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Verena Katzke8, Matthias B. Schulze9,10, Giovanna Masala11, Sabina Sieri12, Salvatore Panico13, Rosario Tumino14,
Alessandra Macciotta15, Jolanda M. A. Boer16, Evelyn M. Monninkhof17, Karina Standahl Olsen18, Therese H. Nøst18,
Torkjel M. Sandanger18, Antonio Agudo19,20, Maria-Jose Sánchez21,22,23,24, Pilar Amiano25,26,27,
Sandra M. Colorado-Yohar27,28,29, Eva Ardanaz27,30,31, Linda Vidman32, Anna Winkvist33, Alicia K. Heath34,
Elisabete Weiderpass35, Inge Huybrechts1 and Sabina Rinaldi1*

Abstract

Background: Metabolomics is a promising molecular tool for identifying novel etiological pathways leading to
cancer. In an earlier prospective study among pre- and postmenopausal women not using exogenous hormones,
we observed a higher risk of breast cancer associated with higher blood concentrations of one metabolite
(acetylcarnitine) and a lower risk associated with higher blood concentrations of seven others (arginine, asparagine,
phosphatidylcholines (PCs) aa C36:3, ae C34:2, ae C36:2, ae C36:3, and ae C38:2).

Methods: To identify determinants of these breast cancer-related metabolites, we conducted a cross-sectional
analysis to identify their lifestyle and anthropometric correlates in 2358 women, who were previously included as
controls in case-control studies nested within the European Prospective Investigation into Cancer and Nutrition
cohort and not using exogenous hormones at blood collection. Associations of each metabolite concentration with
42 variables were assessed using linear regression models in a discovery set of 1572 participants. Significant
associations were evaluated in a validation set (n = 786).

Results: For the metabolites previously associated with a lower risk of breast cancer, concentrations of PCs ae C34:
2, C36:2, C36:3, and C38:2 were negatively associated with adiposity and positively associated with total and
saturated fat intakes. PC ae C36:2 was also negatively associated with alcohol consumption and positively
associated with two scores reflecting adherence to a healthy lifestyle. Asparagine concentration was negatively
associated with adiposity. Arginine and PC aa C36:3 concentrations were not associated to any of the factors
examined. For the metabolite previously associated with a higher risk of breast cancer, acetylcarnitine, a positive
association with age was observed.
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Conclusions: These associations may indicate possible mechanisms underlying associations between lifestyle and
anthropometric factors, and risk of breast cancer. Further research is needed to identify potential non-lifestyle
correlates of the metabolites investigated.

Keywords: Metabolites, Breast cancer, Cross-sectional, Lifestyle, Anthropometry

Background
Metabolomics is an important tool in the identification
of new etiological pathways associated with chronic dis-
eases, including breast cancer [1–8], as the metabolome
reflects both endogenous parameters and exogenous ex-
posures [9]. Prospective studies using targeted metabolo-
mics (analyses of a pre-defined panel of metabolites) or
untargeted metabolomics approaches have reported
novel associations of pre-diagnostic blood concentra-
tions of endogenous metabolites with breast cancer risk.
These metabolites include lysophosphatidylcholine a
C18:0 [8], 16a-hydroxy-DHEA-3-sulfate [4, 5], various
carnitines [4, 5], caprate (10:0) [6], histidine, glycerol, N-
acetyl-glycoprotein [7], acetone, glycerol-derived com-
pounds, other amino acids, and lipids [2, 3], suggesting
new potential avenues of research and possible add-
itional targets for prevention.
In a previous case-control study nested within the

European Prospective Investigation into Cancer and Nu-
trition (EPIC) cohort, we investigated the association be-
tween blood concentrations of endogenous metabolites,
measured by targeted metabolomics, and risk of breast
cancer [1]. We reported a positive association between
acetylcarnitine (C2) and breast cancer risk and negative
associations of arginine, asparagine, phosphatidylcho-
lines acyl-alkyl (PCs ae) C36:3, C34:2, C36:2, C38:2, and
phosphatidylcholine diacyl (PC aa) C36:3 with breast
cancer risk, among women not using exogenous hor-
mones at blood collection.
To further assess how these findings can inform breast

cancer prevention research, a better understanding of
potentially modifiable determinants of blood levels of
these metabolites is needed. Towards this aim, we report
here the results of a cross-sectional analysis nested in
the EPIC cohort to investigate associations of a wide
range of lifestyle and anthropometric variables and acet-
ylcarnitine, arginine, asparagine, PCs aa C36:3, ae C34:2,
ae C36:2, ae C36:3, and ae C38:2.

