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Data Uncertainty Guided Noise-aware Preprocessing Of Fingerprints
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The effectiveness of fingerprint-based authentication systems on good quality fingerprints is established long back. However, the performance of standard fingerprint matching systems on noisy and poor quality fingerprints is far from satisfactory. Towards this, we propose a data uncertainty-based framework which enables the state-of-the-art fingerprint preprocessing models to quantify noise present in the input image and identify fingerprint regions with background noise and poor ridge clarity. Quantification of noise helps the model two folds: firstly, it makes the objective function adaptive to the noise in a particular input fingerprint and consequently, helps to achieve robust performance on noisy and distorted fingerprint regions. Secondly, it provides a noise variance map which indicates noisy pixels in the input fingerprint image. The predicted noise variance map enables the end-users to understand erroneous predictions due to noise present in the input image. Extensive experimental evaluation on 13 publicly available fingerprint databases, across different architectural choices and two fingerprint processing tasks demonstrate effectiveness of the proposed framework.

I. INTRODUCTION

Highly accurate performance of fingerprint-based authentication systems on good quality fingerprints makes them widely used for access control, border security and various other applications. However, background noise originating due to sensors and poor ridge clarity due to factors such as uncontrolled interaction of subjects with the fingerprint sensor, aging, skin disease or injury pose challenges for the state-of-the-art matching systems. A fingerprint preprocessing pipeline is designed to facilitate robustness against noise in the fingerprint image. A fingerprint preprocessing pipeline has two significant modules: region of interest (roi) segmentation module and enhancement module.

While the roi segmentation module is targeted to identify the foreground fingerprint region, enhancement module is dedicated to generate a fingerprint image with clear ridge structure. Thus, fingerprint pre-processing limits the area for fingerprint matching, reduces the possibility of spurious minutiae detection while also reducing the computation time for Equal contribution from both authors Fig. 1. Visualization of model and data uncertainty obtained while segmenting fingerprint roi. First and third rows depict the input fingerprint, segmented ground truth and the corresponding segmented images obtained using MU-RUnet [START_REF] Joshi | Explainable fingerprint roi segmentation using monte carlo dropout[END_REF] and proposed DU-RUnet. MU-RUnet is obtained after introducing Monte Carlo Dropout to capture model uncertainty, while DU-RUnet is designed to capture data uncertainty. Predicted uncertainty is shown in the second and fourth row. The visualization of uncertainty values demonstrates the fact that the predicted model uncertainty only indicates high uncertainty under misclassified pixels, that too not well calibrated (blue and red color denote low and high uncertainty values respectively). On the other hand, predicted data uncertainty clearly discriminates noise and background pixels from the foreground which improves the robustness of the model towards noise. fingerprint matching. However, some fingerprint images are inherently very noisy and highly likely to cause erroneous predictions by any state-of-the-art fingerprint preprocessing system. For such fingerprints, it is highly useful to obtain some auxiliary information from the system which can quantify noise in input fingerprint.

Bayesian deep networks offer a practical way to identify noisy pixels in the input image through modelling the data uncertainty arising due to sensor noise or occlusions. We demonstrate that modelling data uncertainty through a Bayesian framework helps the state-of-the-art fingerprint preprocessing models to learn noise-invariant features and improves their performance. Additionally, the predicted per-pixel data uncertainty serves as a tool for understanding of the human operators (see Figure 1).

II. RELATED WORK

A. Fingerprint ROI Segmentation 1) Classical image processing based methods: Hu et al. [START_REF] Hu | A composite fingerprint segmentation based on log-gabor filter and orientation reliability[END_REF] and Thai et al. [START_REF] Thai | Filter design and performance evaluation for fingerprint image segmentation[END_REF] propose filtering based segmentation. Thai and Gottsclich [START_REF] Thai | Global variational method for fingerprint segmentation by three-part decomposition[END_REF] and Fahmy and Thabet [START_REF] Fahmy | A fingerprint segmentation technique based on morphological processing[END_REF] explore the potential of morphological operations for fingerprint roi segmentation. While Teixeira and Leite [START_REF] Teixeira | Unsupervised fingerprint segmentation based on multiscale directional information[END_REF] and Raimundo et al. [START_REF] Da | Fingerprint image segmentation based on oriented pattern analysis[END_REF] exploit the fingerprint ridge orientation information to segment foreground from background.

