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Abstract. With distributed and multi-view data being more and more
ubiquitous, the last 20 years have seen a surge in the development of new
multi-view methods. In unsupervised learning, these are usually classified
under the paradigm of multi-view clustering: A broad family of clustering
algorithms that tackle data from multiple sources with various goals and
constraints. Methods known as collaborative clustering algorithms are
also a part of this family. Whereas other multi-view algorithms produce
a unique consensus solution based on the properties of the local views,
collaborative clustering algorithms aim to adapt the local algorithms so
that they can exchange information and improve their local solutions
during the multi-view phase, but still produce their own distinct local
solutions.

In this chapter, we study the connections that collaborative clustering
shares with both multi-view clustering and unsupervised ensemble learn-
ing. We do so by addressing both practical and theoretical aspects: First
we address the formal definition of what is collaborative clustering as well
as its practical applications. By doing so, we demonstrate that pretty
much everything called collaborative clustering in the literature is either
a specific case of multi-view clustering, or misnamed unsupervised ensem-
ble learning. Then, we address the properties of collaborative clustering
methods, and in particular we adapt the notion of clustering stability
and propose a bound for collaborative clustering methods. Finally, we
discuss how some of the properties of collaborative clustering studied in
this chapter can be adapted to broader contexts of multi-view clustering
and unsupervised ensemble learning.

Keywords: collaborative clustering · multi-view clustering · stability
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1 Introduction

Clustering techniques play a central role in various part of data analysis and are
key to finding important clues concerning the structure of a data sets. In fact,
clustering is often considered to be the most commonly used tool for unsuper-
vised exploratory data analysis. However due to an explosion both in the number
of frequently occurring multi-view data (be it with organic views or with ”ar-
tificial views” created by different feature extraction algorithms), and also the
number and diversity of available clustering methods to tackle them, there has
been a surge in the number of clustering methods that are either multi-view,
multi-algorithm, or both.

While regular clustering itself presents its own challenges (the most com-
mon of which is to find which methods are “best” for a given task), these new
paradigms, involving multiples views and sometimes multiple clustering algo-
rithms, make the problem even more complex. Yet, despite an extensive litera-
ture on multi-view clustering, unsupervised ensemble learning and collaborative
clustering, very little is known about the theoretical fundations of clustering
methods belonging to these families of algorithms. Furthermore, while it is easy
to tell the difference between unsupervised ensemble learning and multi-view
clustering, the third family of algorithm –namely collaborative clustering [33,23]–
which is also the most recent of the three is a lot more problematic in the sense
that this notion is ill-defined in the literature and that it shares many similar-
ities with both multi-view clustering and ensemble learning, both in terms of
practical applications, but also when it comes to the algorithms used.

To address these issues with a special focus on collaborative clustering, in
this chapter we propose the following main contributions:

– First, we propose formalization of the three notions of collaborative cluster-
ing, multi-view clustering and unsupervised ensemble learning. And from it,
we clearly define what are the foundations of collaborative clustering.

– Second, we show that collaborative clustering is very much related and over-
lapping with multi-view clustering and ensemble learning. We also show that
ultimately multi-view clustering and collaborative clustering are equivalent
to regular clustering.

– We define the notion of pure collaborative clustering algorithms, a notion
that guaranties the definitive aspect of the results produced by such algo-
rithms.

– We introduce two key notions, namely novelty and consistency, that can be
used as quality metric for both collaborative clustering and unsupervised
ensemble learning.

– Then, we lay the groundwork for a theory of multi-view and collaborative
clustering approaches, by extending the notion of clustering stability orig-
inally proposed by Ben-David et al. [2]. We propose three complementary
characterizations of stable multi-view clustering algorithms, involving in par-
ticular the stability of the local algorithms and some properties of the col-
laboration.
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We tackle these issues all the while trying to keep a theoretical setting as
generic as possible.

Chapter organisation. This chapter is organized as follows: In Section 2 we intro-
duce the state of the art and current situation of collaborative clustering. Section
3 introduces the main notations and concepts that will be used in this chapter,
and it formalizes some definitions of collaborative and multi-view clustering.
Based on these formal definitions, it introduces the interconnections between all
these tasks. Section 4 presents the main contributions of our chapter, presenta-
tion and the study of several theoretical aspects and properties of collaborative
clustering. Section 5 lists various open questions subsequent to the theoretical
framework we presented. We conclude the chapter with a brief discussion on how
the formal classification of these fields could help future research.

2 Collaborative clustering: State of the art of a
polymorphic notion with very diverse applications

Before we start to describe the different variations of collaborative clustering, we
first present,in Table 1 below, the full spectrum of methods often falling under
the umbrella of collaborative clustering in the literature. We detail each sub-
category of methods according to their other denominations in the literature, its
characteristics and its inputs. Please note that the term “different algorithms”
may include cases where the same algorithm is used with different number of
cluster, or different parameters. This classification is our personal view of the
field, and is in no way fixed. Nevertheless, we needed it to make clear what
we were referring to when we mention these different notions throughout the
chapter.

2.1 Evolution of the notion of collaborative clustering

Collaborative clustering is a term that was first coined by Pedrycz [33] to describe
a clustering framework whose aim is to find common structures in several data
subsets. It essentially involves an active way of jointly forming or refining clusters
through exchanges and information communication between the different data
sites with the goal of reconciling as many differences as possible [35]. In its
original design collaborative clustering was not aimed at a specific application
and was essentially targeted at fuzzy clustering [32,37] and rough set clustering
[30] applications.

As the original idea gained in visibility, the notion of collaborative clustering
was re-used by several research teams who thought of various possible appli-
cations. This led to a diversification of what can be considered collaborative
clustering, but also to the question of its place as a tool or as a field compared
with already established problems such as multi-view clustering [3,48] and un-
supervised ensemble learning [38].
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Method family Characteristics Input References

Multi-view clustering
Organic views

Data only [48]of the same objects
under different features

Horizontal collaboration
Same object, Data,

[23,47,21]different features local partition,
local algorithms

Multi-algorithm collaboration
Same objects, Data,

[44,31,42,39]same features, local partition,
different algorithms local algorithms

Vertical collaboration
Different objects, Data,

[23,21,40]same features local partitions,
local algorithms

Partition collaboration
Same objects, Data

[16,17,14]
different features local partitions

Ensemble learning
Same objects, Local partitions only,

[15,38,20]same features, no data,
different algorithms no algorithm

Table 1: The spectrum of notions sometimes falling under the term collaborative
clustering.

A first attempt at formalizing collaborative clustering and categorizing its
different uses was made by Grozavu and Bennani [23]. In their work the authors
describe collaborative clustering as a two-steps process where partitions are first
created locally in each data site, and then refined during a collaborative step
which involves information communication between the different sites with a
goal of mutual improvement. The full process is illustrated in Figure 1. In the
same paper, the authors also distinguish two types of collaborative clustering:
horizontal collaboration (previously mentioned but not fully formalized in [33]
and [34]) which involves the same data with attributes spread over different
sites, and vertical collaboration where different data with the sames attributes
are spread across different sites. The algorithms developed following these ideas
are heavily inspired by the original work of Pedrycz et al. and rely on the same
principles applied to self-organizing maps [28] and generative topographic map-
ping [4] instead of the fuzzy C-Means algorithm [10].

It is worth mentioning that the term horizontal collaborative clustering had
already been used prior to their work to describe a version of collaborative fuzzy
C-Means applied to what can reasonably be considered a multi-view clustering
application [47].

Following the same idea as horizontal collaboration, a large number of meth-
ods [7,12,21,22,24,42] have since been developed with applications that fall under
the umbrella of what is traditionally known as multi-view clustering. Sometimes
the multiple views will be organic to the data, and sometimes it will be something
more artificial like different features or views artificially created by feature ex-
tracting algorithms. The common point of these horizontal collaborative methods
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Fig. 1: Graphical definition of collaborative clustering as it is defined by Grozavu
and Bennani [23]: local clustering algorithms produce clustering partitions locally
during the local step. During the collaborative step, these local partitions are
passed alongside the original data and local algorithms to produce improved
partitions in each site after the collaboration process. This graphical definition
works for both horizontal and vertical collaboration.

is that they perform the clustering of the same data spread across several sites.
Differences exist however as some of them aim at a single consensus result, while
others highlights that the specificity of collaborative clustering is that a con-
sensus should not be the main goal [21]. In other cases, collaborative clustering
is directly referenced as being multi-view clustering [22,25,43]. And sometimes
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the authors use collaborative clustering for multi-view application, but prefer to
opt for a neutral name [31]. While horizontal collaborative clustering and multi-
view clustering appear to be the same thing, a few authors point out that on
the one hand most multi-view clustering methods have access to all the views,
while on the other hand collaborative clustering with its local algorithms and
exchanges of information offer more possibilities for data anonymization and the
control of privacy [26,49,47]. Furthermore, it is worth mentioning that collabora-
tive clustering in its so called horizontal from encompasses both real multi-view
applications [23,47,21], and also cases of multi-algorithms collaboration where
several algorithms tackle the same data without any views [44,31,42,39]. In the
second case, this is in a way similar to boosting techniques but for unsupervised
methods.

