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3D CNN Architectures and Attention
Mechanisms for Deepfake Detection

Ritaban Roy, Indu Joshi, Abhijit Das and Antitza Dantcheva

Abstract Manipulated images and videos have become increasingly realistic due
to the tremendous progress of deep convolutional neural networks (CNNs). While
technically intriguing, such progress raises a number of social concerns related to
the advent and spread of fake information and fake news. Such concerns necessitate
the introduction of robust and reliable methods for fake image and video detection.
Towards this in this work, we study the ability of state of the art video CNNs includ-
ing 3D ResNet, 3D ResNeXt, and I3D in detecting manipulated videos. In addition,
and towards a more robust detection, we investigate the effectiveness of attention
mechanisms in this context. Such mechanisms are introduced in CNN architectures
in order to ensure that robust features are being learnt. We test two attention mech-
anisms, namely SE-block and Non-local networks. We present related experimental
results on videos tampered by four manipulation techniques, as included in the Face-
Forensics++ dataset. We investigate three scenarios, where the networks are trained
to detect (a) all manipulated videos, (b) each manipulation technique individually, as
well as (c) the veracity of videos pertaining to manipulation-techniques not included
in the train set.
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1 Introduction

Manipulated images date back to the creation of the first photograph in the year
1825 [18]. Related manipulation techniques have been widely driven by profit stem-
ming from identity theft, age deception, illegal immigration, organized crime, and
espionage, inflicting negative consequences on businesses, individuals, and political
entities. While forgery was associated with a slow, painstaking process usually re-
served for experts, we are entering new levels of manipulation of images and video,
where deep learning and related manipulation are streamlined to reduce costs, time
and skill needed to doctor images and videos. Automated generation and manipu-
lation of audio, image and video bares highly exciting perspectives for science, art
and video productions, e.g., video animation, special effects, reliving already passed
actors.

While highly intriguing from computer vision perspective, deepfakes entail a
number of challenges and threats, given that (a) such manipulations can fabricate
animations of subjects involved in actions that have not taken place and (b) such
manipulated data can be circumvented nowadays rapidly via social media. Particu-
larly, we cannot trust anymore, what we see or hear on video, as deepfakes betray
sight and sound, the two predominantly trusted human innate senses [44]. Given that
(i) our society relies heavily on the ability to produce and exchange legitimate and
trustworthy documents, (ii) sound and images have recorded our history, as well as
informed and shaped our perception of reality, e.g., axioms and truths such as “T’1l
believe it when I see it.” “Out of sight, out of mind.” “A picture is worth a thousand
words.”, as well as (iii) social media has catapulted online videos as a mainstream
source of information; deepfakes pose a threat of distorting what is perceived as
reality. To further fuel concern, deepfake techniques have become open to the public
via phone applications such as FaceApp!, ZAO? and Wombo3. Further, digital iden-
tity#, associated to the entire collection of information generated by a person’s online
activity including usernames and passwords, photographs, online search activities,
birth date, social security becomes highly vulnerable, with deepfakes entailing the
premise to inflict severe damage. Additional social threats [12, 17] can affect do-
mains such as journalism, education, individual rights, democratic systems and have
intrigued already a set of journalists3678.

1 https://apps.apple.com/gb/app/faceapp-ai-face-editor/id118088434 1
2 https://apps.apple.come/cn/app/id146519927
3 https://www.wombo.ai/

4 https://www.indrastra.com/2018/01/Digital-Identity-Gateway-to-All-Other-Use-Cases-004-01-
2018-0034.html

5 https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/

6 https://www.nytimes.com/2019/11/24/technology/tech-companies-deepfakes.html

7 https://www.theguardian.com/commentisfree/2018/jul/22/deep-fake-news-donald-trump-
vladimir-putin

8 https://www.cnbc.com/2019/10/14/what-is-deepfake-and-how-it-might-be-dangerous.html
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We differentiate two cases of concern: the first one has to do with deepfakes
being perceived as real, and the second relates to real videos being misdetected for
fake, the latter referred to as “liar’s dividend”. Given such considerations, e.g., video
evidence becomes highly questionable.

Recent research on deepfake generation proposed approaches, where forged
videos are created based on a short video of the source person [48, 30], as well
as from a single ID photo [5] of the source person. In addition, fully synthesized
audio-video images are able to replicate synchronous speech and lip movement [46]
of a target person. Hence deepfakes coerce the target person in a video to reenact the
dynamics of the source person.