2) Learning based methods: Ferreira et al. [START_REF] Ferreira | A fuzzy c-means algorithm for fingerprint segmentation[END_REF] and Yang et al. [START_REF] Yang | K-means based fingerprint segmentation with sensor interoperability[END_REF] propose pixel-level clustering to discriminate foreground from background. While Liu et al. [START_REF] Liu | Fingerprint segmentation based on an adaboost classifier[END_REF], Serafim et al. [START_REF] Serafim | A method based on convolutional neural networks for fingerprint segmentation[END_REF] and Stojanović et al. [START_REF] Stojanović | Fingerprint roi segmentation based on deep learning[END_REF] propose patch level classification of foreground and background accompanied by postprocessing.

None of the learning based architectures described above are end-to-end. Recently, Joshi et al. [START_REF] Joshi | Explainable fingerprint roi segmentation using monte carlo dropout[END_REF], [START_REF] Joshi | Sensor-invariant fingerprint roi segmentation using recurrent adversarial learning[END_REF], show that RUnet [START_REF] Wang | Recurrent unet for resource-constrained segmentation[END_REF] is an effective baseline for fingerprint roi segmentation. Furthermore, the authors incorporate Monte Carlo dropout to estimate model uncertainty and show that it helps to improve the performance of RUnet along with imparting model interpretability.

B. Fingerprint Enhancement

1) Classical image processing based methods: Hong et al. [START_REF] Hong | Fingerprint image enhancement: algorithm and performance evaluation[END_REF], Turroni et al. [START_REF] Turroni | Fingerprint enhancement using contextual iterative filtering[END_REF], Gottschlich and Schönlieb [START_REF] Gottschlich | Oriented diffusion filtering for enhancing low-quality fingerprint images[END_REF], Gottschlich [START_REF] Gottschlich | Curved-region-based ridge frequency estimation and curved gabor filters for fingerprint image enhancement[END_REF] and Wang et al. [START_REF] Wang | Design and implementation of log-gabor filter in fingerprint image enhancement[END_REF] propose filtering in spatial domain. Chikkerur et al. [START_REF] Chikkerur | Fingerprint enhancement using stft analysis[END_REF] and Ghafoor et al. [START_REF] Ghafoor | Efficient 2-fold contextual filtering approach for fingerprint enhancement[END_REF] exploit information in Fourier domain. Sharma and Dey [START_REF] Sharma | Two-stage quality adaptive fingerprint image enhancement using fuzzy c-means clustering based fingerprint quality analysis[END_REF] propose a quality adaptive filtering in Fourier domain.

2) Learning based methods: Schuch et al. [START_REF] Schuch | De-convolutional auto-encoder for enhancement of fingerprint samples[END_REF] propose a deconvolutional auto-encoder (DeConvNet) to reconstruct poor quality fingerprints. Qian et al. [START_REF] Qian | Latent fingerprint enhancement based on denseunet[END_REF] propose DenseUnet while Wong and Lai [START_REF] Wong | Multi-task cnn for restoring corrupted fingerprint images[END_REF] and Li et al. [START_REF] Li | Deep convolutional neural network for latent fingerprint enhancement[END_REF] propose multitasking auto-encoder explicitly utilizing orientation field information. Joshi et al. [START_REF] Joshi | Latent fingerprint enhancement using generative adversarial networks[END_REF] propose a generative adversarial network (FP-E-GAN) for fingerprint enhancement. A detailed survey on fingerprint enhancement algorithms is conducted by Schuch et al. [START_REF] Schuch | Survey on the Impact of Fingerprint Image Enhancement[END_REF].

Tiwari et al. [START_REF] Tiwari | Fingerprint Quality of Rural Population and Impact of Multiple Scanners on Recognition[END_REF], Vatsa et al. [START_REF] Vatsa | Analyzing fingerprints of indian population using image quality: A uidai case study[END_REF] and Puri et al. [START_REF] Puri | On analysis of rural and urban indian fingerprint images[END_REF] evaluate the performance of state-of-the-art fingerprint matching system on the rural Indian population and conclude that it is challenging. Motivated by these works, we evaluate the enhancement performance of proposed work on challenging rural Indian fingerprints database.