Finally, another common recent use of collaborative clustering for multi-
view application is its application to the clustering of data sets spread across
networks under various constraints [45,41,11]. As with the privacy issues, col-
laborative clustering with its local methods and information exchanges offers
more possibilities than classical multi-view clustering framework for this type of
applications.

The second form described by Grozavu and Bennani, vertical collaboration,
appears to be less common in the literature [21,40]: In this case we consider
different samples of the same initial database spread across several sites. It is
likely that this term is less common in the literature simply because it matches
the definition of federated learning, which ironically is sometimes coined under
collaborative learning. However, unlike vertical collaborative clustering which so
far has only been tested on mostly outdated algorithms (K-Means, GTM, and
SOM), federated learning is currently researched for deep learning and using
block chain technology [5,1,36,9]. Indeed, in the case where we consider differ-
ent data distributed across several sites and with nearly identical distribution,
vertical collaborative clustering can be seen as a form of unsupervised federated
learning. On the other hands, if the distributions are too different, this becomes
transfer learning for which the current collaborative clustering methods are ill-
adapted.

Lastly, we can mention hybrid collaborative clustering [13], a mix between
horizontal and vertical collaborative clustering with little to no practical appli-
cation.

2.2 Remarkable branches of collaborative clustering and
applications that blur the lines between ensemble learning and
multi-view clustering

While we have presented an almost chronological evolution of the notion of col-
laborative clustering, it is worth mentioning that not all algorithms coined as
”collaborative clustering” fall under these definitions. There is indeed a whole
spectrum of collaborative clustering algorithm ranging from the mostly multi-
view applications that we have seen, to collaborations between algorithms work-
ing on the same data subsets, and even some methods discarding the original
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data and algorithms altogether to have a ”collaboration” only between parti-
tions, thus drifting towards what seems to be ensemble learning.

We can for instance mention group of methods and algorithms described
by their authors as collaborative clustering, but that differ slightly from both
the original idea by Pedrycz and the notion of horizontal collaboration coined by
Grozavu and Bennani. In [46,15,20,16,17], the authors propose various iterations
of the SAMARAH method [19]. Like in Grozavu and Bennani [23], they define
collaborative clustering as a two-steps process where results are first produced by
local algorithms, and are then refined. For some applications, several algorithms
are applied to the same source data [15,20], and in other multiple views or
sources for the same data are considered [16,17,14].In their case, they don’t use
collaborative clustering for multi-view learning but to merge the results of several
and potentially different clustering algorithms applied to the exact same data
and attributes. Furthermore, unlike in previous collaborative methods described
previously in this step of the art, the algorithms are completely removed from the
collaborative step and only the local partitions are kept to search for a consensus.
As one can see, this type of collaborative clustering is identical to what is known
as unsupervised ensemble learning [38]. It is worth mentioning that the strength
of this approach is that is it compatible with any clustering algorithm, and this
is due to the removal of the algorithms from the collaborative step.

The collision between collaborative clustering and ensemble learning was fur-
ther increased by the third attempt at formalizing collaborative clustering by a
group researchers from several teams working on the subject [8]. Furthermore,
this approach of giving less importance to the local algorithm and to focus more
on the partitions appears to be a growing trend too in collaborative clustering for
multi-view applications as more and more authors appear to favor it in recently
produced collaborative clustering algorithms [31,18].

As one can see from the state of the art and from Table 1, collaborative
clustering is a polymorphic notion whose main applications in the literature
range from multi-view clustering to ensemble learning. Yet, it is also obvious
that many of the methods under the name collaborative clustering share common
points that are unique to them. One of the goals of this chapter is to address the
overlap and confusion that may exist between the 3 notions and we will do so
in section 3 by formally defining what we consider to be the properties specific
to each type of method.

The second goal of this chapter, detailed in Section 4, is to introduce a for-
mal understanding of collaborative clustering, which appears to be missing in
all papers from the state of the art that we have mentioned previously: With
dozens of methods described, none of them so far has studied the theoretical
properties of collaborative clustering such as the question of its stability, the
question of the consistency between the original local partitions and the collab-
orative result(s), and potential guarantees that it will produce novel solutions
compared with the local ones, a property important for both multi-view and
ensemble learning applications. We will formalize and address these notions for
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collaborative clustering in general, and then we will discuss to what degree they
can be extended to multi-view clustering and unsupervised ensemble learning.

3 Distinguishing regular clustering, collaborative
clustering, multi-view clustering and unsupervised
ensemble learning

3.1 Notations

In the remainder of this work, we will use the notations presented in this sub-
section.

3.1.1 Regular clustering. Let us consider that all clustering methods –
regular, collaborative, multi-view or otherwise– will be applied a data space X
endowed with a probability measure P . If X is a metric space, let ` be its metric.
In the following, let S = {x1, · · · , xm} be a sample of size m drawn i.i.d. from
(X, P,Σ), where Σ is the set of finite partitions of X ⊆ X.

Fig. 2: Graphical definition of the notions of clustering algorithm, clustering par-
tition, and cluster in the case of regular clustering

In this work, we emphasize the difference between a clustering or partition,
and the clustering algorithm that produces this partition: In regular clustering,
a clustering C of a subset X ⊆ X is a function C : X → N which to any
of said subset X associates a solution vector in the form of matching clusters
S = C(X). Individual clusters are then defined by: Ci = C−1({i}) = {x ∈
X;C(x) = i}. The clustering algorithm A is the function which produces the
clustering partition, i.e. a function that computes a clustering of X for any finite
sample S ⊆ X, so that A : X 7→ C.
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These definitions are graphically explained in Figure 2. The proposed defini-
tion differs from a more standard view of clustering, in that they aim to produce
clustering partition for the whole space and not only for the dataset of interest.
Note however that this specific case can be retrieved easily from the definitions,
by defining the total space to correspond to the dataset. This trivial case is
weaker, in the sense that the theoretical analysis proposed below does not apply
to it.

Example 1. Consider data representing individuals, represented by two features,
the height and the weight. Here, the data space X is X = R2. Consider a pop-
ulation distribution P over X, and a sample of m individuals drawn from dis-
tribution P . The K-means algorithm is a clustering algorithm which, given the
sample, produces the partition defined as a Voronoi diagram associated to some
optimal seeds, the means computed by the algorithm.

3.1.2 Reminders on risk optimization schemes. A large class of cluster-
ing algorithms choose the clustering by optimizing some risk function. The large
class of center based algorithms falls into this category, and spectral clustering
can also be interpreted in this way. Risk optimization schemes are an impor-
tant clustering notion discussed by Ben David et al. [2]. We will also use them
when discussing clustering stability for both regular, multi-view and collabora-
tive clustering. This subsection reviews some of the basics needed to understand
our work.

Definition 1. (Risk optimization scheme) A risk optimization scheme is
defined by a quadruple (X, Σ,P,R), where X is some domain set, Σ is a set
of legal clusterings of X, and P is a set of probability distributions over X, and
R : P × Σ → [0,∞) is an objective function (or risk) that the clustering algo-
rithm aims to minimize. We denote opt(P) := infC∈ΣR(P, C). For a sample
X ⊆ X, we call R(PX , C) the empirical risk of C, where PX is the uniform prob-
ability distribution over X. A clustering algorithm A is called R-minimizing, if
R(PX , A(X)) = opt(PX), for any sample X.

Example 2. Generic examples regarding risk optimization schemes usually use
center-based clustering algorithms such as K-means and K-medians, and any
K-medoid based algorithm fuzzy or not. Those algorithms pick a set of k center
points c1, . . . , ck and then assign each data point in the metric space to the
closest center point. Such a clustering is a k-cell Voronoi diagram over (X, `), `
being the metric on the space X. To choose the centers, the K-Means algorithm
minimizes the following risk function:

R(P,C) = E
x∼P

[
min

1≤i≤k
(`(x, ci))

2|Vor(c1, c2, . . . , ck)

]
while the K-medians algorithm minimizes:

R(P,C) = E
x∼P

[
min

1≤i≤k
(`(x, ci))|Vor(c1, c2, . . . , ck)

]
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where Vor(c1, c2, . . . , ck) is the minimization diagram of the k functions (`(x, ci))
2

respectively `(x, ci), 1 ≤ i ≤ k.
Usually, risk-minimizing algorithms are meant to converge to the true risk

as the sample sizes grow to infinity, which is formalized by the notion of risk
convergence.