Methods
The EPIC study
EPIC is an ongoing multi-center cohort study including
approximately 520,000 participants recruited between
1992 and 2000 from ten European countries [10]. Fe-
male participants (n = 367,903) were aged 35–75 years at
recruitment. Detailed information was collected on diet-
ary, lifestyle, reproductive, medical, and anthropometric

data at inclusion [10]. Around 246,000 women from all
countries provided a baseline blood sample. Blood was
collected according to a standardized protocol in France,
Germany, Greece, Italy, the Netherlands, Norway, Spain,
and the UK [10]. Serum (except in Norway), plasma,
erythrocytes, and buffy coat aliquots were stored in li-
quid nitrogen (−196°C) in a centralized biobank at IARC.
In Denmark, blood fractions were stored locally in the
vapor phase of liquid nitrogen containers (−150°C), and
in Sweden, they were stored locally at −80°C in standard
freezers. All participants provided written informed con-
sent to participate in the EPIC study. This study was ap-
proved by the ethics committee of the International
Agency for Research on Cancer (IARC) and all centers.

Study population and cross-sectional design
This study included all female EPIC participants (1) who
provided a blood sample; (2) who were previously in-
cluded in one of six case-control studies on cancer eti-
ology nested within the EPIC cohort (on breast [1],
endometrial [11], colorectal [12], kidney [13], liver [14],
and gallbladder cancers) with available blood concentra-
tions of acetylcarnitine, arginine, asparagine, PCs aa C36:
3, ae C34:2, ae C36:2, ae C36:3, and ae C38:2 measured
by the same targeted metabolomics approach; (3) who
were included as control participants in these studies
(i.e., free of cancer (except non-melanoma skin cancer)
at the time of the diagnosis of the cases, using
incidence-density sampling, and matched to cases by
age, sex, study center, time of blood collection, fasting
status at blood collection (except for kidney cancer
study), menopausal status and exogenous hormone use
at blood collection (for breast, endometrial, liver, and
gallbladder studies), and phase of menstrual cycle (for
breast and endometrial cancer studies)); and (4) whose
samples were included in an analytical batch including
at least 10 samples, to ensure proper normalization of
metabolite concentrations (see the “Statistical analyses”
section) (N = 3163).
We then excluded women who declared use of hor-

mones at blood collection (n = 768), and those whose
hormone use status at blood collection was unknown (n
= 37), because associations between the studied metabo-
lites and breast cancer risk were limited to hormone
non-users [1]. The current analysis included data from
2358 participants.
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The 2358 participants were split into a discovery set
(N = 1572, 66.7% of the population) and a validation set
(N = 786, 33.3% of the population). Metabolites of inter-
est were those found to be associated with breast cancer
risk, and this observed association could result from as-
sociations between metabolites and some of the corre-
lates under study in the present work. Thus, the
discovery set included all controls from the breast can-
cer study (n = 1079), and randomly selected controls
from the other nested case-control studies (n = 493),
while the validation set did not include participants from
the breast cancer study. This way, associations identified
on the discovery set and further validated on the valid-
ation set are guaranteed not to be driven by the breast
cancer study only.

Laboratory measurements
Before exclusions of hormone users, a total of 3179 sam-
ples were available for 3163 women. All samples, plasma
(in 95.1% of samples) or serum, were assayed by liquid
chromatography-mass spectrometry using the Absolute-
IDQ p180 commercial kit (Biocrates Life Sciences AG,
Innsbruck, Austria). A total of 2289 (72.0%) samples
were assayed at the laboratory of the Biomarkers Group
at IARC (breast, colorectal, kidney, and liver cancer
studies); 851 (26.8%) at the Imperial College, London;
and 39 (1.2%) at the Helmholtz Zentrum, München,
Germany. At IARC, analyses were run on a QTRAP5500
(breast, kidney, and liver cancer studies) and TQ4500
(colorectal cancer study) mass spectrometers (AB Sciex,
Framingham, MA, USA), while at the Imperial College
London and Helmholtz Zentrum, analyses were run
using an API4000TQ (endometrial and gallbladder can-
cer studies). All analyses for a given study were per-
formed using the same instrument. Sixteen participants
had their samples analyzed in two different studies, at
IARC and at the Helmholtz Zentrum, for whom the
metabolite concentrations were averaged over the two
measures.
Out of the 3179 samples, arginine concentrations

could not be quantified in five, as they were below the
lower limit of quantification (LLOQ) and were therefore
imputed to half this LLOQ, consistently with previous
work [1].

Covariate data
Details of data collection in EPIC are described else-
where [10]. Lifestyle and medical factors were assessed
in the baseline questionnaire. Usual dietary intakes were
assessed using center- or country-specific validated
questionnaires covering the previous 12 months and
matched to the US Department of Agriculture food
composition database to estimate macronutrient intakes
[15]. Glycemic index and glycemic load were computed.