C. Uncertainty Estimation

Predicting uncertainty makes learning based models trust worthy and useful from the perspective of safety [START_REF] Amodei | Concrete problems in ai safety[END_REF]. A wide range of approaches are proposed to estimate uncertainty using the Bayesian formulation of neural networks such as Monte-Carlo Dropout [START_REF] Gal | Dropout as a bayesian approximation: Representing model uncertainty in deep learning[END_REF], Deep Ensembles [START_REF] Lakshminarayanan | Simple and scalable predictive uncertainty estimation using deep ensembles[END_REF], Maximum softmax probability [START_REF] Hendrycks | A baseline for detecting misclassified and out-of-distribution examples in neural networks[END_REF] and Stochastic Variational Bayesian Inference [START_REF] Louizos | Multiplicative normalizing flows for variational bayesian neural networks[END_REF]. These uncertainty prediction techniques are successfully applied to detect out-of-distribution samples and misclassifications. Predictive uncertainty also finds its applications in active learning [START_REF] Kirsch | Batchbald: Efficient and diverse batch acquisition for deep bayesian active learning[END_REF].

To summarize, uncertainty estimation serves as an effective tool that enables model understanding and robustness. It has been successfully utilized in various image processing applications [START_REF] Combalia | Uncertainty estimation in deep neural networks for dermoscopic image classification[END_REF], [START_REF] Kurmi | Attending to discriminative certainty for domain adaptation[END_REF]- [START_REF] Kwon | Uncertainty quantification using bayesian neural networks in classification: Application to biomedical image segmentation[END_REF]. The usefulness of estimating model uncertainty in fingerprint roi segmentation is recently explored [START_REF] Joshi | Explainable fingerprint roi segmentation using monte carlo dropout[END_REF]. However, in principle, uncertainty can be either due to model weights (model uncertainty) or due to noise in the input (data uncertainty). Modelling data uncertainty is therefore especially useful to identify noisy regions and achieve robust performance on distorted and poor quality fingerprints.

D. Research Contributions

To the best of our knowledge, this research is the first work in fingerprints domain to predict data uncertainty and demonstrate its usefulness in preprocessing of fingerprints.

To study its generalization ability, experiments are conducted on 13 publicly available fingerprint databases. The effect of modelling data uncertainty is studied on two tasks: fingerprint roi segmentation and enhancement, and three different network architectures. Furthermore, both qualitative and quantitative analysis of predicted data uncertainty is conducted to evaluate its effectiveness. Additionally, we also compare the model performance, inference time and predicted uncertainty after modelling data uncertainty versus the Monte Carlo dropout based model uncertainty. Visualizations of neural activations (using Seg-Grad-Cam [START_REF] Vinogradova | Towards interpretable semantic segmentation via gradient-weighted class activation mapping (student abstract)[END_REF]) and predicted uncertainty are illustrated to provide insights on the proposed work.

III. UNCERTAINTY IN FINGERPRINT PREPROCESSING

The success of deep models in fingerprint preprocessing mandates their use to obtain state-of-the-art performance. However, the standard fingerprint prepocessing models make predictions like a black-box and do not indicate when the model is highly likely to make an erroneous prediction. Uncertainty estimation provides a mechanism to understand what the model does not know and thus enables the endusers to separately handle more difficult cases or unreliable predictions. Baseline deterministic fingerprint preprocessing deep models are converted into Bayesian deep models to infer uncertainty from them.

Uncertainty in a fingerprint preprocessing model can be primarily divided into two types: model uncertainty and data uncertainty. Data uncertainty captures the noise in the input fingerprint image due to factors such as dust and grease on the surface of fingerprint sensor, false traces arising during fingerprint acquisition, blurred ridges and unclear boundaries due to dry or wet fingertips. Data uncertainty cannot be reduced even if the model is trained on more training data. The usefulness of model uncertainty is recently studied by Joshi et al. [START_REF] Joshi | Explainable fingerprint roi segmentation using monte carlo dropout[END_REF]. In this research, we explain how to infer data uncertainty from a fingerprint preprocessing model and its benefits.