Two deepfake-schemes have evolved, corresponding to head puppetry (the dy-
namics of a head from a source person are synthesized in a target person), as well
as face swapping (the whole face of a target person is swapped with that of a source
person). Lip syncing (the lip region of the target person is reenacted by the lip
region of a source person) falls in the first cateory. Currently such manipulations
include subtle imperfections that can be detected by humans and, if trained well,
by computer vision algorithms [33, 32, 3]. Towards thwarting such attacks, early
multimedia forensics based detection strategies have been proposed [3, 41, 4, 16].
Such strategies, although essential, cannot provide a comprehensive solution against
manipulated audio, images and video. Specifically, the detection of deepfakes is
challenging for several reasons: (a) it evolves a “cat-and-mouse-game” between the
adversary and the system designer, (b) deep models are highly domain-specific and
likely yield big performance degradation in cross-domain deployments, especially
with large train-test domain gap.

The manipulation scenario of interest in this work has to do with a face video
or expressions of a farget person being superimposed to a video of a source person,
widely accepted and referred to as deepfake.

Contributions

Motivated by the above, this work makes following contributions.

(i) We compare state of the art video based techniques in detecting deepfakes. Our
intuition is that current state of the art forgery detection techniques [19, 40, 14, 8, 39,
1] omit a pertinent clue, namely motion, by investigating only spatial information. It
is known that generative models have exhibited difficulties in preserving appearance
throughout generated videos, as well as motion consistency [51, 54, 42, 57]. Hence,
we here show that using 3DCNNSs indeed outperforms state of the art image-based
techniques.

(ii) We show that such models trained on known manipulation techniques general-
ize poorly to tampering methods outside of the training set. Towards this, we provide
an evaluation, where train and test sets do not intersect with respect to manipulation
techniques.

(iii)) We determine the efficacy of two attention mechanisms, namely SE-block
and Non-local networks by comparing the number of parameters, inference time and
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classification performance for deepfake detection. We find that a non-local neural
network indeed improves the classification accuracy of 3DCNNs without introducing
significant computational overhead.
(iv) Lastly, we analyze the correlation matrix of learnt features, as well as activa-
tions of Seg-Grad-Cam [53] to give insight on how attention mechanisms work.
We note that this Chapter extends the work of Wang and Dantcheva [60] by
contributions (iii) and (iv).

2 Related Work

A very recent survey has revisited image and video manipulation approaches and
early detection efforts [49]. An additional comprehensive survey paper [63] reviews
manipulations of images, graphs and text.

Generative adversarial networks (GANs) [20] have enabled a set of face manipu-
lations including identity [28, 35], facial attributes [61], as well as facial expressions
[34, 27,57, 58, 59].

2.1 Deepfake Detection

While a number of manipulation-detection-approaches are image-based [1, 40],
others are targeted towards video [33, 3, 41] or jointly towards audio and video
[31]. We note that although some video-based approaches might perform better
than image-based ones, such approaches are only applicable to particular kinds of
attacks. For example, many of them [33, 3] may fail, if the quality of the eye area is not
sufficiently good or the synchronization between video and audio is not sufficiently
natural [32].

Image-based approaches are general-purpose detectors, for instance, the algo-
rithm proposed by Fridrich and Kodovsky [19] is applicable to both steganalysis
and facial reenactment video detection. Rahmouni et al. [39] presented an algo-
rithm to detect computer-generated images, which was later extended to detecting
computer-manipulated images. However, performance of such approaches on new
tasks is limited compared to that of task-specific algorithms [40].

Agarwal et al. exploited both, facial identity as well as behavioural biometrics
information provided by the temporal component of videos to classify a video as real
or fake [2]. Cozzolino et al. used temporal facial features to learn behaviour of a per-
son and use this as an identifier to compare characteristics in the presented video and
verify the claim of identity [15]. Guarnera et al. argued that deepfake videos contain
a forensic trait pertaining to the generative model used to create them. Specifically,
they showed that convolutional traces are instrumental in detecting deepfakes [22].
Khalid and Woo [29] posed deepfake detection as an anomaly detection problem and
used variational autoencoder for detecting deepfakes. Hernandez-Ortega [24] pro-
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posed a deepfake detection framework based on physiological measurement, namely
heart rate using remote photoplethysmography (rPPG). Trinh et al. [50] utilized dy-
namic representations (i.e., prototypes) to explain deepfake temporal artifacts. Sun
et al. [45] attempted to generalize forgery face detection by proposing a framework
based on meta-learning. Tolosana et al. [49] revisited first and second DeepFake
generations w.r.t. facial regions and fake detection performance.