In all EPIC centers, except France, Oxford, and Norway,
height, weight, and waist and hip circumference were
measured on all participants using similar protocols (in
Umeå (Sweden), only weight and height were measured).
In France and Oxford, weight, height, and waist and hip
circumferences were measured in a sub-set of partici-
pants, but self-reported weight and height were obtained
from all individuals, and validation studies showed high
correlations between self-reported and measured values
(r ≥ 0.90) [16, 17]. In Oxford, self-reported measure-
ments also included waist and hip circumferences. In
Norway, only self-reported height and weight were
available.
Dietary data were used to compute the inflammatory

score of the diet (ISD) [18] (reflecting the inflammatory
potential of the diet based on 28 dietary components),
the modified Mediterranean diet score [19] (a 9-
component score indicating the degree of adherence to
the traditional Mediterranean diet; 0 minimal adherence
to 9 maximal adherence), and the Diet Quality Index-
International (DQI-I; a 17-component score based on
general nutritional guidelines [20, 21]; 0 to 100, minimal
to maximal diet quality). Dietary and lifestyle data were
combined to calculate the Healthy Lifestyle Index (HLI)
[22], designed to reflect five components of lifestyle fac-
tors (smoking, alcohol consumption, diet (cereal fibers,
red and processed meat, the ratio of polyunsaturated to
saturated fatty acids, margarine, glycemic load, and fruits
and vegetables), physical activity, and body mass index;
ranging from 0, least healthy, to 20). Furthermore, we
calculated the World Cancer Research Fund/American
Institute for Cancer Research score, which reflects rec-
ommendations for cancer prevention on weight main-
tenance, physical activity, intake of food and drinks
which promote weight gain, of plant-based foods, of
animal-based foods, of alcohol, and breastfeeding [23]
(from 0, low adherence to recommendation, to 7 for
women).

Statistical analyses
Normalization of metabolite concentrations
A specific statistical pipeline was developed [24] and ap-
plied on raw metabolite concentrations (before exclusion
of hormone users) to adequately pool measures obtained
from different studies, instruments, and laboratories.
This pipeline was shown to be efficient in removing un-
wanted variability and improving the comparability of
measurements acquired across different nested studies.
Log-transformed concentrations of the metabolites of
interest were normalized to remove effects of analytical
batch and study, which were estimated as random effects
in mixed-effects linear models correcting for possible
heteroscedasticity. Corrected metabolite concentrations
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analyzed in this work correspond to residuals from the
model.

Missing data
When missing values on covariates represented less than
5% of the overall values, they were imputed to the mode
value (categorical variables: number of full-term preg-
nancies, ever use of oral contraceptive, ever use of hor-
mones for menopause (by menopausal status), education
level, physical activity, smoking status, fasting status) or
median (continuous variables: age at menarche, age at
first full-term pregnancy (among parous women), dur-
ation of breastfeeding among women who breastfed,
waist circumference, hip circumference, waist/hip ratio,
time at blood collection). When missing values repre-
sented more than 5% of values for a variable, this vari-
able was categorized, and a “missing” category was
created (phase of menstrual cycle at blood collection for
pre- and perimenopausal women, breastfeeding, lifetime
alcohol consumption, Healthy Lifestyle Index, WCRF/
AICR score).

Identification of correlates
Participants’ characteristics were described using fre-
quencies for categorical variables and mean (standard
deviation) for continuous variables. We calculated partial
Pearson’s correlations between metabolite concentra-
tions (adjusted for center and age) and between metabo-
lites and age (adjusted for center).
Analyses were first run in the discovery set. For each

metabolite of interest and each lifestyle variable, a linear
regression model was built with metabolite concentra-
tion as a dependent variable. Models were adjusted for
center of recruitment, age at blood collection, meno-
pausal status (premenopausal, perimenopausal, postmen-
opausal [25]), phase of the menstrual cycle for
premenopausal women (follicular, ovulatory, luteal,
missing), time of the day, and fasting status at blood col-
lection (“No”: < 3 h since last meal (< 4 h in Umeå), “In
between”: 3–6 h (4–8 h in Umeå), and “Yes”: > 6 h (> 8 h
in Umeå)). Models that examined age as exposure were
not adjusted for age, and models with menopausal status
as main exposure were not adjusted for phase of men-
strual cycle, as this variable is defined in premenopausal
women only.
Variables tested as possible correlates were age at

blood collection (continuous), age at menarche (continu-
ous), total duration of menstrual cycles (quartiles/miss-
ing), pregnancy (ever/never), number of full-term
pregnancies (continuous), age at first full-term preg-
nancy (nulliparous/quartiles), breastfeeding (ever/never/
missing), duration of breastfeeding (nulliparous/quar-
tiles/missing), use of oral contraceptive (ever/never;
current users excluded), menopausal status at blood