IV. ESTIMATING DATA UNCERTAINTY

Data uncertainty is formalized as a probability distribution over model output. Given the input fingerprint image, data uncertainty estimation using Bayesian deep learning requires placing a prior distribution over output of model and calculating the variance of noise in model output. Predicted data uncertainty being input dependent, is learnt as a function of input image [START_REF]Uncertainty in Deep Learning[END_REF]. To obtain both the preprocessed image and its associated uncertainty, network architecture of the baseline fingerprint preprocessing model is modified. Furthermore, since the background pixels are likely to be more noisy than foreground pixel, therefore per-pixel uncertainty is predicted.

As shown in Figure 2, last layer of the baseline architecture is modified by splitting it into two. One branch predicts the model output (preprocessed image) whereas the other branch predicts the data uncertainty (noise variance). The mapping between input and preprocessed image is learnt in a supervised manner. However, no labels for uncertainty are used and the uncertainty values are learnt in an unsupervised manner. Furthermore, The loss function of the baseline architecture is also modified (as described in subsections IV-A and IV-B) to enable the modified architecture to learn to predict data uncertainty.

Fingerprint preprocessing models can be either based on regression or classification. In case of regression, the change in output can be directly calculated. However, in case of classification, in order to capture the true change in output, change in the values of logit is monitored rather than the change in output probabilities (output of softmax). Next, we describe the loss function to learn data uncertainty from both regression and classification based models.

A. Regression Based Models

For a pixel i of an input fingerprint image x, assuming the model output f (x i ) is corrupted with Gaussian zero mean random noise, estimating data uncertainty aims to learn the input dependent noise variance, σ(x i ). To learn data uncertainty, the original loss function 1 n n i=1 y i -f (x i ) 2 is modified as follows:

1 n n i=1 1 2σ(x i ) 2 y i -f (x i ) 2 + 1 2 log σ(x i ) 2 (1) 
where n denotes the total number of pixels in training images. Intuitively, modifying the baseline architecture to predict data uncertainty and training with loss presented in equation 1 enables it to adjust the residual error occuring on the noisy pixels by 1 σ(xi) factor. Consequently, the model predicts high data uncertainty on noisy pixels. Furthermore, to ensure that the model does not predict high uncertainties for all pixels, the term log σ(x i ) 2 is introduced. As a result, the modified loss function acts a noise-aware loss.

B. Classification Based Models

To estimate data uncertainty from a classification model, the model is marginalized over the estimated data uncertainty in regression of logit space. For a pixel i of an input fingerprint image x, let f (x i ) denotes the logit value before passing through softmax. Assuming f (x i ) is corrupted with Gaussian random noise with zero mean and variance σ(x i ), the network is optimized using Monte Carlo integration over cross-entropy loss for softmax probabilities of the sampled logits. As a result, the regular cross-entropy loss is modified as:

xi,t = f (x i ) + σ(x i ) t , t ∼ N (0, I) 1 n n i=1 log 1 T T t=1 exp(x i,t,ĉ -log ĉ exp(x i,t,ĉ )) (2) 
where xi,t denotes the corrupted logit value for input x i at iteration t. ĉ, n and T denote the class label, total number of pixels in training images and number of Monte Carlo samples respectively. Similar to the case of regression, equation 2 can be interpreted as learning a noise-aware loss.

V. DATABASES To evaluate the effectiveness of of the proposed work, a wide range of challenging fingerprint databases in the public domain are used to conduct the experimental analysis. These databases are briefly described below: For fingerprint enhancement, two state-of-the-art fingerprint enhancement models: DeConvNet [START_REF] Schuch | De-convolutional auto-encoder for enhancement of fingerprint samples[END_REF] and FP-E-GAN [START_REF] Joshi | Latent fingerprint enhancement using generative adversarial networks[END_REF] are modified to model data uncertainty. The resulting architectures are named DU-DeConvNet and DU-GAN respectively. Training is performed on synthetic dataset as suggested in [START_REF] Joshi | Latent fingerprint enhancement using generative adversarial networks[END_REF] while testing us conducted on the Rural Indian Fingerprint Database [START_REF] Puri | On analysis of rural and urban indian fingerprint images[END_REF]. Both of these baseline models have regression based loss function. Thus, for training DU-DeConvNet and DU-GAN, the training loss is modified as suggested in Section IV-A. During testing of these modified architectures, to infer the preprocessed fingerprint image and the data uncertainty associated with it, only a single forward pass through the proposed architecture is required.