We show in this work that such algorithms are indeed challenged, if confronted
with manipulation techniques outside of the training data.

Rossler et al. [40] presented a comparison of existing handcrafted, as well as
deep neural networks (DNNs), which analyzed the FaceForensics++ dataset and
proceeded to detect adversarial examples in an image-based manner. This was done
for (i) raw data, (ii) high quality videos compressed by a constant rate quantization
parameter equal to 23 (denoted as HQ), as well as (iii) low quality videos compressed
by a quantization rate of 40 (denoted as LQ). There were two training-settings used:
(a) training on all manipulation methods concurrently, (b) individual training on each
manipulation method separately. These two settings refer to the first two scenarios
of interest in this work.

We summarize for training setting (a), which is the more challenging setting (as
indicated by lower related detection rates).

1. Raw data: It is interesting to note that the correct detection rates for all seven
compared algorithms ranged between 97.03% and 99.26%. The highest score
was obtained by the XceptionNet [13].

2. HQ: High quality compressed data was detected with rates, ranging between
70.97% and 95.73% (XceptionNet).

3. LQ: Intuitively low quality compressed data had the lowest detection rates with
55.98% to 81% (XceptionNet).

We here focus on the LQ-compression as the most challenging setting.

We note that reported detection rates pertained to the analysis of a facial area with
the dimension 1.3 times the cropped face. Analyzing the full frame obtained lower
accuracy.

A challenge, not being addressed by Rossler et al. has to do with the generalization
of such methods. When detection methods, as the presented ones are confronted with
adversarial attacks, outside of the training set, such networks are challenged. This
has to do with the third scenario of interst in this chapter.

2.2 Attention Mechanisms

Attention mechanisms are designed to identify and focus on salient information,
which can facilitate improved decisions. Deepfake videos are acquired in uncon-
trolled conditions and can include a number of artificially created objects in the
background (e.g., news-banners). We hypothesize that attention mechanisms are in-
strumental in facilitating improved classification accuracy of a deepfake detector by
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enabling the model to focus on discriminative information. Additionally, visualiza-
tion of attention maps are beneficial in interpretation of the taken decision.

The understanding about attention can be derived from Naradaya-Watson’s regres-
sion model [37, 62]. Given the paired training data { (xy, y1), (x2, y2)...(xn, yn) }, for
a given test example x, a regression model predicts the target value § as

n

9= alxx)yx )

k=1

i.e. the target value is a weighted average of training instances. Here, the weight
a(x, xi ) signifies the relevance of training instance x; for making a prediction for x.
Attention mechanisms in deep models are analogous to Naradaya-Watson’s regres-
sion model, as such models are similarly designed to learn a weighting function.

Attention models incorporate an encoder-decoder architecture, solving the pitfall
of auto-encoder by allowing the decoder to access the entire encoded input sequence.
Attention aims at automatically learning an attention weight, which captures the
relevance between the encoder hidden state, i.e., candidate state and the decoder
hidden state i.e., the query state. The seminal work on attention was proposed by
Bahdanau ez al. [6] for a sequence-to-sequence modeling task. Attention modelling
has evolved to different type of attention based on the category of input and output,
as well as application domain. While the input of an attention model constitute an
image, sequence, graph or tabular data and, the output is represented by an image,
sequence, embedding or a scalar. We note that attention can be categorised based on
number of sequences, number of abstraction levels, number of positions, as well as
number of representations [11]. We proceed to explain such types in details.

With respect to number of sequences, attention can be of three types, namely
distinctive, co-attention and self attention. While in distinctive attention candidate
and query states belong to two distinct input and output sequences, in self atten-
tion [38, 52] the candidate and query states belong to the same sequence. In contrast,
co-attention accepts multiple input sequences as input at the same time and jointly
produces an output sequence.

Considering number of abstraction, attention can be divided into two type of
levels, namely single-level and multi-level. In single level attention weights are
computed only for the original input sequence, whereas in multilevel there are lower
and higher level of abstraction, works can be organized in top-down or bottom-up
approaches.