collection (premenopausal/perimenopausal/postmeno-
pausal), use of hormones for menopause (ever/never;
current users are excluded), education level (no school-
ing or primary/technical, professional or secondary/lon-
ger education), physical activity (Cambridge Index [26]:
inactive/moderately inactive/moderately active/active),
smoking status (never/former/current), smoking status
combined with intensity (never/current, 1–15 cigarettes/
day/current, 16+ cigarettes/day/current, pipe/cigar/occa-
sional/former, quit for ≤10 years/former, quit 11–20
years/former, quit > 20 years), baseline alcohol consump-
tion (continuous, g/day), lifetime alcohol consumption
(non-drinker/former drinker/current > 0–3 g/day/> 3–
12 g/day/> 12–24 g/day/> 24 g/day/missing), BMI (con-
tinuous, kg/m2), waist circumference (continuous, cm),
hip circumference (continuous, cm), waist/hip ratio
(continuous), height (continuous, cm), total energy in-
take (continuous, kcal/day), and the following food com-
ponents estimated as residuals on total energy intake
(continuous, g/day): protein, carbohydrate, starch, sugar,
fiber, fat (total), fatty acids (monounsaturated, polyunsat-
urated, saturated, trans, trans-monoenoic, trans-
polyenoic), glycemic index (continuous), glycemic load
(continuous), Healthy Lifestyle Index (0–10/11–15/16–
20), WCRF/AICR score (quartiles/missing), modified
Mediterranean diet score (continuous), diet quality index
(continuous), and inflammatory score of the diet
(continuous).
For each metabolite, P-values from F-tests for each

variable were collected and were corrected for multiple
testing by controlling for family-wise error rate at α =
0.05 by permutation-based stepdown minP adjustment
of P-values, a method which accounts for dependencies
between tests [27].

Validation
All statistically significant associations in the discovery
set (based on P-values corrected for multiple tests ≤0.05)
were assessed in the validation set, using the same model
and categories of variables as in the discovery set. In this
validation set, a more conservative approach was chosen
for controlling for multiple tests [28], i.e., the Bonferroni
correction based on the number of tests run for each
metabolite.
For all variables showing a significant association with

the metabolites of interest in both the discovery and val-
idation sets, continuous variables were categorized
(quartiles) and means of metabolites, with 95% confi-
dence intervals, were estimated in each category, using
the overall dataset (n = 2358).

Interactions
For each metabolite and each variable examined as po-
tential correlate, we investigated interaction with fasting
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status (no/in between/yes), menopausal status at blood
collection (pre-/peri-/postmenopausal), and BMI (18.5–
24.9/25–29.9/≥30 kg/m2, excluding n = 15 participants
with BMI < 18.5 kg/m2), in the discovery set. To do so,
an interaction term was added in the model and the P-
value associated with this term was evaluated, after cor-
rection for multiple testing using the permutation minP
algorithm.

Sensitivity analyses
We conducted sensitivity analyses (1) excluding partici-
pants from the liver and gallbladder studies (n = 128),
for which the blood fraction analyzed was serum and
not plasma, and (2) excluding participants with self-
reported diabetes (n = 71) or with missing data on dia-
betes status (n = 160) at recruitment.

Results
Participants’ characteristics overall and from the discov-
ery and validation sets are shown in Table 1. Overall,
39.7% of the participants were not fasting at blood col-
lection while 44.4% were considered fasting (more than
6 h since last meal (8 h in Umeå)). Around 30% of par-
ticipants were premenopausal. Overall, participant char-
acteristics were similar among discovery and validation
sets (Table 1). Of note, the mean age (standard deviation
(SD)) at blood collection in the validation set was 55.5
(8.1) years and 53.1 (8.6) years in the discovery set. Con-
sequently, the proportion of postmenopausal women
was 61.8% in the validation set and 51.4% in the discov-
ery set. In the validation set, 42.0% of participants had
ever used oral contraceptive (vs 50.3% in the discovery
set), 53.3% of women had received none or primary edu-
cation (vs 47.3% in discovery set), 29.9% were physically
inactive (vs 24.7% in discovery set), 16.9% were current
smokers (vs 21.6% in discovery set), and 26.3% were al-
cohol non-consumers (vs 19.2% in discovery set).
In all participants (N = 2358), strong correlations were

observed between acyl-alkyl PCs (Fig. 1, Pearson’s cor-
relation coefficients 0.61 to 0.92), while moderate corre-
lations were observed between acyl-alkyl PCs and PC aa
C36:3 (0.41 to 0.55). Arginine was moderately correlated
with all metabolites except for acetylcarnitine (C2), with
an observed correlation of 0.19 with asparagine and cor-
relations ranging from 0.11 to 0.13 with PCs. Asparagine
showed similar low correlations (0.12 to 0.15) with PCs
and a negative correlation with C2 (−0.17). C2 showed
the greatest correlation with age (0.23), followed by PC
aa C36:3 (0.19), while for other metabolites correlations
with age ranged from −0.09 to 0.07.
In the discovery set, 104 associations (31% of the 336