VII. EVALUATION METRICS

A. Segmentation Performance 1) Dice and Jaccard Score: We employ two standard metrics: Dice [START_REF] Dice | Measures of the amount of ecologic association between species[END_REF] and Jaccard score [START_REF] Choi | A survey of binary similarity and distance measures[END_REF] to assess the segmentation performance obtained by the proposed segmentation model compared to the ground truth roi segmentation masks.

Although DU-RUnet is an end-to-end model, however, to have enough metrics for comparisons with state-of-the-art, we also evaluate DU-RUnet on impression 3 and 4 of FVC 2002-Db1a database over the patch based metrics described next. 2) Erroneously Classified Patches: Let patch 1 represents a 16×16 patch from predicted segmentation mask whereas patch 2 represents the corresponding ground truth patch manually marked by fingerprint experts. The percentage of erroneously classified patches (Err) is described as:

Err = number of patches(patch 1 = patch 2 ) number of patches(patch 1 ) (3) 
3) Hit Coefficient and Mistake Coefficient: Hit coefficient (HC) and Mistake Coefficient (MC) indicate the relative foreground predicted correctly and incorrectly, respectively compared to the ground truth.

HC = Area(P ∩ G) Area(G) M C = Area(P -G) Area(G) (4) 
where P and G represent the foreground fingerprint area in the predicted segmentation mask and ground truth segmentation.

B. Enhancement Performance 1) Fingerprint Quality Assessment:

To quantify the improvement in fingerprint quality after enhancement, we calculate fingerprint image quality scores using Nfiq module of NBIS [START_REF]Nbis-nist biometric image software[END_REF]. Nfiq returns a score in the range [START_REF]Nbis-nist biometric image software[END_REF][START_REF] Cappelli | Fingerprint indexing based on minutia cylinder-code[END_REF] where 1 and 5 signify the best and the worst fingerprint quality.

2) Ridge Reconstruction Ability: In order to evaluate the ridge reconstruction ability of the proposed DU-GAN, we calculate Peak signal-to-noise ratio (PSNR) between the enhanced image generated by DU-GAN and the ground truth binarized fingerprint image obtained using binarization module of NBIS. However, since the ground truth binarization cannot be reliably generated on the testing database, synthetic distorted fingerprint images are generated for this experiment. Good quality synthetic fingerprints are generated using [START_REF] Ansari | Generation and storage of large synthetic fingerprint database[END_REF] at first, which are then degraded using various noise and background variations.

3) Matching Performance: To demonstrate the improved fingerprint matching performance, we report the average Equal Error Rate (EER) and plot the Detection Error Tradeoff (DET) curve. Fingerprint matching systems used are Bozorth [START_REF]Nbis-nist biometric image software[END_REF] and MCC [START_REF] Cappelli | Minutia cylinder-code: A new representation and matching technique for fingerprint recognition[END_REF], [START_REF] Cappelli | Fingerprint indexing based on minutia cylinder-code[END_REF], [START_REF] Ferrara | Noninvertible minutia cylindercode representation[END_REF], [START_REF] Ferrara | A Two-Factor Protection Scheme for MCC Fingerprint Templates[END_REF].

VIII. RESULTS AND DISCUSSIONS

A. Data Uncertainty Guides Noise-aware Segmentation

Table I reports the improved dice and jaccard scores obtained by the proposed DU-RUnet as compared to baseline RUnet. To fathom reasons for the same, Figure 3 showcases sample visualizations obtained for RUnet and DU-RUnet using Seg-Grad-Cam [START_REF] Vinogradova | Towards interpretable semantic segmentation via gradient-weighted class activation mapping (student abstract)[END_REF]. Results reveal that predicting data uncertainty helps the model to identify noisy regions in fingerprint images due to which higher activations are obtained around foreground fingerprint pixels. As a result, improved segmentation performance on noisy background pixels is obtained. 

