the variational encoder is considered as the input 2D-vector
of the classifier. The second step is then to train the classifier for the diagnosis.
The encoder parameters obtained by the previous step are then frozen during the
classifier training step.

All the details of DNNs architectures used, i.e. the VAE and the classifier, are
presented in the Table 1.
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Fig. 8 The VAE architecture used. The encoder used jointly with a neural classifier. The mean
layer of the convolutional encoder is considered as the input 2D-vector of the classifier.

5.4 Visualization of the latent space

Considering that the latent vectors are the encoding representation of the input fea-
ture vectors, it is interesting to visualize the 2-dimensional representation of the
original feature and to evaluate the similarities within each class. Figure 9 shows
the 2D-latent representation at different iterations of the training process of the vari-
ational auto-encoder.
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Table 1 Proposed DNNs architectures.

# Layer Type Neurons # Layer Type Neurons

Encoder Classifier
0 Input feature vector 30 0 Input (mean layer) 2
1 Fully connected 200 1 Fully connected 50
2 Fully connected 100 2 Fully connected 100
3 Fully connected 50 3 Fully connected 50
4 Mean layer 2 4 SoftMax output layer 2
4 Standard deviation layer 2
Decoder
0 Sampling layer 2
1 Fully connected 50
2 Fully connected 100
3 Fully connected 200
4 Output reconstructed vector 30

The 2D-latent representation is the output of the sampling layer Z of the en-
coder illustrated in the figure 8.

At the beginning of the training process (i.e. iteration 1), the 2-D representation
looks like a compact cluster. As the learning progresses, the cluster extends into
the 2-D latent space until covering the entire space (iteration 1000), with almost a
uniform Normal distribution – forced by the Kullback-Liebler divergence loss term
(see section 3.2). Two clusters are then formed, the green for the benign class and
the red for the malignant class.

5.5 Selection of the training samples from the 2D-latent space

Considering that all the used dataset is unlabeled, we will see how the 2D-latent
space used as a visualization support can help the expert to select the most signif-
icant data for labeling. The figure 10.A shows the 2D-projection of all the dataset
obtained by the variational encoder. Since all the dataset is unlabeled, all the samples
belong to the same cluster.

5.5.1 Step1: Selection of the first training set

At the beginning, the expert must choose some samples to label for the training
process. Instead of choosing randomly the samples, we can use the 2D-projection
as a visualization support to choose the samples with respect to a certain spatial
distribution. For example, as shown by the figure 10.A, a first set of six samples (Set
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Fig. 9 The progression of the latent space throughout the learning process of the VAE.

#1) is selected from the 2D-latent space: 3 benign samples and 3 malignant samples.
These samples are used for the training process of the classifiers.
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Fig. 10 A. First training set selection from 2D-projection, B. Identification of the conflict area.
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5.5.2 Step2: Identification of the conflict area

As described by the section 4.3, to identify the conflict area between the two classes
(i.e. benign and malignant), we train different classifiers with the same training sam-
ples. The conflict area, in the figure 10.B, represents the cases where the classifiers
are in disagreement.

5.5.3 Step3: Reduction of the conflict area

To reduce the conflict area, new samples are selected nearby or belonging to the
conflict area. As shown by the figure 11.A, a second set of six new samples (Set #2)
is selected from the 2D-latent space and added to the initial training set. After a new
training process of the classifiers, the new obtained conflict area is then reduced, as
we can see on the figure 11.B
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Fig. 11 A. Selection of new training samples nearby or belonging to the conflict area from the
2D-Projection, B. Reduction of the new conflict area.

5.5.4 Results Analysis

The table 2 shows the entire classification performances obtained on the whole
dataset for each of the training set#1 and #2. The metrics used to analyze the ob-
tained results are those presented by the section 5.2. We suppose that the malignant
set is the Positive class and the benign is the Negative class. We can observe that
the conflict area (i.e. the not classified patterns) has been scaled down between the
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training set#1 and #2. Indeed, this disagreement zone decreases from 112 samples to
21, which represents respectively 19.68 and 3.69% compared to the whole dataset.

By reducing the proportion of the uncertainty area, the size of the true and false
predictions increases. In fact, the number of the True Positive and the True Nega-
tive samples has been raised, which gives a better accuracy for the training set#2
(88.22% instead of 77.50% for the set#1). On the other hand, the proportion of the
false predictions have been also raised by reducing the conflict area, which proves
that most of the false predictions are near or within the conflict area. For this reason,
the NPV, PPV, TNR and the TPR values are better for the training set #1.

Table 2 Results of the classification performances obtained on the whole dataset for each one of
the training set#1 and #2. The malignant set is the Positive class and the benign is the Negative
one.

Training Set TP TN FP FN Not Classified
Set #1 116 (20.39%) 325 (57.12%) 0 (0%) 16 (2.81%) 112 (19.68%)
Set #2 148 (26.01%) 354 (62.21%) 1 (0.18%) 45 (7.91%) 21 (3.69%)

Acc NPV PPV TNR TPR
Set #1 77.50% 95.31% 100% 100% 87.88%
Set #2 88.22% 88.72% 99.33% 99.72% 76.68%

5.6 Random selection of training samples

This section provides comparison results between the proposed 2D-visual selection
method and a random selection of the training samples. The figure 12 gives the 2D-
representation of four training sets (set #3, 4, 5 and 6) randomly selected from the
entire dataset. These sets are respectively shown in the figures A, C, E and G. For
each example, the conflict areas obtained by the confrontation tests of the classifiers
are illustrated in the figures B, D, F and H.