associations tested, 8 metabolites × 42 variables) had P-
values ≤0.05 (Supplementary Table 1, see Additional file
1). After correction of P-values for multiple testing, 57

of these associations remained significant (Table 2),
which did not include any associations with arginine.
Thirty associations were replicated in the validation set
(same direction as in the discovery set, Supplementary
Table 1, see Additional file 1) after Bonferroni correction
of P-values, which did not include any associations with
PC aa C36:3 (Table 2).
Figure 2 represents means of the metabolite concen-

trations across categories of variables in the overall
population (n = 2358), for metabolites and variables for
which a significant association was detected in both the
discovery and validation sets. Asparagine concentration
was negatively associated with BMI, waist and hip cir-
cumferences, and WHR. C2 was positively associated
with age but not with the other factors. PCs ae C36:2
and ae C38:2 were negatively associated with BMI, waist
and hip circumferences, and waist/hip ratio. Negative as-
sociations with BMI, waist circumference, and waist/hip
ratio were also observed for PCs ae C34:2 and ae C36:3.
PC ae C34:2, C36:2, and 36:3 were additionally positively
associated with total fat intake, and with saturated fatty
acid intake, which was also positively associated with PC
ae C38:2. For PC ae C36:2, additional associations were
observed with alcohol intake at recruitment and over
lifetime (negative) and with HLI and WCRF/AICR score
(positive).
Analyses of interactions with BMI, menopausal, and

fasting status (Supplementary Table 2, see Additional file
1) did not suggest any significant interaction with these
variables in the associations reported above. The only in-
teractions with significant P-values after correction for
multiple testing were with menopausal status for the as-
sociation between asparagine and age (P-int = 0.04) and
with fasting status for the association of height and PC
ae C38:2 (P-int = 0.03).
When excluding serum samples (restricting the ana-

lysis to plasma samples) from both discovery (n = 40)
and validation (n = 88) sets, results were largely consist-
ent with those in the main analyses (data not shown),
except for generally larger P-values (due to the lower
statistical power) that led to the following non-
significant associations in the discovery set: asparagine
and WCRF/AICR score, PC aa C36:3 and age and BMI,
and PC ae C38:2 and trans-polyenoic fatty acid intake.
In the validation set, associations between asparagine
and hip and waist circumferences were not statistically
significant anymore. However, estimates were very close
in direction and magnitude to the ones obtained overall
(before exclusion of serum samples).
After exclusion of participants with self-reported dia-

betes at blood collection (discovery set, n = 45; valid-
ation set, n = 26) or with missing information on
diabetes (discovery set, n = 86; validation set, n = 74), as-
sociations were very similar in direction and magnitude
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Table 1 Main characteristics of women included (hormone non-users only), overall and in discovery and validation sets

Overall (n = 2358) Discovery (n = 1572) Validation (n = 786)

Age at blood collection (years) 53.9 (8.5) 53.1 (8.6) 55.5 (8.1)

Fasting status at blood collectiona (%)

No 936 (39.7) 639 (40.6) 297 (37.8)

In between 375 (15.9) 252 (16.0) 123 (15.6)

Yes 1047 (44.4) 681 (43.3) 366 (46.6)

Menopausal status at blood collection (%)

Premenopausal 722 (30.6) 522 (33.2) 200 (25.4)

Postmenopausal 1294 (54.9) 808 (51.4) 486 (61.8)

Perimenopausal 342 (14.5) 242 (15.4) 100 (12.7)

Age at first menstrual periods (years) (mean (SD)) 13.1 (1.6) 13.1 (1.6) 13.1 (1.6)

Number of full-term pregnancies (mean (SD)) 2.1 (1.3) 2.0 (1.2) 2.1 (1.4)

Age at first full-term pregnancy (years) (mean (SD)) 25.2 (4.3) 25.1 (4.4) 25.4 (4.2)

Breastfeeding (in parous women) (%)

Yes 1669 (80.9) 1110 (80.7) 559 (81.2)

No 280 (13.6) 181 (13.2) 99 (14.4)

Missing 115 (5.6) 85 (6.2) 30 (4.4)

Ever used oral contraceptive (%) 1120 (47.5) 790 (50.3) 330 (42.0)

Ever used MHT (%) 297 (12.6) 198 (12.6) 99 (12.6)

Education level (%)

Primary/no schooling 1162 (49.3) 743 (47.3) 419 (53.3)

Technical/professional/secondary 819 (34.7) 560 (35.6) 259 (33.0)

Longer education 377 (16.0) 269 (17.1) 108 (13.7)

Physical activity (Cambridge Index) (%)

Inactive 623 (26.4) 388 (24.7) 235 (29.9)

Moderately inactive 929 (39.4) 623 (39.6) 306 (38.9)

Moderately active 450 (19.1) 307 (19.5) 143 (18.2)