While considering the number of positions, attention can be of two types,
soft/global and hard/local. Hard attention requires the weights to be binary; for
instance, a model that crops the image towards naturally discarding non-necessary
details [21]. A major limitation of hard attention is that it is implemented using
stochastic non-differentiable algorithms [7, 36]. As a result, models employing it
cannot be trained in an end-to-end manner. Daviating from this, models employing
soft attention take an image or video as input and soft-weigh the region of interest
[26, 55]. Soft weighing is ensured by employing either sigmoid or softmax after the
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attention gates. This allows weights to be real valued and the objective function to
be differentiable.

Based on number of representations we have multi-representational and multi-
dimensional attention. While in the former different aspects of the input are consid-
ered, in the latter focus is placed on determining the relevance of each dimension of
the input.

Finally, with respect to type of architecture, related attention models can be
implemented as encoder-decoder, transformer and memory networks. An encoder-
decoder based attention model takes any input representation and reduces it to a
single fixed length, a transformer network aims to capture global dependencies
between input and output, and in memory networks facts that are more relevant to
the query are filtered out.

Application domains of attention include (i) natural language processing, (ii)
computer vision, (iii) multi-modal tasks, (iv) graphical systems and (v) recommender
systems. Visual attention brings to the fore a vector of importance weights; in order to
predict or infer one element, e.g., a pixel in an image, we estimate using the attention
vector how meaningful it is. In particular in this scenario, attention modules are
designed to indicate decisive regions of an input, for the task in hand. The output of
an attention module is a vector, representing relative importance. This vector is then
used to re-weight network parameters, so that pertinent characteristics have higher
weights. Consequently, an attention module boosts the model’s performance in a
targeted task. For this work we introduce a self attention, soft attention, single level,
multidimensional attention for deepfake detection.

We proceed to describe two promising modules used extensively and successfully
in image and video processing applications, and which we employ in this chapter, viz.
non-local block, which is based on transformer network and squeeze and excitation
that is based on an encoder-decoder network.

s i I |

THW x 512

Residual

Residual

S

FC

(2) (b)

1N
L/ rxnxwxion

Fig. 1: Schematic diagrams of (a) non-local block, (b) non-local block in the backbone
architecture.
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[Layer Name |Output Size | Architecture |
Conv_1 16x112x112 TX7x7, 3, stride (1,2,2)
Res_1 16Xx56%x56 3%3x%3 maxpool, stride 2
Ix1x1,64
3x3x3,64 | X3
(l x1x1, 256)
1x1x1,128
Res_2 8x28x28 3x3x3,128|x4
(1 x1x1, 512)
1x1x1,256
Res_3 4x14x14 3x3x43,256|x23
(1 xX1x1, 1024)
1x1x1,256
Res_4 2X7X7 3x3x%x3,256 |x3
(1 x1x1, 1024)
Non-local block |2x7x7 refer Figure la
Avg Pool & FC |1x1x1 Average Pool and Sigmoid

Table 1: Architecture of 3D ResNet-101 with non-local block.

Non-local Block

The architecture of a non-local block [56] is based on the observation that convolu-
tional and recurrent operations process only a local neighbourhood. Consequently,
these fail to capture long range dependencies. To overcome this limitation of CNNs,
non-local block performs a non-local operation to compute feature responses (see
Figure 1 and Table 1). A non-local operation is characterized by computing the re-
sponse at a position as a weighted sum of features at all positions in the input feature
maps.

Given that video processing requires access to information in distant pixels in
space an time, computation of long-range dependencies is necessitated. Non-local
operations enable a CNN to capture long-range dependencies and thus are highly
beneficial in video processing. Formally, in the context of CNNs, a non-local oper-
ation is defined as

1
%= e %_]p(xi,x,o r(x;), )

where x and o denote the input and output feature, respectively. p represents a
pairwise function that computes a relationship (e.g., affinity) between pixels i and
Jj. r signifies a unary function, which computes a representation of input feature at
pixel j. C(x) is a normalization factor and is set as C(x) = Xy; p(xi, x;).

In this chapter, the default choices of p and r are used. g is a linear embedding
and is defined as g(x) = W, x;. Pairwise function is defined as
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pls,xp) = e A, 3)
where a(x;) = Wox; and B(x;) = Wgx; are the associated embeddings. This pair-
wise function is called embedded Gaussian and primarily computes dot-product
similarity in the embedding space.

Residual

TxCxHxW

A
VY

TxCxHxW

(@) (b)

Fig. 2: (a) Residual block, (b) residual block after adding SE block.