B. Comparison of Model and Data Uncertainty

To provide insights on what exactly data uncertainty captures and how it is different than model uncertainty [START_REF] Joshi | Explainable fingerprint roi segmentation using monte carlo dropout[END_REF], we perform a detailed comparison of the proposed DU-RUnet (RUnet with data uncertainty) with the recently proposed MU-RUnet [START_REF] Joshi | Explainable fingerprint roi segmentation using monte carlo dropout[END_REF] (RUnet with model uncertainty).

Table II and Table III compare the segmentation performance obtained by MU-RUnet and DU-RUnet. DU-RUnet outperforms MU-RUnet on majority of the databases. These results demonstrate the fact that data uncertainty turns to be more useful than model uncertainty in facilitating correct segmentation of noisy background pixels.

Next, to analyze the interpretability of predicted uncertainties, we plot Figure 4. Sample cases demonstrate the fact that indeed predicting either type of uncertainty helps to improve the baseline segmentation performance. Both of these uncertainties capture complementary information. Model uncertainty captures model's confidence in prediction due to which higher uncertainty values are obtained for incorrectly classified pixels. On the other hand, data uncertainty captures 

Architecture

Time (sec.) RUnet [START_REF] Wang | Recurrent unet for resource-constrained segmentation[END_REF] 0.22 MU-RUnet [START_REF] Joshi | Explainable fingerprint roi segmentation using monte carlo dropout[END_REF] 1.03 DU-RUnet (Proposed) 0.22 High uncertainty is predicted for background compared to the foreground. boundary pixels around the input fingerprint image in the top row are far more noisy as compared to second and third row. Consequently, the predicted uncertainty around the boundaries is higher for the top row compared to the second and third row. These results demonstrate the reliability of the predicted data uncertainty.

2) Quantitative Analysis: For quantitatively demonstrating the efficacy of data uncertainty predicted by the proposed DU-RUnet, Figure 5 illustrates the mean data uncertainty predicted for: background (with respect to ground truth roi mask) versus foreground pixels and correctly versus incorrectly classified pixels. As expected, the mean uncertainty predicted for background is significantly higher compared to foreground. Likewise, the mean uncertainty predicted for incorrectly classified pixels is way higher compared to correctly classified pixels. These results verify the claim that DU-RUnet predicts high data uncertainty around boundaries and noisy background pixels.

D. Generalization Ability

All the experimental analysis presented so far is conducted on fingerprint ROI segmentation. To establish the effectiveness of modelling data uncertainty in fingerprint preprocessing, in general, we also demonstrate its impact in fingerprint enhancement. In this direction, we take two state-of-the-art fingerprint enhancement models DeConvNet [START_REF] Schuch | De-convolutional auto-encoder for enhancement of fingerprint samples[END_REF] and FP-E-GAN [START_REF] Joshi | Latent fingerprint enhancement using generative adversarial networks[END_REF] and modify them to DU-DeConvNet and DU-GAN to obtain data uncertainty from these baseline architectures. Table V and Figure 6 (a) demonstrate the fact that the fingerprint quality scores are improved for both the baseline enhancement models after modifying them to predict data uncertainty. Likewise, as indicated in Table VI and Next, we show that the ridge reconstruction ability is indeed improved after modelling data uncertainty. Figure 7 compares the PSNR value obtained by DU-GAN (as it is better performing architecture than DU-DeConvNet) and its corresponding baseline architecture, FP-E-GAN. Higher PSNR value with respect to the ground truth binarized image is obtained for DU-GAN which signifies that DU-GAN performs better than baseline FP-E-GAN in reconstructing the distorted ridges. Lastly, Figure 8 showcases the improvement in enhancement performance after modifying the state-of-the-art fingerprint enhancement models to predict data uncertainty. We observe that DU-ConvNet and DU-GAN perform far better than corresponding baselines in predicting missing ridge information and improving the overall ridge-valley clarity.