Active 356 (15.1) 254 (16.2) 102 (13.0)

Smoking status (%)

Never 1406 (59.6) 934 (59.4) 472 (60.1)

Former 480 (20.4) 299 (19.0) 181 (23.0)

Smoker 472 (20.0) 339 (21.6) 133 (16.9)

Alcohol consumption at recruitment (%)

Non-drinker 509 (21.6) 302 (19.2) 207 (26.3)

> 0–3 g/day 707 (30.0) 482 (30.7) 225 (28.6)

> 3–12 g/day 619 (26.3) 416 (26.5) 203 (25.8)

> 12–24 g/day 337 (14.3) 239 (15.2) 98 (12.5)

> 24 g/day 186 (7.9) 133 (8.5) 53 (6.7)

Height (cm) (mean (SD)) 160.4 (6.8) 160.6 (6.7) 160.0 (6.8)

BMI (kg/m2) (mean (SD)) 26.0 (4.3) 25.9 (4.3) 26.3 (4.4)

Waist circumference (cm) (mean (SD)) 81.9 (10.6) 81.5 (10.4) 82.6 (10.9)

Waist/hip ratio (mean (SD)) 0.80 (0.07) 0.80 (0.07) 0.81 (0.07)

Total energy intake (kcal/day) (mean (SD)) 2010.3 (547.7) 2016.3 (557.6) 1998.3 (527.4)

Healthy Lifestyle Indexb (mean(SD)) 12.6 (3.0) 12.6 (3.0) 12.8 (2.9)

WCRF/AICR scorec (mean (SD)) 3.9 (1.0) 3.9 (1.0) 3.9 (1.0)
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Table 1 Main characteristics of women included (hormone non-users only), overall and in discovery and validation sets (Continued)

Overall (n = 2358) Discovery (n = 1572) Validation (n = 786)

Modified Mediterranean diet score (mean (SD)) 4.3 (1.8) 4.3 (1.8) 4.5 (1.7)

Inflammatory score of the diet (mean (SD)) 0.9 (1.7) 0.89 (1.7) 0.8 (1.7)

Diet Quality Index-International (mean (SD)) 57.4 (7.8) 57.2 (7.9) 57.8 (7.7)

Metabolite concentrations (normalized), μmol/L

Arginine (geometric mean (SD)) 64.1 (2.6) 64.2 (2.6) 63.9 (2.6)

Asparagine (geometric mean (SD)) 41.5 (2.7) 41.4 (2.7) 41.6 (2.7)

C2 (geometric mean (SD)) 4.9 (2.7) 4.9 (2.7) 4.9 (2.6)

PC aa C36:3 (geometric mean (SD)) 130.0 (2.6) 127.0 (2.6) 136.0 (2.7)

PC ae C34:2 (geometric mean (SD)) 12.2 (2.7) 12.1 (2.8) 12.4 (2.7)

PC ae C36:2 (geometric mean (SD)) 15.6 (2.7) 15.5 (2.7) 15.6 (2.7)

PC ae C36:3 (geometric mean (SD)) 8.1 (2.7) 8.0 (2.7) 8.2 (2.7)

PC ae C38:2 (geometric mean (SD)) 2.1 (2.7) 2.1 (2.7) 2.1 (2.8)

Abbreviations: AICR American Institute for Cancer Research, BMI body mass index, C2 acetylcarnitine, MHT menopause hormone therapy, PC aa
phosphatidylcholine diacyl, PC ae phosphatidylcholine acyl-alkyl, SD standard deviation, WCRF World Cancer Research Fund
aNo: < 3 h since last meal (< 4 h in Umeå); in between: 3–6 h since last meal (4–8 h in Umeå); yes: > 6 h since last meal (> 8 h in Umeå)
bHealthy Lifestyle Index was missing for 144 (6.1%) participants
cWCRF/AICR score was missing for 196 (8.3%) participants

Fig. 1 Partial Pearson correlations between metabolites identified as associated with breast cancer risk, and age (N = 2358). Metabolite concentrations
were log-transformed and normalized as described in the “Methods” section. Coefficients are shown only for significant correlations (P-value < 0.05).
Correlations between metabolite concentrations are adjusted for center and age, and correlations between metabolites and age are adjusted for
center. Abbreviations: C2, acetylcarnitine; PC aa, phosphatidylcholine diacyl; PC ae, phosphatidylcholine acyl-alkyl
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Table 2 P-values for associations between metabolites and selecteda variables