Tx1x1x1 Tx1x1x1

F_ (e

scale

TxCxHxW TxCxHxW

Fig. 3: Schematic diagram of SE block showcasing the squeeze and excitation func-
tion.

Squeeze and Excitation block

The Squeeze and Excitation (SE) block [25] boosts the representational power of
a CNN by modelling inter-dependencies between channels of the features learnt
by it (see Figure 2). As illustrated in Figure 3, the SE block comprises of two
operators: squeeze and excitation. While the squeeze operation aggregates features
across spatial dimensions and creates a global distribution of channel-level feature
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response, the excitation operation is a self-gating mechanism that generates a vector
of per-channel re-calibration weights. We proceed to define both operations.
Squeeze Operation Let us assume that the input feature X € RW*H*C js rep-
resented as X=[x;, x,, ....xc], where x; € RW>H _ The squeeze operation exploits
global spatial information by squeezing X through global average pooling and cre-

ating a channel descriptor, z € R where i*" element of z is calculated as

1 W H
2 = Fag(x1) = waZI;x"(f’k)' “
HE

Excitation Operation exploits information acquired through squeeze operation
to model dependency among channels through gating with sigmoid activation. For-
mally, squeeze operation is defined the following.

a=Fex(z,wi,w2) = c(wad(w12)), (%)

C C . . .
where w; € R7*€, w, € RO+ . In this context a denotes the modulation weights
per channel and 6 denotes ReLU. The recalibrated feature is then computed as

Xi = Fycate(xi, ai) = aix; ©)

X = [%1,%2,...%c].

We proceed to discuss the dataset.

Fig. 4: Sample frames from the FaceForensics++ dataset From left to right:
original source (large) and target (small) images, deepfakes, face2face, faceswap,
neuraltextures.
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3 Dataset

The FaceForensics++ dataset [40] comprises of 1000 talking subjects, represented
in 1000 real videos. Further, based on these 1000 real videos, 4x1000 adversarial
examples have been generated by following four manipulation schemes.

1.

Face-swap represents a graphic approach transferring a full face region from
a source video to a target video. Using facial landmarks, a 3D template model
employs blend-shapes to fit the transferred face. FaceSwap®.

. Deepfakes has become the synonym for all face manipulations of all kind, it

origins to FakeApp!© and faceswap github!!.

. Face2face [48] is a facial reenactment system that transfers the expressions of a

source video to a target video, while maintaining the identity of the target person.
Based on an identity reconstruction, the whole video is being tracked to compute
per frame the expression, rigid pose, and lighting parameters.

. Neuraltextures [47] incorporates facial reenactment as an example for a Neural-

Textures-based rendering approach. It uses the original video data to learn a neural
texture of the target person, including a rendering network that has been trained
with a photometric reconstruction loss in combination with an adversarial loss.
Only the facial expression corresponding to the mouth region is being modified,
i.e., the eye region stays unchanged.

4 Algorithms

We select three state of the art 3D CNN methods, which have excelled in action
recognition. We proceed to briefly describe them.

I3D [10] incorporates sets of RGB frames as input. It replaces 2D convolutional
layers of the original Inception model by 3D convolutions for spatio-temporal
modeling and inflates pre-trained weights of the Inception model on ImageNet as
its initial weight. Results showed that such inflation has the ability to improve 3D
models.

3D ResNet [23] and 3D ResNeXt are inspired by I3D, both extending initial 2D
ResNet and 2D ResNeXt to spatio-temporal dimension for action recognition. We
note that deviating from the original ResNet-bottleneck block, the ResNeXt-block
introduces group convolutions, which divide the feature maps into small groups.
We also conducted experiments with the 3D ResNet modified with squeeze-
excitation blocks and non-local block, and the 3D ResNeXt modified with non-
local block to investigate the effect of using self attention on these networks.

9 htpps://github.com/MarekKowalski/FaceSwap/
10 https://www.fakeapp.com

11 https://github.com/deepfakes/faceswap
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Given the binary classification problem in this work, we replace the prediction
layer in all networks by a single neuron layer, which outputs one scalar value. All three
networks have been pre-trained on the large-scale human action dataset Kinetics-
400. We inherit the weights in the neural network models and further fine-tune the
networks on the FaceForensics++ dataset in all our experiments.

We detect and crop the face region based on facial landmarks, which we detect in
each frame using the method from Bulat and Tzimiropoulos [9]. Next, we enlarge the
detected region by a factor of 1.3, in order to include pixels around the face region.