Definition 2. (Risk convergence) Let A be an R-minimizing clustering algo-
rithm.

We say that A is risk converging, if for every ε > 0 and every δ ∈ (0, 1) there
is m0 such that for all m > m0, PrS∼Pm [R(P,A(S)) < opt(P ) + ε] > 1− δ for
any probability distribution P ∈ PX .

For example, Ben-David et al. [2] have shown that, on bounded subset of Rd with
Euclidean metric, both K-means and K-medians minimize risk from samples.

Note that this definition represents, from measure theory point of view, the
almost everywhere convergence.

3.1.3 Notations in the multi-view context. The problem of interest in
this chapter involves clustering algorithms that can be applied to several data
sites. This setting includes all applications in Table 1. Therefore, we consider a
data space X which is decomposed into the product X = X1 × · · · × XJ of J
spaces Xj , that may or may not overlap depending on the application. We will
call the spaces Xj view spaces or simply views. The interdependence between
the views is not solely contained in the definition of the different views Xj , but
also in the probability distribution P over the whole space X.

For the remainder of this chapter, we will use strict notation conventions.
Upper indexes will usually refer to the view or data site index, and lower in-
dexes to individual data or clusters in specific views. For instance, Cjk would
be the k-th cluster of data site j, xjn the n-th data element of site j, etc. For
simplicity purposes, we will sometimes use the notation O1:J to designate the
tuple O1, . . . , OJ , where O can be any object distributed among the J views
(including algorithms, partitions or data).

Example 3. Consider the data described in Example 1. Consider that now data
are available in two different sites, corresponding to two view spaces (i.e. J = 2).
In the first site, both height and weight are observed (X1 = R2), while only the
height is observed in the second site (X2 = R). In this multi-view description,
the data space X is then defined as X = X1×X2 = R2×R. The total distribution
on X must satisfy the equality of the height between X1 and X2 (if x ∼ P , then
feature 0 of x1 is equal to x2).

3.2 Definitions, context, and practical setting

We now formalize the different tasks presented in Table 1 and show, based on
their definitions, how interconnected they are.
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3.2.1 Multi-view clustering partition. From the definitions above, we de-
fine the notion of multi-view clustering partition as follows:

Definition 3. (Multi-view clustering partition) A multi-view partition is
defined as a combination of local clustering in the following sense: A multi-view
clustering C of the subset X ⊆ X is a function C : X → Nq, where q ∈ {1, J}
is called the index of the partition and indicates whether the goal is to reach a
single consensus solution (q = 1) or to keep independent clustering in each view
(q = J).

As one can see, the very broad definition of a multi-view partition given
above covers all cases of collaborative and multi-view clustering, with the differ-
ent objectives of reaching a consensus between the views (q = 1) and refining the
partitions produced for each view (q = J). Both cases are important depending
on the context. When the views describe features of same objects but the goal is
to have groups of similar objects, then a consensus is needed: In Example 3, it
would be the case if the goal is to group individuals with similar morphological
traits. Conversely, refining the results of the views is important when the goal
is not to propose a unique group for each object, but one group per view: In
Example 3, the joint information of height and weight can provide refined in-
formation about the height distribution, but the clustering of heights must still
provide a description of the height characteristics only.

A very important observation here is that a multi-view clustering partition
can be interpreted as a regular clustering partition. This is clear when q = 1, since
the definitions of regular and multi-view partitions match completely. When
q = J , this result is based on the observation that N and NJ are equipotent (i.e.
there exists a bijection ν : NJ → N, for instance the Cantor pairing function).
For instance, saying that a point x = (x1, . . . , xJ) ∈ X is associated to clus-
ters (c1, . . . , cJ) in the multi-view setting, is equivalent to considering that x is
associated to cluster ν(c1, . . . , cJ) in a regular clustering of X.

Example 4. Consider X = X1 ×X2. In a case where both spaces are partitioned
into 2 clusters (namely C10 and C11 for X1 and C20 and C21 for X2), this can be
represented as a partition of X into four clusters: C0 = C10 × C20 , C1 = C10 × C21 ,
C2 = C11 × C20 and C3 = C11 × C21 .

Far from being anecdotal, this observation shows that any multi-view cluster-
ing sums up to a regular clustering. This result will be exploited further to extend
the main property of stability to collaborative clustering (Theorem 1). The con-
verse is not true though, since any partition of the total space X = X1× . . .×XJ
does not correspond to a multi-view partition. In order to correspond to a valid
multi-view partition, the global partition needs to satisfy another additional
property:

Proposition 1. A global clustering partition C on X = X1×. . .×XJ corresponds
to a local multi-view partition (C1, . . . , CJ) on the views X1, . . . ,XJ if and only
if for all j ∈ {0, . . . , J} and for all xj ∈ Xj, all clusters of C containing a point
x′ with x′j = xj have for projection over Xj the set Cj(xj).
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Proof. Suppose first that the global partition C corresponds to the local multi-
view partition (C1, . . . , CJ), i.e. there exists a bijection ν : NJ → N such that,
for all c1, . . . , cJ ≤ 0, Cν(c1,...,cJ ) = C1c1 × . . .×CJcJ . Consider a view j and a point
xj ∈ Xj . By construction, the clusters in C containing points with xj as their
j-th component are the clusters of the form Cν(c0,...,Cj(xj),...,cJ ) which have all
Cj(xj) as their projection on Xj .

Suppose now the converse, and let us show that C corresponds to the multi-
view partition (C1, . . . , CJ). From the hypothesis, we see that the projection of
each cluster Ci onto Xj is the union of some clusters from Cj . However, the
clusters being disjoint, the projection of Ci onto Xj being equal to one cluster
implies that the union contains one single element. Therefore, each cluster Ci is
the Cartesian product of clusters in local views: Ci = C1

c1i
× . . .×CJ

cJi
for some cji .

We must show that the function defined by ν(c1i , . . . , c
J
i ) = i is bijective. It is

direct to show that ν(n1, . . . , nJ) is well defined for nj lower than the number of
clusters on Cj (this can be shown by considering x = (x1, . . . , xJ) with xj ∈ Cjnj

).

Then, ν(c1i , . . . , c
J
i ) = ν(c1i , . . . , c

J
i ) implies (c1i , . . . , c

J
i ) = (c1i , . . . , c

J
i ) since the

clusters are distinct, which concludes the proof.

3.2.2 Multi-view and Collaborative Clustering Algorithms. Based on
the notions introduced before, we can now formalize the various notions exposed
in Table 1, in particular the notions of collaborative clustering algorithm, multi-
view clustering algorithm and unsupervised ensemble learning.

Defining these notions requires understanding the main differences between
them. Assessing multi-view clustering problems is direct: a multi-view clustering
problem simply partitions the data based on observations of samples from the
views Xj (Figure 3). For collaborative clustering algorithms, we will focus on
algorithms that have at least the following property: the collaboration process
should include local clustering algorithms exchanging information and must not
be limited to only exchanging local partitions. We feel like this definition is the
broadest we can have as it includes most algorithms developed by Pedrycz et al.,
as well as all algorithms falling under the definition of vertical and horizontal
collaboration as defined by Grozavu and Bennani [23], and thus only excludes
so called collaborative methods that are in fact unsupervised ensemble learning
as they deal only with partitions fusion (see Figure 4).

Definition 4 (Multi-view and collaborative clustering algorithms). Con-
sider a total space X = X1× . . .×XJ and a subspace X ⊆ X. Let Sj be a sample
of Xj. Then a collaborative clustering algorithm is a mapping

Acol : (S1, . . . SJ , A1, . . . , AJ , C1 . . . , CJ) 7→ C (1)

and a multi-view clustering algorithm is a mapping

AMV : (S1, . . . , SJ)→ C (2)

where Aj designates a clustering algorithm over Xj and Cj is a partition of Xj.
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Fig. 3: Graphical definition of multi-view clustering: In this figure we display
two possible cases, namely multi-view clustering without fusion, and multi-view
clustering leading to a single consensus partition.

For collaborative clustering algorithms, we denote the local algorithms as
index: Acol〈A1,...,AJ 〉(S

1, . . . , SJ , C1, . . . , CJ).

These two definitions describe successfully the multi-view clustering, hori-
zontal collaboration, multi-algorithm collaboration, vertical collaboration and
partition collaboration families described in Table 1. We observe that many ex-
isting collaborative clustering methods suppose the application of a same clus-
tering algorithm to the different views, which corresponds in essence to having
A1, . . . , AJ belonging to a same class of algorithms4. Please note that Equa-
tion 1 is compatible with both horizontal and vertical collaborative clustering as
it makes no assumptions about whether the full data space is cut into sub-sites
alongside the features or the data themselves.