IX. CONCLUSION AND FUTURE WORK

This research is the first work in the fingerprints domain to demonstrate the effectiveness of modelling data uncertainty through a deep Bayesian network. Proposed methodology is tested on fingerprint roi segmentation and enhancement. Extensive experimentation over a wide range of databases and network architectures showcases the generalization ability of the proposed work. Insights on the improved model performance are provided through visualization of neural activations. Furthermore, qualitative and quantitative analysis of predicted data uncertainty is conducted which confirms that the higher data uncertainty is predicted around noisy and background pixels compared to clear foreground region.

A detailed comparison between model performance obtained after incorporating model uncertainty and data uncertainty is conducted. Results reveal that modelling both the type of uncertainty is helpful as both the uncertainties capture different but useful information. However, the time taken to infer data uncertainty is much lower compared to the time required to infer model uncertainty. In future, the usefulness of uncertainty information in other stages of fingerprint matching pipeline can be studied.

Fig. 2 .

 2 Fig. 2. Flowchart showcasing inference of data uncertainty. The output layer comprises of two branches. For understanding, the case of fingerprint segmentation is shown where one branch predicts the segmentation mask whereas the other branch predicts the per-pixel data uncertainty.

1 )

 1 Fingerprint Verification Challenge (FVC) Databases: Three different FVC series 2000, 2002 and 2004 consisting of fingerprints acquired from different sensors, having varying background noise are used for this work. Each series has four databases and a well-defined training and testing set. Following the protocol, training and testing is conducted on a total of 960 and 9600 images respectively. The ground truth roi segmentation masks are obtained from [42] 1 . 2) Rural Indian Fingerprint Database: It has fingerprint samples collected from the rural Indian population extensively involved in manual work such as farmers, carpenters, villagers etc. It has 1631 fingerprint images acquired using an optical sensor. VI. TRAINING AND TESTING Recurrent Unet (RUnet) [49] is selected as the baseline architecture for fingerprint segmentation. It is a classification based model which is trained on cross-entropy loss. The architecture of RUnet is modified as suggested in Section IV. Modified architecture is named as DU-RUnet (Recurrent Unet with Data Uncertainty). Training and testing are performed on the respective training and testing subsets of FVC databases. The loss function presented in equation 2 is used to train DU-RUnet. Hyper-parameter T=5 is used for training DU-RUnet.

  1 https://figshare.com/articles/dataset/Benchmark for Fingerprint Segment ation Performance Evaluation/1294209

Fig. 3 .

 3 Fig. 3. Visualizations obtained using Seg-Grad-Cam (best viewed in colour). Higher activations around the foreground and boundaries are obtained by DU-RUnet compared to the baseline RUnet. This explains the improved segmentation performance by RUnet on noisy background pixels after modelling data uncertainty.

Fig. 4 .

 4 Fig.4. Visualization of model and data uncertainty. Sample cases demonstrating the fact that predicting either of the two kind of uncertainties improves the segmentation performance as both of these capture different but useful information. Model uncertainty captures model's confidence in prediction. As a result, higher uncertainty around incorrect predictions is obtained compared to the correctly predicted pixels. Data uncertainty on the other hand, captures the noise in in the fingerprint image. Consequently, higher data uncertainty is predicted around background and boundaries as compared to the foreground.

Fig. 5 .

 5 Fig. 5. Comparison of predicted data uncertainty for (a) foreground and background pixels (b) correctly and incorrectly classified pixels. Higher mean uncertainty obtained for background and incorrectly classified pixels demonstrates the efficacy of data uncertainty prediction. D1 to D12 represent FVC2000 DB1 to FVC2004 DB4 respectively (in order).

Figure 6 (

 6 b), images generated by DU-DeConvNet and DU-GAN obtain better matching performance compared to the baseline DeConvNet and FP-E-GAN.

Fig. 6 .

 6 Fig. 6. Improved enhancement performance obtained on by the proposed DU-DeConvNet and DU-GAN (after modelling data uncertainty) demonstrated through (a) Improved Nfiq quality scores (lower is better) (b) DET curve demonstrating reduced EER while performing matching using MCC matcher.

Fig. 7 .