5 Experiments

We conduct experiments on the manipulation techniques listed above with the al-
gorithms I3D, 3D ResNet and 3D ResNext aiming at training and detecting (a) all
manipulation techniques, (b) each manipulation technique separately, as well as (c)
cross-manipulation techniques. Towards this, we split train, test and validation sets
according to the protocol provided in the FaceForensics++ dataset.

We use PyTorch to implement our models. The three entire networks are trained
end-to-end on 4 NVIDIA V100 GPUs. We set the learning rates to 1e~3. For training,
I3D accepts videos of 64 frames with spatial dimension 224 x 224 as input. The
size of input of 3D ResNet and 3D ResNeXt are 16 frames of spatial resolution
112 x 112. For testing, we split each video into short trunks, each of temporal size
of 250 frames. The final score assigned to each test video is the average value of the
scores of all trunks.

We also investigate the impact of two attention mechanisms on 3D ResNet, namely
Squeeze-Excitation blocks and Non-local blocks. In the case of the 3D ResNet with
the Squeeze-Excitation (SE) blocks, the network is trained from scratch as the SE
blocks are incorporated in the bottleneck modules themselves. Despite this addition
not performing at par with the original 3D ResNet pre-trained on Kinetics, training
is more stable and obtains superior results compared to a 3D ResNet that is trained
on the dataset from scratch. Based on the limitations and advantages we observe for
the 3D ResNet, we also investigate the impact of using the non-local block in the
3D ResNeXt, which outperform the other 3D architectures in most cases after this
modification. We report in all experiments the true classification rates (TCR).

5.1 All Manipulation Techniques

Firstly we evaluate the detection accuracy of the three video CNNs (with and without
attention), and compare the results to image-forgery detection algorithms. For the
latter we have in particular the state of the art XceptionNet [40], learning-based
methods used in the forensic community for generic manipulation detection [14, 8],
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computer-generated vs. natural image detection [39] and face tampering detection
[1]. Given the unbalanced classification problem in this experiment (number of
fake videos being nearly four times the number of real videos), we use weighted
cross-entropy loss, in order to reduce the effects of unbalanced data. We observe
that among the unmodified 3D CNNs, the detection accuracy of I3D is the highest
and it is also the most computationally intense. The performance of 3D ResNet
improves with the introduction of the non-local block. The lack of pre-training does
hamper the performance of the 3D ResNet with the SE attention, however it performs
significantly better than the vanilla 3D ResNet which was initialised with random
weights. Interestingly, with the addition of the non-local block to the 3D-ResNeXt, its
detection accuracy becomes the highest, surpassing I3D. Related results are depicted
in Table 2. We present the receiver operating characteristic curves (ROC curves) in
Figure 5 and the area under the curve (AUC) in Table 3.

Table 2: Detection of all four manipulation methods, LQ. TCR = True classification
rate, DF = deepfakes, F2F = face2face, FS = face-swap, NT = neuraltextures.

| Algorithm || Train and Test || TCR |
Steg. Features + SVM [19] ||FS, DF, F2F, NT||55.98
Cozzolino et al. [14] FS, DF, F2F, NT||58.69
Bayar and Stamm [8] FS, DF, F2F, NT||66.84
Rahmouni et al. [39] FS, DF, F2F, NT||61.18
MesoNet [1] FS, DF, F2F, NT||70.47
XceptionNet [13] FS, DF, F2F, NT|| 81.0

13D FS, DF, F2F, NT||87.43

3D ResNet FS, DF, F2F, NT||83.86

3D ResNet (w/o pre-training) ||FS, DF, F2F, NT|[54.96
3D ResNet (with SE) FS, DF, F2F, NT|| 80.0

3D ResNet (with non-local) ||FS, DF, F2F, NT||85.85
3D ResNeXt FS, DF, F2F, NT|(|85.14

3D ResNeXt (with non-local)||FS, DF, F2F, NT||88.28

| Algorithm

[[AUC|

3D ResNet

0.82

3D ResNet (w/o pre-training)

0.51

3D ResNet (with SE)

0.72

3D ResNet (with non-local)

0.86

3D ResNeXt (with non-local)

0.91

Table 3: AUC values of 3D ResNet and 3D ResNeXt endowed with attention.
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Fig. 5: ROC curves pertaining to 3D ResNet and 3D ResNext endowed with
attention mechanisms for testing and training of all four manipulation methods.