It is noticeable that the collaborative clustering algorithms are given local
algorithms A1, . . . , AJ as input, and could be rewritten as functions of the form:
Acol : (A1, . . . , AJ) 7→ C.

The role of local algorithms as inputs in collaborative clustering is twofold :
They have an influence over the collaboration between the views. Intuitively, the
decision of altering an optimal local partition to incorporate information from
other views must be constrained by the biases of the local algorithm. This strat-
egy is explicit in the multi-algorithm collaboration setting [31,39,42,44], where

4 Formally, it would be incorrect to state that A1 = . . . = AJ , since the algorithms Aj

are defined relatively to different spaces Xj and are therefore of different natures.
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the impact of a local algorithm intervenes as a penalization of a risk minimization
objective by the information held in the produced partitions [31,44], as the core
of a risk minimization scheme with a penalty for divergences between views [42],
or as a bias in the selection of data for learning the local partitions from one
step to another [39]. Noticeably, many collaborative clustering algorithms are
thought to apply to one single class of local clustering algorithms, such as C-
Means, Self-Organizing Maps or Generative Topographic Maps [12,23,35,21]. In
this case, the nature of the local algorithms is directly exploited for the collab-
oration. In addition, following the idea of a 2-step process introduced by [23],
where the algorithm is divided into the generation of local partitions and the
refinement of these partitions, the local algorithms Aj are naturally involved
in the first step. The support of these algorithms (i.e. the space of parameters
on which they are properly defined)is then constrained to satisfy Cj = Aj(Sj)
for all j. It follows directly from Definition 4 that such collaborative clustering
algorithms, once the local clustering algorithms are fixed, are strictly equivalent
to multi-view clustering algorithms.

Proposition 2. Let Acol be a collaborative clustering algorithm the support of
which is restricted to satisfy Cj = Aj(Sj). Given A1, . . . , AJ , J fixed local clus-
tering algorithms, the function

S1, . . . , SJ 7→ Acol〈A1,...,AJ 〉
(
S1, . . . , SJ , C1(X1), . . . , CJ(XJ)

)
is a multi-view clustering algorithm.

This proposition is a direct application of Definition 4. A consequence of this
result is that, if we follow the definition of collaborative clustering as given by
Grozavu and Bennani [23] where partitions should not be merged (See Figure 1),
we have that collaborative clustering algorithms are a specific case of multi-view
clustering algorithms and they produce multi-view partition C of the subset
X ⊆ X whose mapping follows the form C : X → NJ , given J algorithms
collaborating together.

A very straightforward property of collaborative clustering algorithms which,
when used in practice, applies quite naturally the constraint Cj = Aj(Sj), is
that the produced solution cannot be altered by a second application of the
collaboration. We call that property the purity of the collaboration:

Definition 5 (Pure collaborative clustering algorithm). Let Acol be a
collaborative clustering algorithm that outputs a multi-view partition of index J .
Acol is said to be pure, if and only if

Acol
(
S1:J , A1:J ,Acol

(
S1:J , A1:J , C1:J

))
= Acol

(
S1:J , A1:J , C1:J

)
. (3)

The previous definition entails that a collaborative algorithm is pure if and
only if re-applying it to its own ouput will not change the resulting partitions. As
such purity is a desirable property for collaborative algorithms since it ensures
the definitive aspect of the results for algorithms that have this property.
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3.2.3 Unsupervised Ensemble Learning. The main difference between
the aforementioned collaborative and multi-view clustering algorithms, and the
unsupervised ensemble learning ones, is that the latter operate at the level of
partitions only (Figure 4) and are therefore slightly difference in essence.

Definition 6 (Unsupervised ensemble learning). Consider a total space X =
X1 × . . . × XJ and a subspace X ⊆ X. For all j, let Cj be a partition of Xj.
An unsupervised ensemble learning algorithm is defined as a mapping Aens :
C1 × . . .× CJ → Cj, where the Cj is a partition of a given view Xj.

Fig. 4: Graphical definition of unsupervised ensemble learning: Notice that the
data themselves are never involved in the process.

Although this definition is chosen to be as general as possible, most appli-
cations focus on the simplest case where all views are equal (X1 = . . . = XJ
and X1 = . . . = XJ) with the implicit assumption that the data are the same
in all views (which, formally, corresponds to an assumption on the probability
distribution P , such as in Example 3).

This very different nature makes it impossible to relate unsupervised en-
semble learning algorithms to the other families, such as done for instance for
multi-view and collaborative frameworks (Proposition 2). However, we can ob-
serve the following relations between the three families of algorithms:

Proposition 3. Let X = X1 × . . . × XJ be a total space and A1, . . . , AJ local
clustering algorithms on the views Xj. Consider a multi-view algorithm AMV

on X. Let Aens,1, . . . ,Aens,J be J unsupervised ensemble learning algorithms,
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where Aens,j produces a partition in Xj. We define

Aens(C1, . . . , CJ) = (Aens,1(C1, . . . , CJ), . . . ,Aens,J(C1, . . . , CJ))

Then the following statements are correct:

1. The function S1, . . . , SJ , A1, . . . , AJ , C1, . . . , CJ 7→ Aens(C1, . . . , CJ) is a
collaborative clustering algorithm.

2. If AMV produces a multi-view partition of index J , then the function Aens ◦
AMV is a multi-view clustering algorithm of index J .

3. AMV can be decomposed as the combination AMV = Aens,′ ◦AMV,loc of local
regular clustering algorithms: AMV,loc : (S1, . . . , SJ) 7→ (A1(S1), . . . , AJ(SJ))
and of unsupervised ensemble learning algorithms Aens,′ (defined in a similar
manner as Aens).

These statements are direct consequences of the definitions. Point (3) for-
malizes the decomposition of multi-view algorithms into two steps: applying
local algorithms to each view to produce a partition, and applying an unsuper-
vised ensemble learning to exchange the information between the views. The
combination of this point and of Proposition 2 formalizes the idea of Grozavu
and Bennani [23] of a two-step process (applying local algorithms, then refine).
Regarding the notations, the multi-view algorithm AMV,loc will be called, in
the following section, concatenation of local algorithms and will be denoted by⊕

j A
j . It will play a central role in the study of theoretical properties of a

collaboration.

3.3 Summary: Four Interleaving Notions

In this section, we have introduced four interleaving notions: regular clustering,
multi-view clustering, collaborative clustering and unsupervised ensemble learn-
ing. The definitions we proposed are extremely general, and in particular do not
incorporate some classical (sometimes implicit) properties associated to these
notion, for instance the independence to the order of arguments (a permutation
of Si and Sj in the arguments of AMV simply yields a permutation of Ci and
Cj in the output). Actually, these properties are not essential to the very nature
of these notions and it would be reasonable to think of applications where these
do not hold.

A fundamental result we showed is that multi-view clustering and regular
clustering are in essence similar, in the sense that multi-view clustering (be it
with or without fusion) generates a clustering of the total space and, conversely
any regular clustering satisfying some constraints can be understood as a multi-
view clustering (Proposition 1). These constraints can be understood as some
regularization of the produced clustering. This result however is not meant to
lower the importance of multi-view clustering as an independent domain: on
contrary, implementing these constraints is a challenge in se and is the core
motivation of a whole field. It is however of primary importance for a theoretical
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study of multi-view clustering (and by extension, of collaborative clustering),
since it entails that the same tools and results apply to it.

Such as introduced in Definition 4, multi-view and collaborative clustering
algorithms differ mostly on the nature of their input arguments. Collaborative
clustering algorithms are more general, since they consider the local algorithms
and initial partitions in addition to the data points. As a direct result, it is clear
that multi-view methods are specific cases of collaborative clustering, but, con-
versely, the collaborative clustering algorithms inspired by the works of Grozavu
and Bennani [23] can be reduced to multi-view algorithms. Indeed, such algo-
rithms use the local algorithms only to constrain the local views.

Unsupervised ensemble learning algorithms are not clustering algorithms in
the sense of Section 3.1.1, since they do not take data points as input. However,
they are strongly involved in collaborative and multi-view clustering: It has been
discussed that a multi-view algorithm can be decomposed into a regular cluster-
ing algorithm and an unsupervised ensemble learning. This decomposition, which
may be only theoretical and does not necessarily reflect how the algorithms work
in practice, amounts to considering the output of a multi-view algorithm as a
correction of local partitions based on the information provided by the other
views. In the next section, a measure of the influence of this ensemble algorithm
will be used to define the novelty and consistency of a collaborative/multi-view
algorithm.