 7 Fig. 7. Sample test cases showcasing the improvement in ridge reconstruction ability of FP-E-GAN after modelling data uncertainty, resulting in proposed DU-GAN.

Fig. 8 .

 8 Fig. 8. Sample challenging cases showcasing improved performance by stateof-the-art fingerprint enhancement algorithms after modelling data uncertainty.

TABLE I COMPARISON

 I OF JACCARD SIMILARITY AND DICE SCORE OBTAINED BY BASELINE RUNET AND PROPOSED DU-RUNET.

	Database	Jaccard Similarity (↑) Dice Score (↑) RUnet DU-RUnet RUnet DU-RUnet
	2000DB1	88.15	88.52	93.34	93.62
	2000DB2	86.40	88.07	92.39	93.42
	2000DB3	93.74	95.36	96.50	97.55
	2000DB4	94.28	94.97	97.04	97.40
	2002DB1	96.95	97.07	98.44	98.50
	2002DB2	94.88	95.43	97.28	97.60
	2002DB3	91.83	93.06	95.53	96.25
	2002DB4	91.17	91.89	95.32	95.74
	2004DB1	98.78	99.00	99.38	99.50
	2004DB2	93.94	96.37	96.69	98.14
	2004DB3	94.62	95.47	97.17	97.65
	2004DB4	94.73	95.61	97.21	97.70

TABLE II COMPARISON

 II OF JACCARD SIMILARITY AND DICE SCORE OBTAINED AFTER INCORPORATING MODEL AND DATA UNCERTAINTY.

	Database	Jaccard Similarity (↑) MU-RUnet DU-RUnet	Dice Score (↑) MU-RUnet DU-RUnet
	2000DB1	87.97	88.52	93.14	93.62
	2000DB2	88.43	88.07	93.58	93.42
	2000DB3	95.39	95.36	97.57	97.55
	2000DB4	94.89	94.97	97.36	97.40
	2002DB1	96.83	97.07	98.38	98.50
	2002DB2	95.13	95.43	97.40	97.60
	2002DB3	93.87	93.06	96.73	96.25
	2002DB4	91.53	91.89	95.54	95.74
	2004DB1	98.88	99.00	99.49	99.50
	2004DB2	95.98	96.37	97.93	98.14
	2004DB3	95.29	95.47	97.55	97.65
	2004DB4	96.18	95.61	98.03	97.70
			TABLE III		
	COMPARISON OF SEGMENTATION PERFORMANCE OBTAINED BY
		DU-RUNET AND MU-RUNET.	
	Algorithm	Err (↓)	HC(↑)	MC (↓)
	MU-RUnet [24]	0.0173	0.9949	0.0313
	DU-RUnet (Proposed)	0.0163	0.9936	0.0301
	noise in the input fingerprint image due to which higher
	uncertainties values are obtained around noisy and background
	pixels as compared to the foreground. Furthermore, consistent
	with the literature [15], we observe data uncertainty values to
	be better calibrated than model uncertainties.	
	Lastly, Table IV compares the inference time for MU-RUnet

TABLE V AVERAGE

 V NFIQ QUALITY SCORES OBTAINED ON RURAL INDIAN FINGERPRINT DATABASE.

	Enhancement Algorithm Avg. Nfiq Score (↓)
	Raw Image	2.94
	DeconvNet [36]	1.95
	DU-DeConvNet	1.84
	FP-E-GAN [23]	1.31
	DU-GAN	1.26

TABLE VI AVERAGE

 VI EER OBTAINED ON RURAL INDIAN FINGERPRINT DATABASE.

	Enhancement	Matching	Avg. EER (↓)
	Algorithm	Algorithm	
	Raw Image	Bozorth	16.36
	DeConvNet [36]	Bozorth	10.93
	DU-DeConvNet	Bozorth	8.71
	FP-E-GAN [23]	Bozorth	7.30
	DU-GAN	Bozorth	7.13
	Raw Image	MCC	13.23
	DeConvNet [36]	MCC	10.86
	FP-E-GAN [23]	MCC	5.96
	DU-DeConvNet	MCC	5.36
	DU-GAN	MCC	5.13
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