5.2 Single Manipulation Techniques

We proceed to investigate the performances of all algorithms, when trained and tested
on single manipulation techniques. We report the TCRs in Table 4. Interestingly, here
the video based algorithms perform similarly as the best image-based algorithm. This
can be due to the data-size pertaining to videos of a single manipulation technique
being smaller. I3D performed best among unmodified video based methods. 3D
ResNet with non-local block once again outperformed the pre-trained 3D ResNet and
the 3D ResNet with SE attention outperformed the randomly initialised 3D ResNet
that was trained from scratch. The performance of 3D ResNeXt also improved upon
introduction of the non-local block, and in fact, it performed best among all video
based methods.

Our experiments suggest that all detection approaches are consistently utmost
challenged on the GAN-based neuraltextures-approach. We note that neuraltextures
trains a unique model for each video, which results in a higher variation of possible ar-
tifacts. While deepfakes similarly trains one model per video, a fixed post-processing
pipeline is used, which is similar to the computer-based manipulation methods and
thus has consistent artifacts that can be instrumental for deepfake detection.

5.3 Cross-manipulation Techniques

In our third experiment, we train the 3D CNNs and the attention-endowed models
with videos manipulated by 3 techniques, as well as the original (real) videos and



3D CNN Architectures and Attention Mechanisms for Deepfake Detection 15

Table 4: Detection of each manipulation method individually, LQ. TCR = True
classification rate, DF = deepfakes, F2F = face2face, FS = face-swap, NT = neural-
textures.

| Algorithm || DF | F2F [| FS || NT |
Steg. Features + SVM [19] ||73.64|73.72(/68.93|(63.33
Cozzolino et al. [14] 85.451(67.88(|73.79(|78.00
Bayar and Stamm [8] 84.55(|73.72|(82.52{|70.67
Rahmouni et al. [39] 85.45(/64.231(56.31{|60.07

MesoNet [1] 87.27]|56.20([61.17(|40.67
XceptionNet [13] 96.36((86.86{|90.29(|80.67
13D 95.13((90.27{|92.25|| 80.5

3D ResNet 91.81]| 89.6 |[88.75|| 73.5

3D ResNet (w/o pre-training)(|58.80](73.60([59.20{|56.50
3D ResNet (with SE) 81.701|77.001|75.90{|66.25
3D ResNet (with non-local) |{94.67((89.20((92.13||76.00
3D ResNeXt 93.36|(86.06((92.501|80.50

3D ResNeXt (with non-local)||95.501( 90.4 {{95.08|80.71

proceed to test on the last remaining manipulation technique, as well as original
videos. We show related results in Table 5. Naturally, this is the most challenging
setting. At the same time, it is the most realistic one, because it is unlikely that
knowledge on whether and how videos have been manipulated will be provided.
Similar to the first experiment, we use weighted cross-entropy loss, in order to
solve the unbalanced classification problem. For the detection algorithms, one of the
more challenging settings in this experiment is when faceswap is the manipulation
technique to be detected. We note that 3D ResNet with non-local block outperformed
all other networks in this scenario.

While face2face and faceswap represent graphics-based approaches, deepfakes
and neuraltextures are learning-based approaches. However, faceswap replaces the
largest facial region in the target image and involves advanced blending and color
correction algorithms to seamlessly superimpose source onto target. Hence the chal-
lenge might be due to the inherent dissimilarity of faceswap and learning-based
approaches, as well as due to the seamless blending between source and target,
different than face2face.

We note that humans easily detected manipulations affected by faceswap and
deepfakes and were more challenged by face2face and ultimately neuraltextures
[40]. This is also reflected in the performance of 3D ResNet and 3D ResneXt
with non-local block, which were most challenged by the videos manipulated by
neuraltextures.
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Table 5: Detection of cross-manipulation methods, LQ. TCR = True classification
rate, DF = deepfakes, F2F = face2face, FS = face-swap, NT = neuraltextures, NL =
non-local, scratch = w/o pre-training.