4 Properties of Collaborative Clustering: Stability,
Novelty and Consistency

In this section, we introduce various properties which could be expected from
collaborative algorithms. These notions and formal definitions are inspired by
the notion of clustering stability introduced in the original work of Ben David
et al. [2]. We will see how stability can be extended to collaborative clustering
and how the stability of a collaborative clustering algorithm depends inherently
from a novel notion, called consistency.

All these notions focus more precisely on the influence of the local clustering
algorithms A1, . . . , AJ and of the input data S1, . . . , SJ , onto the produced par-
titions. In particular, we will consider the initial partitions C1, . . . , CJ as fixed,
for instance as Cj = Aj(Sj). We will use the notation A〈A1,...,AJ 〉 (shorten in A
when the local context is explicit) to designate such a collaborative clustering
algorithm based on local algorithms A1, . . . , AJ . Notice that the defined func-
tionA〈A1,...,AJ 〉 corresponds to a multi-view algorithm, when the local algorithms
are fixed.

4.1 Reminders on Clustering Stability

Stability is a key notion in regular clustering that assesses the ability of a clus-
tering algorithm to find a consistent partitionning of the data space on different
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subsamples [2,29,6]. From its definition it is a neutral quality index that evaluates
the noise robustness of clustering algorithms.

The stability of a clustering algorithm is defined as the ability to produce
always the same partition, given enough data from a fixed distribution. In order
to formalize this idea, it is important to be able to measure how to partitions
differ. This is done with the notion of clustering distance:

Definition 7. (Clustering distance) Let P be a family of probability distri-
butions over some domain X. Let Σ be a family of clusterings of X. A clustering
distance is a function d : P × Σ × Σ → [0, 1] that for any P ∈ P and any
clusterings C,C ′, C ′′ satisfies:

1. dP (C,C) = 0
2. dP (C,C ′) = dP (C ′, C) (symmetry)
3. dP (C,C ′′) ≤ dP (C,C ′) + dP (C ′, C ′′) (triangle inequality)

Please note that clustering distances as we have defined them are not required
to satisfy dP (C,C ′) = 0 ⇒ C = C ′, which is not true with most clustering
distances that are commonly used.

Example 5. A typical example of a clustering distance (introduced for instance
by Ben-David et al. [2]) is the Hamming distance:

dHP (C,C ′) = P
x∼P
y∼P

[(
C(x) = C(y)

)
⊕
(
C ′(x) = C ′(y)

)]
(4)

where ⊕ denotes the logical XOR operation. The Hamming distance measures
how much the two partitions group together the same pairs of points. It can be
easily checked that dHP satisfies the properties of a clustering distance. It is also
clear that two partitions C and C ′ can be different and yet have a 0 distance.
For instance, if the space is continuous and C and C ′ differ only on one point,
we still have dHP (C,C ′).

As we have mentioned, clustering stability measures how a perturbation in
the data affects the result of a clustering algorithm. Using the proposed definition
of a clustering algorithm, the stability of algorithm A can then be formalized as
the distance between the produced partitions A(X1) and A(X2) for X1 and X2

sampled from the same distribution P :

Definition 8. (Stability of a clustering algorithm) Let P be a probability
distribution over X . Let d be a clustering distance. Let A be a clustering algorithm
(a regular one). The stability of the algorithm A for the sample of size m with
respect to the probability distribution P is:

stab(A,P,m) = E
X1∼Pm

X2∼Pm

[dP (A(X1), A(X2))] (5)
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From there, the stability of algorithm A with respect to the probability distri-
bution P is:

stab(A,P ) = lim sup
m→∞

stab(A,P,m) (6)

We say that a regular clustering algorithm A is stable for P , if stab(A,P ) = 0.

A very strong property of clustering stability, demonstrated by Ben David
et al. [2], states that a risk minimizing clustering algorithm (see Definition 1)
satisfying a specific property of unicity of the optimal produced partition (such
as defined below), is stable.

Definition 9. (Unique minimizer) We fix a risk minimization scheme (X, Σ,P,R).
Let d be a clustering distance. We say that a probability distribution P has unique
minimizer C∗ if:

(∀η > 0)(∃ε > 0)(R(P,C) < opt(P ) + ε) =⇒ dP (C∗, C) < η).

More generally, we say a probability distribution P has n distinct minimizers, if
there exists C∗1 , C

∗
2 , . . . , C

∗
n such that dP (C∗i , C

∗
j ) > 0 for all i 6= j, and

(∀η > 0)(∃ε > 0)(R(P,C) < opt(P ) + ε =⇒ (∃1 ≤ i ≤ n) dP (C∗i , C) < η).

Note that there is a technical subtlety here: the definition does not require
that there is only a single clustering with the minimal cost, but rather that for
any two optima C∗1 , C

∗
2 , dP (C∗1 , C

∗
2 ) = 0, which does not imply that C∗1 = C∗2 .

Technically, we can overcome this difference by forming equivalence classes of
clusterings, saying that two clusterings are equivalent if their clustering distance
is zero. Similarly, n distinct optima correspond n such equivalence classes of
optimal clusterings.

4.2 From Regular to Collaborative Clustering: Stability, Novelty
and Consistency

As discussed previously, multi-view clustering, and in particular collaborative
clustering, can be interpreted as a specific constrained form of clustering. Fol-
lowing this idea, we show now how the general theoretical notions presented for
regular clustering can be formulated for collaborative clustering.

We remind that regular clustering and multi-view partitions are theoretically
equivalent because NJ and N are equipotent. In the following, we will denote by
ν : NJ → N a bijective application mapping NJ to N. With this application, the
mapping ν ◦ C is a clustering of X ⊆ X.

4.2.1 Multi-view Clustering Distance and Stability. Any analysis of
the theoretical properties of collaborative clustering requires us to firstly define
the relevant clustering distance used to measure the discrepancy between the
produced clusters on the total space X = X1 × . . .XJ . Even though in theory
any distance satisfying the conditions of Definition 7 would be applicable, it
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seems also interesting to consider distances more adapted to the specificity of
the space decomposition. In the following proposition, we show that a simple
linear combination of local distances is a valid distance for the total space.

Proposition 4 (Canonical multi-view clustering distance). Let X = X1×
· · ·×XJ be a domain, and the dj clustering distance on Xj. We define the function
d : P ×S ×S → [0, 1] such that dP (C1, C2) = 1

J

∑J
j=1 d

j
Pj

(Cj1, C
j
2). Then d defines

a clustering distance on X . We call it the canonical multi-view clustering
distance.

Proof. The clustering distance properties follow directly from the linearity in
terms of dj and from the properties of the local clustering distances.

In this definition, we chose the coefficients of the linear combination to be
uniformly equal to 1/J , with the will to give the same importance to all views,
but we would like to emphasize that none of the following results would be
altered by choosing non-uniform weights.

Given a distance on the total space X = X1 × . . . × XJ , the definition of
clustering stability above (Definition 8) can be applied directly to the case of
collaborative and multi-view clustering.

When the used distance is the canonical multi-view clustering distance, the
stability of a collaborative or multi-view algorithm on the total space has a
simple interpretation. Let A be the total algorithm and Aj : S1, . . . , SJ 7→(
A(S1, . . . , SJ)

)j
. Algorithm Aj considers the projection of the multi-view par-

tition produced byA onto the subspace Xj . Note that, in the case of collaborative
clustering, this algorithm Aj is distinct from the local algorithm Aj . The follow-
ing characterization of multi-view stability comes directly from the definitions:

Proposition 5. Multi-view algorithm A is stable for the canonical multi-view
clustering distance if and only if, for all j, the projections Aj are stable.

Such a characterization of multi-view stability, despite being intuitive, is
actually a consequence of the choice of the canonical distance. For a general
clustering multi-view clustering distance, there is no guarantee that this result
remains correct. Satisfying Proposition 5 can be an important property that a
reasonable multi-view clustering distance should satisfy.

Example 6. Given X = X1 × . . .XJ and local clustering distances dj , the func-
tion dP (C1, C2) = dP 1(C1

1 , C
1
2 ) defines a proper multi-view clustering distance.

With this distance, the equivalence in Proposition 5 is not always satisfied. For
instance, any algorithm which would be stable on view 1 but unstable on at
least one other view would still be globally stable with respect to the chosen
multi-view distance.

4.2.2 Novelty and Consistency. Using Definition 4 and under the assump-
tions of Proposition 2, we have seen that collaborative clustering algorithms
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(with fixed local algorithms) are a specific case of multi-view clustering algo-
rithms that aim to refine locally found partitions throughout the collaboration
process.