The table 3 summarizes the results of the classification performances obtained for
each training group on the whole dataset using the performances metrics listed in
the previous section. The analysis of these comparative results reveals several strong
points. First, it is evident that the performances are very disparate for the random
selection, as we can see for the TP values (47 instances for the sets #3 against 120
for the set#6). For each random selection, thanks to the 2D-representation, we can
visually evaluate the spatial distribution of the chosen training instances (fig. 12).
Qualitatively, the distributions of the sets #1 and #2 (shown by the figures 10 and
11) are better than those obtained by the sets #3, 4, 5 and 6. Indeed, the data space
is better covered by the learning sets #1 and #2. This better coverage of the data
space necessarily leads to better classification results. It is clearly observed that
the performances obtained by these two groups outperform the others by a large
margin with the highest accuracy. The comparison results between our 2D-visual
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selection method and the conventional random selection method demonstrate that
our framework benefits of a better data visibility and a better results interpretation.
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Fig. 12 Four examples of a random selection. The figures A, C, E and G gives four examples of
four training sets (set #3, 4, 5 and 6) randomly selected from the entire dataset. For each training set,
the obtained classifiers are tested on the whole dataset where different conflict areas are obtained,
as shown by the figures B, D, F and H.
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Table 3 Comparison results between the proposed 2D-visual selection method (Sets #1 and 2) and
a random selection of the training samples (Sets #3, 4, 5 and 6). For each set, we give between
brackets the number of instances per class (# of benign, # of malignant).

Training Set TP TN FP FN Not Classified
Set #1 (3, 3) 116 (20.39%) 325 (57.12%) 0 (0%) 16 (2.81%) 112 (19.68%)
Set #2 (6, 6) 148 (26.01%) 354 (62.21%) 1 (0.18%) 45 (7.91%) 21 (3.69%)
Set #3 (5, 1) 47 (8.26%) 344 (60.46%) 0 (0%) 37 (6.50%) 141 (24.78%)
Set #4 (3, 3) 63 (11.07%) 317 (55.71%) 0 (0%) 11 (1.93%) 178 (31.28%)
Set #5 (2, 4) 114 (20.04%) 253 (44.46%) 50 (8.79%) 16 (2.81%) 136 (23.90%)
Set #6 (3, 3) 120 (21.09%) 274 (48.15%) 1 (0.18%) 9 (1.58%) 165 (29%)

Acc NPV PPV TNR TPR
Set #1 (3, 3) 77.50% 95.31% 100% 100% 87.88%
Set #2 (6, 6) 88.22% 88.72% 99.33% 99.72% 76.68%
Set #3 (5, 1) 68.71% 90.29% 100% 100% 55.95%
Set #4 (3, 3) 66.78% 96.64% 100% 100% 85.13%
Set #5 (2, 4) 64.49% 94.05% 69.51% 83.49% 87.69%
Set #6 (3, 3) 69.24% 96.81% 99.17% 99.63% 93.02%

6 Conclusion

In this chapter, we investigated the use of VAE as a support for data visualization and
diagnosis interpretation. However, after training of the VAE, the encoder part is used
as a data projection from an input features mapping to a latent 2D-mapping. The
VAE is trained without using class labels to learn properties in the data. The power
of VAE falls in capturing the complicated data features from the multi-dimensional
input space and compressing them into a smaller 2D-latent space, more easy for a
visualization by a human expert. The VAE reveals a promising tool to produce a
2-dimensional embedding of high dimensional data with the goal of simplifying the
identification of clusters when used jointly with a classifier.

As articulated in the results section, it is quite easy to understand the diagnosis
given by the neural classifier by visually analyzing the spatial distribution of the
classified samples. Therefore, the knowledge area of the ANN and the boundaries
between the classes are perceived by the expert. The conflict regions which are
poorly covered by the training samples are then easily identified. The ANN is then
less perceived as a ”black-box” in the sense that its knowledge area is visible, the
interpretation of the false predictions and their understanding become realizable.

The ending condition of the proposed algorithm is the diagnosis model evaluation
through the testing of a performance criterion. The criterion used is the reduction
of the conflict area, which is visually perceived by the expert, at each round of
the algorithm. To improve the performances of the proposed method, other metrics
than the reduction of the conflict area must be defined and used to evaluate the
performances of a such model during the building process. These metrics should
give some answering elements to these non-exhaustive questions:
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• How to evaluate the quality of the spatial distribution of such an input training
dataset?

• How to evaluate the features used which are closely related to the quality of the
input vector?

• How to evaluate the performances of the VAE, especially the encoder function?
• A more fundamental question concerns the minimum size of the conflict area

tolerated by the medical expert - a real dilemma for biomedical applications.
For some borderline cases, an ambiguity response from the ANN can be more
acceptable than a false prediction. For these critical cases, It is then preferable
that the ANN lets the medical expert decide, rather than providing a catastrophic
false prediction.
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