Train Test{|3D ResNet|| 13D (|3D ResNeXt 3D 3D 3D 3D
ResNet | ResNet | ResNet | ResNeXt
(scratch) [(with SE)|(with NL)|(with NL)

FS,DF, F2F|[NT || 64.29 |(68.57 66.79 54.28 55.35 62.9 63.2
FS, DF, NT ||F2F|| 74.29 ||70.71 68.93 51.0 535 68.2 69.1

FS, F2F, NT||DF|| 75.36 |[75.00 72.50 50.7 52.5 76.78 77.8
F2F, NT, DF|| FS 59.64 |[57.14 55.71 50.3 53.5 68.2 65.71

5.4 Effect of Attention in 3D ResNets

We here analyze the correlation matrices between two layers (at the same depth)
for all the three variants of the 3D ResNet - the original 3D ResNet, the 3D ResNet
with squeeze-excitation and the 3D ResNet with non-local block (refer Figure 6).
The high correlation observed in distinct patches in Figure 6(a) indicates that the
original 3D ResNet without attention possibly overfits to the data. The addition of
squeeze-excitation (Figure 6(b)) improves upon this and a further improvement is
seen with the introduction of the non-local block in the 3D ResNet (Figure 6(c)).

Both attention mechanisms, squeeze-excitation and non local block increase the
number of parameters in the 3D ResNet by around 10%, however when trained
and tested on the whole dataset, we observe an improvement of 2% in the true
classification rate in case of the model with non-local block (Table 2). We note that
the 3D Resnet with SE attention could not be initialized with pre-trained Kinetics
weights, so for a fair comparison, a 3D ResNet trained on the dataset from scratch
was considered. Interestingly, without pre-trained weights, the vanilla 3D-ResNet
is unable to converge its training in most cases and was underfitting. The training
for the 3D ResNet with SE was more stable and yielded superior results over most
experiments. It is also interesting to observe that face2face challenges 3D ResNet
with non-local block more than the vanilla 3D ResNet. The exact reason behind this
was not certain, however, as pointed out before, it was one of the more challenging
scenarios for humans to detect as well [40]. In summary, 3D ResNet with the non-
local block outperforms predominantly all other 3D ResNet variants.
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Fig. 6: Correlation matrices for the 3D ResNets

Table 6: Number of parameters in 3D ResNet without and with attention.

| Algorithm [[No. of parameters|
3D ResNet 85,249,216
3D ResNet with SE 94,303,808

3D ResNet with non-local 93,647,040

5.5 Visualization of Pertinent Features in Deepfake Detection

We proceed to visualize features each of the 3D ResNet models are focusing on
for detecting of deepfakes by Grad-CAM[43]. We note that Grad-CAM finds the
final convolutional layer in a network and examines the gradient information flowing
into that layer. The output of Grad-CAM is represented by a heatmap visualization
for a given class label, in our case deepfake detection. In particular, we visualize
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five frames from a deepfake-video in Figure 7, for each of the three variants of 3D
ResNet. Interestingly, we observe that 3D ResNet with both attention mechanisms
focuses stronger on the central part of a face, as compared to the original 3D ResNet.
It is also worth noting that the heatmap for 3D ResNet with non-local block is located
slightly higher than 3D Resnet with squeeze-excitation block, yielding the highest
accuracy.

(a) 3D ResNet

(b) 3D ResNet with SE block

(c) 3D ResNet with non-local block

Ul gl

Fig. 7: Grad-CAM visualizations for the 3D ResNet models for the same video.
The frames are taken from the same fake video with a time step of 24. Red represents
higher probablity of the region being manipulated.

6 Conclusions

In this work we compared three state of the art video based CNN methods in
detecting four deepfake-manipulation-techniques. The three tested methods included
3D ResNet, 3D ResNeXt and 13D, which we adapted from action recognition. In
addition, we tested two attention mechanisms. Despite the pre-training of mentioned
methods on the action recognition dataset Kinetics-400, the methods generalized
very well to deepfake detection. Experimental results showed that 3D/video CNN’s
outperformed or performed at least similarly to image-based detection algorithms.

In addition, we observed that the incorporation of attention mechanisms in 3D
CNNs improved related detection accuracy and were beneficial in placing focus of
the models on areas of maximum manipulation in the forged videos.
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Further, we noted a significant decrease in detection rates in the scenario, when
we detected a manipulation technique not represented in the training set. One reason
relates to the fact that networks lack an adaptation-ability to transfer learned knowl-
edge from one domain (trained manipulation methods) to another domain (tested
manipulation method). It is known that current machine learning models exhibit
unpredictable and overly confident behaviour outside of the training distribution.

Future work will involve the consideration of additional deepfake-techniques.
Further, we plan to develop novel deepfake-detection approaches, which place em-
phasis on appearance, motion as well as pixel-level based generated noise, targeted
to outsmart the improving generation and manipulation algorithms.
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