It is worth mentioning that in general, the expected goal of collaborative
clustering is that the projection of the clustering obtained by the collaborative
algorithm onto one of the views j should be distinct from the original clustering
results obtained by the local algorithm Aj for the same view. This corresponds to
the effect of the unsupervised ensemble learning step as discussed in Section 3.3
and Proposition 3.3. In other words, if C = A(X), then in general we have that
Cj 6= Aj(Xj). It is this property that makes the collaboration interesting and
more valuable than a simple concatenation of the local results.

Definition 10. (Concatenation of local clustering algorithms) The con-

catenation of local clustering algorithms A1 to AJ , denoted by
⊕J

j=1A
j is defined

as follows: If C is the global clustering induced by A =
⊕J

j=1A
j on a dataset X,

then:

∀x ∈ X,∀j ∈ {1, . . . , J}, Cj(xj) =
(
Aj(Xj)

)
(xj) (7)

This defines the concatenation of local clustering algorithms as a collabora-
tive algorithm that “does nothing” (i.e. in which there is no exchange of infor-
mation between the various views), and produces the exact same results as the
ones obtain by the local algorithms Aj . Such a degenerate algorithm had been
already used in Proposition 3 under the name of AMV,loc.

We now introduce the notion of novelty, the property of any collaborative
clustering algorithm to do more than just concatenating the local solutions. This
represents the ability of a collaborative algorithm to produce solutions that could
not have been found locally.

Definition 11. (Collaborative clustering novelty) Let P be probability dis-
tribution over X . The novelty of the algorithm A for the sample size m with
respect to the probability distribution P is

nov(A〈A1,...,AJ 〉, P,m) = P
X∼Pm

A〈A1,...,AJ 〉(X) 6=
J⊕
j=1

Aj(Xj)

 (8)

where A(X) is the collaborative or multi-view clustering and
⊕J

j=1A
j(Xj)

is the concatenation of all local clusterings.
Then, the novelty of algorithm A with respect to the probability distribution

P is
nov(A, P ) = lim sup

m→∞
nov(A, P,m) (9)

A satisfies the novelty property for distribution P if nov(A, P ) > 0

Yet, while novelty is often described as a desirable property, in collaborative
clustering (and in unsupervised ensemble learning as we will see later), there is
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also a need that the results found a the global level after the collaborative step
remain consistent with the local data when projected onto the local views. This
leads us to the notion of consistency:

Definition 12. (Collaborative clustering consistency) Let P be probability
distribution over X . Let d be a clustering distance. Let A be a collaborative
clustering algorithm. The consistency of the algorithm A for the sample size m
with respect to the probability distribution P is

cons(A〈A1,...,AJ 〉, P,m) = E
X∼Pm

dP
A〈A1,...,AJ 〉(X),

J⊕
j=1

Aj(Xj)

 (10)

The consistency of algorithm A with respect to the probability distribution P
is

cons(A, P ) = lim sup
m→∞

cons(A, P,m) (11)

Please note that this definition of consistency for collaborative clustering
has no link with the consistency of regular clustering algorithms as it was de-
fined by Kleinberg [27]. Intuitively, our consistency measures the distance of the
global clustering produced by the collaboration to the clustering produced by
concatenation of local algorithms.

Two remarks can be made about novelty and consistency: The first one is
that obviously these notions are very specific to the case of collaborative clus-
tering and unsupervised ensemble learning (as we will see after), as it is obvious
that without intermediary local clustering partitions, these notions simply do
not exist. The second remark is that there exists a noticeable link between con-
sistency and novelty, since novelty is actually a particular case of consistency
based on the clustering distance defined as follows:

∀C, C′, dIP (C, C′) = I(C 6= C′) (12)

It can be verified easily that the function dIP is clustering distance.
However, although novelty is a specific case of consistency for a given dis-

tance, consistency and novelty are not equivalent in general, for an arbitrary
clustering distance. This means that consistent algorithms are not necessarily
concatenations. This is mainly due to the fact that clustering distances do not
satisfy dP (C, C′) = 0 ⇒ C = C′. The converse is true however: nov(A, P ) = 0
implies cons(A, P ) = 0, whatever clustering distance is used to compute the
consistency.

Example 7. Using Hamming distance as a local clustering distance and the
canonical multi-view distance as dP , we have seen previously that local par-
titions which would differ on a set of P -measure zero (in particular a finite set)
would have a zero distance while being distinct. Consider then a trivial collab-
orative algorithm which changes the cluster of one single point in all the local
partitions. Such an algorithm would be consistent, and yet the produced parti-
tions would be distinct.
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Finally, it is worth mentioning that while producing novel solutions is gener-
ally considered a desirable property for any multi-view or collaborative methods,
this might not always be the case: We can for instance imagine a scenario where
local solutions are already optimal but different and where novelty might mean
sub-optimal solutions everywhere. Another more standard scenario would be a
local view (or several local views) having too strong an influence and forcing
other views to change otherwise fine but too different local solutions.

4.3 Stability of collaborative clustering

Now that we have defined the notion of stability for regular clustering, as well
as key notions from collaborative and multi-view clustering, we have two goals
: The first one is to derive a notion of stability for collaborative clustering algo-
rithms. And second, we want to know how this notion of collaborative clustering
stability can be linked to the notions of novelty (Definition 11) and consistency
(Definition 12), and more importantly to the stability of the local algorithms
since collaborative clustering has the particularity of using sets of regular clus-
tering algorithms whose stability is already clearly defined (See Definition 8).

4.3.1 Stability of Risk-Minimizing Collaborative Clustering Algo-
rithms. Theorem 1 below shows a direct adaptation of Ben-David’s key theorem
on clustering stability (Theorem 10 in [2]) to collaborative clustering.

Theorem 1. If P has a unique minimizer C∗ for risk R, then any R-minimizing
collaborative clustering algorithm which is risk converging is stable on P .

Proof. Let A be a collaborative clustering algorithm on X = X1 × · · · × XJ . Let
us also consider a bijection ν : NJ → N. Then, based on collaborative algorithm
A, one can build a clustering algorithm Ã such that the clustering C̃ induced by
a sample S for Ã is such that C̃ = ν ◦ (A(S)). For simplicity purposes, we will
denote this algorithm Ã = ν ◦ A. We call dP the global clustering distance and
d̃P its associated local distance such that d̃P (C̃1, C̃2) = dp(ν

−1 ◦ C̃1, ν−1 ◦ C̃2).

Using these two clustering distances in the definition of stability, the following
lemma is straightforward:

Lemma 1. If Ã = ν ◦ A is stable (for a distance d̃P ), then A is stable (for the
distance dP ).

If A is R-minimizing, then Ã is R̃-minimizing with R̃(P, C̃) = R(P, ν1 ◦ C̃).
It is direct that OptR(P̃ ) = OptR(P ) and that Ã is risk-converging. It is also
direct that P has a unique minimizer C̃∗ associated to R̃.

Combining all the previous results together, it follows that Ã is R̃-minimizing
and risk converging. Since P has a unique minimizer for R̃, then using [2] we
have that Ã is stable. Lemma 1 guarantees the result.
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Theorem 1 above implies that collaborative clustering algorithms can be
treated exactly the same way as standard clustering algorithms when it comes
to stability analysis. As we have seen previously, since NJ and N are equipo-
tent, a collaborative clustering can be interpreted as a clustering of X ⊆ X,
and therefore there is a direct adaptation of stability from regular clustering to
collaborative clustering when using the clustering distance from Proposition 4.

The result of Theorem 1 is extremely general and does not depend on the
choice of a specific clustering distance: it shows the stability (relative to a fixed
distance dP ) of risk-minimizing collaborative algorithms with a unique minimizer
for distance dP . The question remains open to know whether state-of-the-art col-
laborative clustering algorithms are stable with respect to a reasonable clustering
distance (for instance the canonical distance).

4.3.2 Stability and Consistency. Stability is a notion introduced in regular
clustering to describe how an algorithm is affected by slight changes in the data.
We have introduced consistency as a measure of how strongly the collaboration
affects the local decisions. This notion is inherent to multi-view and collabo-
rative techniques. We will now show that, even though these two notions are
intrinsically of different natures, they are strongly connected.

A first result on collaborative clustering stability can be shown about the
concatenation of clustering algorithms. Proposition 6 below states that a con-
catenation of local algorithms is stable provided that the local algorithms are
stable.

Proposition 6. Suppose that the local algorithms Aj are stable for distance djPj

. Then the concatenation of local algorithms A =
⊕J

j=1A
j is stable for the

canonical distance.

