Data Uncertainty Guided Noise-aware Preprocessing Of Fingerprints - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Data Uncertainty Guided Noise-aware Preprocessing Of Fingerprints

Ayush Utkarsh
  • Fonction : Auteur
  • PersonId : 1122981
Riya Kothari
  • Fonction : Auteur
  • PersonId : 1122982
Vinod K Kurmi
  • Fonction : Auteur
  • PersonId : 1122983
Sumantra Dutta
  • Fonction : Auteur
  • PersonId : 1122984
Prem Kumar Kalra
  • Fonction : Auteur
  • PersonId : 1122985

Résumé

The effectiveness of fingerprint-based authentication systems on good quality fingerprints is established long back. However, the performance of standard fingerprint matching systems on noisy and poor quality fingerprints is far from satisfactory. Towards this, we propose a data uncertainty-based framework which enables the state-of-the-art fingerprint preprocessing models to quantify noise present in the input image and identify fingerprint regions with background noise and poor ridge clarity. Quantification of noise helps the model two folds: firstly, it makes the objective function adaptive to the noise in a particular input fingerprint and consequently, helps to achieve robust performance on noisy and distorted fingerprint regions. Secondly, it provides a noise variance map which indicates noisy pixels in the input fingerprint image. The predicted noise variance map enables the end-users to understand erroneous predictions due to noise present in the input image. Extensive experimental evaluation on 13 publicly available fingerprint databases, across different architectural choices and two fingerprint processing tasks demonstrate effectiveness of the proposed framework.
Fichier principal
Vignette du fichier
IJCNN_2021_Noise_aware (2).pdf (7.19 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03524646 , version 1 (13-01-2022)

Identifiants

Citer

Indu Joshi, Ayush Utkarsh, Riya Kothari, Vinod K Kurmi, Antitza Dantcheva, et al.. Data Uncertainty Guided Noise-aware Preprocessing Of Fingerprints. IJCNN 2021 - International Joint Conference on Neural Networks, Jul 2021, Shenzhen (online), China. ⟨10.1109/IJCNN52387.2021.9533528⟩. ⟨hal-03524646⟩
24 Consultations
36 Téléchargements

Altmetric

Partager

More