Metabolite Variable Discovery Validation

P-value minP P-value P-value Bonf. P-value

Arginineb - - - - -

Asparagine BMI 1.4E−19 1.4E−19 9.3E−07 5.6E−06

Waist circumference 4.8E−16 4.8E−16 9.9E−05 6.0E−04

Hip circumference 2.2E−13 2.2E−13 3.7E−03 2.2E−02

Waist/hip ratio 1.3E−05 1.0E−03 8.2E−03 4.9E−02

Fiber intake 1.3E−03 3.9E−02 1.5E−01 8.9E−01

WCRF/AICR score 8.3E−04 2.4E−02 5.0E−01 1.0E+00

C2 Age at blood collection 8.6E−04 2.6E−02 2.3E−04 1.1E−03

Alcohol consumption at recruitment 2.8E−04 8.0E−03 2.0E−01 1.0E+00

Alcohol consumption (lifetime) 8.6E−04 2.6E−02 3.5E−01 1.0E+00

Carbohydrate intake 3.8E−05 1.0E−03 3.0E−01 1.0E+00

Total sugar intake 2.1E−04 6.0E−03 1.1E−01 5.5E−01

PC aa C36:3 Age at blood collection 1.0E−03 4.3E−02 1.2E−01 2.4E−01

BMI 8.9E−04 3.6E−02 6.7E−02 1.3E−01

PC ae C34:2 Smoking status 1.2E−04 1.0E−03 7.5E−01 1.0E+00

Smoking status and intensity 2.0E−04 3.0E−03 8.4E−01 1.0E+00

BMI 5.7E−10 45.7E−10 6.6E−05 7.9E−04

Waist circumference 2.6E−14 2.6E−14 3.0E−07 3.6E−06

Hip circumference 4.3E−05 4.3E−05 2.2E−02 2.6E−01

Waist/hip ratio 5.0E−12 5.0E−12 3.3E−07 3.9E−06

Carbohydrate intake 4.3E−06 4.3E−06 4.2E−02 5.0E−01

Total sugar intake 1.4E−03 3.2E−02 9.8E−01 1.0E+00

Total fat intake 2.2E−09 2.2E−09 1.4E−04 1.7E−03

Fatty acids, total saturated intake 6.8E−10 6.8E−10 8.7E−07 1.0E−05

Fatty acids, total monounsaturated intake 1.5E−04 1.0E−03 1.2E−01 1.0E+00

Modified Mediterranean diet score 5.1E−04 1.5E−02 9.5E−03 1.1E−01

PC ae C36:2 Smoking status 2.1E−04 6.0E−03 6.1E−01 1.0E+00

Smoking status and intensity 2.4E−04 8.0E−03 9.0E−01 1.0E+00

Alcohol consumption at recruitment 4.4E−08 4.4E−08 1.4E−04 1.7E−03

Alcohol consumption (lifetime) 1.3E−06 1.3E−06 6.8E−04 8.1E−03

BMI 4.4E−13 4.4E−13 7.0E−09 8.4E−08

Waist circumference 2.1E−19 2.1E−19 1.8E−12 2.2E−11

Hip circumference 1.1E−07 1.1E−07 7.7E−05 9.3E−04

Waist/hip ratio 9.1E−15 9.1E−15 7.0E−10 8.4E−09

Total fat intake 1.4E−11 1.4E−11 2.1E−05 2.5E−04

Fatty acids, total saturated intake 2.2E−17 2.2E−17 1.6E−10 1.9E−09

Healthy Lifestyle Index 2.8E−05 2.0E−03 2.3E−04 2.8E−03

WCRF/AICR score 3.9E−05 2.0E−03 8.1E−05 9.7E−04

PC ae C36:3 Smoking status 3.8E−04 7.0E−03 8.1E−01 1.0E+00

Smoking status and intensity 1.4E−03 2.8E−02 8.6E−01 1.0E+00

BMI 1.9E−07 1.9E−07 2.2E−03 2.7E−02

Waist circumference 7.2E−12 7.2E−12 7.3E−05 8.8E−04

Hip circumference 4.7E−04 8.0E−03 6.8E−02 8.1E−01
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to those observed in the whole dataset, although some-
times not significant in the validation set (data not
shown), such as asparagine and hip circumference and
waist/hip ratio, and PC ae C36:3 and BMI and total and
saturated fat intakes.

Discussion
In this study, we identified several lifestyle and an-
thropometric correlates of blood metabolites which have
been previously associated with breast cancer risk in
women not taking exogenous hormones at blood collec-
tion. Concentrations of PCs ae C34:2, ae C36:2, ae C36:
3, and ae C38:2 showed negative associations with adi-
posity and positive associations with total (except for PC
ae C38:2) and saturated fat intakes. PC ae C36:2 also
showed a negative association with alcohol consumption
and positive associations with the WCRF/AICR score
and the Healthy Lifestyle Index. Asparagine concentra-
tions were negatively associated with adiposity, and ar-
ginine concentrations were not associated with any of
the variables examined. Acetylcarnitine concentrations
were positively associated with age but not with any of
the other factors. We did not identify any correlate of
the only diacyl PC (PC aa C36:3) associated with breast
cancer risk. These associations were consistent across
different BMI, fasting status, and menopausal status
categories.