Proof. Let X1 and X2 be two samples drawn from distribution P . Then we have
:

dP (A(X1),A(X2)) =
1

J

J∑
j=1

djPj

(
(A(X1))j , (A(X2))j

)
(13)

=
1

J

J∑
j=1

djPj

(
Aj(Xj

1), Aj(Xj
2)
)

(14)

Because of the linearity of the expected value, it comes that:

stab(A, P,m) =
1

J

J∑
j=1

stab(Aj , P j ,m) (15)

Hence the stability of A.
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This result is rather intuitive, since the concatenation corresponds to a col-
laborative algorithm that does nothing. From this point of view, it is expected
that the unmodified results of stable local algorithms will remain stable. This
result is a consequence of the choice of the canonical distance and may be invalid
for other distances. We note here that conserving the stability of concatenation
is a desirable property for the choice of a clustering distance on the total space.

More interestingly, using the notion of consistency, the same result can be
applied to get a more generic result (still valid only for the canonical distance):

Theorem 2. Let A〈A1,··· ,AJ 〉 be a collaborative clustering algorithm. Then the
stability of A relatively to the canonical distance is upper-bounded as follows:

stab(A, P ) ≤ cons(A, P ) +
1

J

J∑
j=1

stab(Aj , P j) (16)

Proof. Let X1 and X2 be two samples drawn from distribution P . Since the
canonical distance satisfies the triangular inequality, we have:

dP (A(X1),A(X2)) ≤ dP

A(X1),

 J⊕
j=1

Aj

 (X1)

 (17)

+ dP

 J⊕
j=1

Aj

 (X1),

 J⊕
j=1

Aj

 (X2)

 (18)

+ dP

 J⊕
j=1

Aj

 (X2),A(X2)

 (19)

Then, by taking the expected value of this expression, we obtain:

stab(A, P,m) ≤ 2× EX∼Pm

dP
A(X),

 J⊕
j=1

Aj

 (X)

 (20)

+ EX1,X2∼Pm

dP
 J⊕

j=1

Aj

 (X1),

 J⊕
j=1

Aj

 (X2)

 (21)

which is the result we wanted.

This result has the advantage of being generic since it makes no assumption
on the nature of the collaboration process. It also has the direct consequence
that any consistent collaborative algorithm working from stable local results is
stable for the canonical distance. However, this corollary is quite limited since the
consistency assumption is extremely strong and does not apply to most practical
cases where the collaborative process is expected to find results that differ from
the simple concatenation of the local results from each views.
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4.3.3 Stability of contractive collaborative algorithms. We have seen
that any multi-view algorithm can be, at least theoretically, decomposed into two
steps: a local step where local algorithms compute a first partition, and a collab-
orative step in which the partitions are refined by exploiting the collaboration.
Mathematically, we expressed this property in Proposition 3 by defining Aens,j
as an unsupervised ensemble learning algorithm producing a partition of Xj ,
and setting Aens(C1, . . . , CJ) = (Aens,1(C1, . . . , CJ), . . . ,Aens,J(C1, . . . , CJ)).
With these notations, any collaborative clustering algorithm A〈A1,...,AJ 〉 can be

expressed asA〈A1,...,AJ 〉 = Aens◦
(⊕J

j=1A
j
)

. We will show that a desirable prop-

erty, for this generalized ensemble learning algorithm to guarantee the global
stability, is to be Lipschitz continuous with respect to clustering distance dP
(which implies, in this context, being contractive5).

Theorem 3. Let A〈A1,...,AJ 〉 be a collaborative clustering algorithm, which de-

composes into Aens ◦
(⊕J

j=1A
j
)

. Suppose that Aens is Lipschitz continuous for

the canonical distance dP , in the sense that there exists K ∈ (0, 1] such that for
all C, C′, dP (Aens(C),Aens(C′)) ≤ KdP (C, C′). Then if all A1, . . . , AJ are stable,
A〈A1,...,AJ 〉 is also stable.

Proof. Let us consider two samples X1 and X2 drawn from the distribution P .
From there, we have:

dP
(
A(X1)−A(X2)

)
= dP

Aens ◦
 J⊕
j=1

Aj

 (X1)−Aens ◦

 J⊕
j=1

Aj

 (X2)


(22)

Since Aens is a Lipschitz contraction function, there exists a real constant 0 <
K ≤ 1 such that:

dP
(
A(X1)−A(X2)

)
≤ K dP

 J⊕
j=1

Aj

 (X1)−

 J⊕
j=1

Aj

 (X2)

 (23)

Since the Aj are stable for all j, from Equation (23) and Proposition 6 we directly
infer the stability of A.

This proposition is interesting but raises the question of what would be re-
quired in practice and from an algorithm point of view for a collaborative algo-
rithm to be a Lipschitz continuous function. On the other hand, when looking
at Equation (23) and considering what it means for a collaborative algorithm
to be a contraction mapping (K ≤ 1), we see that the partitioning of the two
samples X1 and X2 drawn from the distribution P should be closer after the
collaborative process. It turns out that this is exactly what is expected from a

5 The fact that the Lipschitz constant K must be lower than 1 is due to the convention
that the clustering distances are defined between 0 and 1.
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collaborative algorithm. Therefore, being a contraction mapping seems to be a
necessary property that any collaborative algorithm should have. However, the
mathematical analysis ends here, and it would be up to algorithms developers
to demonstrate that their collaborative methods indeed have this property for
all possible scenarii.

From there, once again we have a proposition that looks promising, as it may
validate that all ’well-designed’ collaborative algorithms are stable given that the
local algorithms are stable too. However, we can’t be sure that it applies to any
existing collaborative algorithm, as such a demonstration has never been done
for any existing method. Furthermore, most of the existing implementations of
collaborative clustering algorithms rely on local algorithms that are known to be
unstable: K-Means, FC-Means, EM for the GMM, SOM and GTM. Thus, these
methods are already excluded from the scope of this proposition.

5 Open Questions

In the history of learning theory, clustering has always remained marginal com-
pared to supervised learning, and in particular to classification. Within the broad
domain of clustering, the question of a theoretical analysis of multi-view methods
is even less represented. With the formal treatment we proposed in this chapter,
we aimed to give good foundations for future theoretical works on multi-view
and collaborative clustering, by clarifying the involved concepts and providing
first fundamental results. However, it will not escape the reader’s attention that
there is still a long way to having solid theoretical results. In particular, multiple
questions remain open and should be investigated in future works:

Choice of a multi-view distance. The multi-view distance is the core notion
conditioning the definition of stability. Because of the unsupervised nature of
clustering, there is no objective way to qualify the quality of a produced partition,
and in particular stability can be defined only with regards to a chosen distance.
Therefore, choosing which distance to use is essential for stability to reflect
interesting properties of the algorithms.

We have introduced in this chapter the canonical multi-view clustering dis-
tance, a simple linear combination of local clustering distances. This choice is
obviously the most straightforward way to define a multi-view clustering distance
that exhibits some intuitive properties. Actually, we have shown that it leads to
fundamental results, in particular Theorems 2 and 3. But this multi-view clus-
tering distance may not be entirely satisfactory, since it ignores, in its definition,
a core issue of multi-view problems: the interdependence between views. By tak-
ing marginal distributions in the local space, the canonical multi-view distance
essentially ignores that views could be correlated. For instance, if two views are
identical, an independent stability in each of these two views is not sufficient.

It is clear from this remark that other multi-view clustering distances should
be investigated and that their theoretical properties should be analyzed. It is less
clear though how to build such distances. We first notice that the currently used
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definition is just an extension from the definition of clustering distance for regular
clustering. This definition does not constrain the distances dP on the probability
distribution P , which would be reasonable to have for multi-view distances. In
addition, we observed that some intuitive results are established only for this
specific clustering distance, for instance Proposition 5 (global stability if and only
if stability on all views) and Proposition 6 (concatenation of stable algorithms is
stable). We think that these properties should be added to the characterization
of reasonable multi-view clustering distances.

Unicity of the minimizer for risk-minimizing multi-view algorithms.
The stability theorem demonstrated by Ben-David et al. [2] is a fundamental
theoretical result regarding clustering. By noticing that multi-view clustering
can be seen as similar to regular clustering, we proposed with Theorem 1 a
variant of this theorem for the multi-view and collaborative cases. This theorem
is the most general we presented in this chapter, since it is not restricted by
a specific choice of a clustering distance, however it is, at the same time, the
least informative: indeed, we did not find evidences that standard collaborative
clustering techniques satisfy the conditions of the theorem.

Multiple works in collaborative clustering have used an objective function of
the form:

R(P, C) =

J∑
j=1

(
Rj(P j , Cj) +

∑
i 6=j

∆(P, Ci, Cj)
)

(24)

which corresponds to a trade-off between staying close to a local optimum and
minimizing the differences between the views. It is not direct whether such a risk
has a unique minimizer. Even when the local risk functions Rj have all a unique
minimizer under the marginal probabilities, the divergence term ∆(P, Ci, Cj)
brings in some perturbations and could affect the unicity of a minimizer. In-
tuitively here, it appears that when the ∆ term is negligible, the existence of
unique minimizers locally should guarantee the existence of a unique minimizer
for the global risk. This result is very much in line with Theorem 2, since the
multi-view stability is here relative to the local stability, but also to minimal
perturbations introduced by the collaboration (i.e. consistency).

As a complement to the stability theorem, Ben-David et al. also proved that,
in case there is no unique minimizers and some symmetry in the risk, the clus-
tering algorithm is necessarily unstable. This result has not been presented in
this chapter but could be of particular interest for the case of collaborative clus-
tering. Indeed, in this context, it is not rare that two corrections of a partition
are completely equivalent, which would lead to unstability. Characterizing this
effect, in particular for risks of the form presented above, seems like a promising
direction.

Stabilization of a collaboration. The results we presented in this chapter
revolve around one main question: does the collaboration maintain the stability
of the results? We could see that this is not clear, and that other factors can
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enter into account. Consistency has been introduced as a measure of the novel
information contained into the collaboration, compared to a simple concatena-
tion of the local partitions. If the consistency is maxed, nothing guarantees that
some perturbing information has not been exchanged as well, which may cause
unstability.

However, the converse question is still open: can a collaboration of unstable
algorithms be stable? We have seen in Example 6 that a trivial choice of a
multi-view clustering distance can lead to a stable collaboration if at least one
of the local algorithms is stable, no matter if the other are or are not stable.
Another trivial example would regard constant algorithms, which by definition
will be stable for any input local algorithm. These two examples are trivial,
either because of a degenerate choice of a multi-view clustering distance , or of
a collaborative algorithm. They show however that the question has no simple
answer and requires further investigation.

The question of the stabilization of a collaboration can be seen from two op-
posite angles: (1) If some local algorithms are unstable, is it possible to stabilize
them with a reasonable collaboration? and (2) In a stable collaboration of (a
potentially high number of) stable local algorithms, can changing only one lo-
cal algorithm affect the stability of the collaboration? These two questions have
strong practical implications.

Decomposition of the algorithms. At multiple points in the chapter, we
have seen that a collaborative clustering algorithm can be decomposed into two
steps: a concatenation of the local algorithms, followed by some unsupervised
ensemble learning to make the collaboration. Although some algorithms directly
implement this decomposition, many others do not and for them it becomes diffi-
cult to use results based on it, including Theorem 3. It may be then important to
know whether some properties of the second phase (such as Lipschitz-continuity)
can be inferred when the corresponding ensemble learning algorithm is not given
explicitly.

Stability of consensus In our analysis so far, we have considered only the most
consensual definition of collaborative clustering where we have several algorithms
working on multiple sites to first produce a local solution and then collaborate to
improve each local solution without searching for a consensus partition of space.
This corresponds to producing a multi-view partition of index J . However, as we
have discussed in the state of the art section, clustering frameworks under the
name collaborative clustering are a broad spectrum ranging from fully multi-
view clustering to unsupervised ensemble learning (See Table 1). An adaptation
of the theoretical notions presented in Section 4 to algorithms with consensus
may present interesting peculiarities.

We note that notions such as stability, consistency or novelty do not make
sense for unsupervised ensemble learning, which does not take data as input.
We remind that these three measures are relative to various behaviours of the
clustering algorithm when data are drawn from a specified distribution.
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For other multi-view methods with consensus, apart from the inherent diffi-
culty of defining the task (on which space is the produced partition defined?),
we note that there is no natural “neutral” algorithm, i.e. an algorithm having
no effect (such as the concatenation in Section 4). A possibility could be to rely
on the majority vote operator.

6 Conclusion

In this chapter, we made an attempt to rethink collaborative clustering in com-
parison with the better known fields of multi-view clustering and ensemble learn-
ing. This formalization was needed to understand the interconnections between
these various fields and to initiate a proper study of the theoretical properties
of collaborative clustering. For that purpose, we extended key clustering notions
such as clustering stability to the context of collaborative clustering, and we iden-
tified the additional key notions of novelty and consistency that are important
for typical collaborative clustering applications.

Convinced of the importance to firstly defining a problem correctly before be-
ing able to solve it, we formalized the different branches of collaborative cluster-
ing, which have evolved during the last decade without being properly classified.
This formal look into these algorithms made it clear that multi-view and collabo-
rative clustering methods can all be seen as matching the definition proposed by
Grozavu and Bennani [23]: collaborative methods should have an intermediary
step with local results computed with local algorithms and should not aim for a
consensus. Next, we demonstrated that collaborative algorithms matching this
definition can be treated as multi-view clustering algorithms.

The theoretical study we proposed for collaborative and multi-view methods
offers a clean basis for further investigations onto the theoretical properties of
multi-view methods. Some challenges and open questions have been presented in
Section 5 and we wish that our work may help to better consider the properties of
existing and future collaborative clustering methods. And we also hope that our
attempt at a formally defining the different branches of collaborative clustering
will lead to a better integration of the somehow different family of collaborative
clustering algorithms inside the multi-view and ensemble learning communities.
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17. Forestier, G., Wemmert, C., Gançarski, P., Inglada, J.: Mining multiple satel-
lite sensor data using collaborative clustering. In: Saygin, Y., Yu, J.X., Kar-
gupta, H., Wang, W., Ranka, S., Yu, P.S., Wu, X. (eds.) ICDM Work-
shops 2009, IEEE International Conference on Data Mining Workshops, Mi-
ami, Florida, USA, 6 December 2009. pp. 501–506. IEEE Computer So-
ciety (2009). https://doi.org/10.1109/ICDMW.2009.42, https://doi.org/10.

1109/ICDMW.2009.42

18. Foucade, Y., Bennani, Y.: Unsupervised collaborative learning using privileged in-
formation. CoRR abs/2103.13145 (2021), https://arxiv.org/abs/2103.13145
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46. Wemmert, C., Gançarski, P., Korczak, J.J.: A collaborative approach to
combine multiple learning methods. Int. J. Artif. Intell. Tools 9(1), 59–78
(2000). https://doi.org/10.1142/S0218213000000069, https://doi.org/10.1142/
S0218213000000069

47. Yu, F., Tang, J., Cai, R.: Partially horizontal collaborative fuzzy c-means. Inter-
national Journal of Fuzzy Systems 9, 198–204 (2007)

48. Zimek, A., Vreeken, J.: The blind men and the elephant: on meeting the prob-
lem of multiple truths in data from clustering and pattern mining perspectives.
Machine Learning 98(1-2), 121–155 (2015). https://doi.org/10.1007/s10994-013-
5334-y, http://dx.doi.org/10.1007/s10994-013-5334-y

49. Zouinina, S., Grozavu, N., Bennani, Y., Lyhyaoui, A., Rogovschi, N.: Efficient k-
anonymization through constrained collaborative clustering. In: IEEE Symposium
Series on Computational Intelligence, SSCI 2018, Bangalore, India, November 18-

https://doi.org/10.1109/IJCNN.2013.6706911
https://doi.org/10.1109/IJCNN.2013.6706911
https://doi.org/10.1109/IJCNN.2013.6706911
https://doi.org/10.3233/HIS-160219
https://doi.org/10.3233/HIS-160219
https://doi.org/10.1109/IJCNN.2018.8489479
https://doi.org/10.1109/IJCNN.2018.8489479
https://doi.org/10.1109/IJCNN.2018.8489479
https://doi.org/10.1016/j.patcog.2017.07.014
https://doi.org/10.1016/j.patcog.2017.07.014
https://doi.org/10.1016/j.patcog.2017.07.014
https://doi.org/10.1109/IJCNN.2017.7966377
https://doi.org/10.1109/IJCNN.2017.7966377
https://doi.org/10.1109/IJCNN.2017.7966377
https://doi.org/10.3390/rs9050495
https://doi.org/10.3390/rs9050495
https://doi.org/10.3390/rs9050495
http://proceedings.mlr.press/v54/vanhaesebrouck17a.html
http://proceedings.mlr.press/v54/vanhaesebrouck17a.html
https://doi.org/10.1142/S0218213000000069
https://doi.org/10.1142/S0218213000000069
https://doi.org/10.1142/S0218213000000069
https://doi.org/10.1007/s10994-013-5334-y
https://doi.org/10.1007/s10994-013-5334-y
http://dx.doi.org/10.1007/s10994-013-5334-y


Rethinking Collaborative Clustering 35

21, 2018. pp. 405–411. IEEE (2018). https://doi.org/10.1109/SSCI.2018.8628635,
https://doi.org/10.1109/SSCI.2018.8628635

https://doi.org/10.1109/SSCI.2018.8628635
https://doi.org/10.1109/SSCI.2018.8628635

	Rethinking Collaborative Clustering: A Practical and Theoretical Study within the Realm of Multi-View Clustering