Acyl-alkyl phosphatidylcholines have been previously
associated with various lifestyle and dietary factors. In
our work, concentrations of acyl-alkyl PCs were nega-
tively associated with measures of adiposity (including
BMI and waist circumference). This observation is
consistent with the global pattern of negative associa-
tions between PCs ae and BMI previously reported in
EPIC [12], in particular for PCs ae C38:2 [29] and ae
C36:2 [30], and in the EPIC-Potsdam sub-cohort [31].
PC ae C38:2 and C34:2 were also associated with
weight loss in an intervention study (n = 17 partici-
pants) [12]. In the EPIC-Potsdam sub-cohort [32], a
negative association of several PCs ae was reported
with risk of type 2 diabetes, as well as a positive cor-
relation with circulating high-density lipoprotein chol-
esterol. In an analysis of two studies of Japanese and
American men and women [33], PCs ae C34:2, 36:3,
and 38:2 were negatively associated with metabolic
syndrome (in particular with high-density lipoprotein
cholesterol and triglycerides), but not with elevated
waist circumference. Among 200 Canadian adults
younger than 55 years, concentrations of PCs ae C34:
2, C36:2, and C36:3 were lower in obese participants
with metabolic syndrome than in obese participants
without metabolic syndrome and in normal weight
participants [34], while an opposite trend was re-
ported for several PCs aa. These results support an

Table 2 P-values for associations between metabolites and selecteda variables (Continued)

Metabolite Variable Discovery Validation

P-value minP P-value P-value Bonf. P-value

Waist/hip ratio 1.5E−10 1.5E−10 8.2E−05 9.8E−04

Carbohydrate intake 1.9E−04 5.0E−03 2.2E−01 1.0E+00

Total fat intake 8.5E−08 8.5E−08 4.1E−03 4.9E−02

Fatty acids, total saturated intake 1.5E−06 1.5E−06 1.6E−03 2.0E−02

Fatty acids, total monounsaturated intake 2.8E−05 2.8E−05 5.0E−02 6.0E−01

Fatty acids, total trans intake 1.4E−04 3.0E−03 2.1E−01 1.0E+00

Modified Mediterranean diet score 3.0E−04 6.0E−03 5.6E−02 6.7E−01

PC ae C38:2 Alcohol consumption at recruitment 3.4E−04 2.4E−02 1.2E−02 9.9E−02

BMI 6.2E−11 6.2E−11 1.9E−09 1.5E−08

Waist circumference 1.6E−13 1.6E−13 2.5E−11 2.0E−10

Hip circumference 7.6E−08 7.6E−08 1.2E−06 9.6E−06

Waist/hip ratio 1.1E−07 1.1E−07 3.6E−06 2.9E−05

Total fat intake 2.5E−04 1.7E−02 9.2E−03 7.3E−02

Fatty acids, total saturated intake 1.7E−06 1.7E−06 1.2E−04 1.0E−03

Fatty acids, total trans-polyenoic intake 1.2E−03 4.9E−02 6.3E−01 1.0E+00

Bold lines correspond to variable showing significant association after adjustment of P-value for multiple tests in both discovery and validation sets. Models were
adjusted for center of recruitment, age, menopausal status (premenopausal, perimenopausal, postmenopausal), phase of the menstrual cycle for premenopausal
women (follicular, ovulatory, luteal, missing), time of the day, and fasting status at blood collection (no, in between, yes)
Abbreviations: AICR American Institute for Cancer Research, BMI body mass index, C2 acetylcarnitine, PC aa phosphatidylcholine diacyl, PC ae phosphatidylcholine
acyl-alkyl, WCRF World Cancer Research Fund
aOnly associations for which a significant P-value was detected after correction of P-values for multiple tests in the discovery sets are included
bNo association was detected in the discovery set
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association of PCs with obesity or metabolic health
that deserves further investigation.
Lower concentrations of PCs were reported in vegetar-

ian and vegan men than in meat eaters [35]. Moreover,
analyses in colorectal cancer patients (60% males) indi-
cated positive associations of several PCs, mostly acyl-
alkyl, with Western and carnivore dietary patterns [36].
These results are consistent with the positive association
we report with saturated fat intake. However, few studies
have been conducted in women, and an analysis con-
ducted among healthy participants from the KarMeN
study, not using exogenous hormones, suggested differ-
ences in plasma concentrations of some PCs between
men and women, although PCs were not the most im-
portant components for predicting sex [37]. A recent
metabolomic study of plasma lipid-related profiles and
diet quality in the Nurses’ Health Study [38] reported
that PC C36:2 plasmalogen was associated with un-
healthy components of the Alternate Healthy Eating
Index.
A negative association of PCs and alcohol consump-

tion, in particular PC ae C36:2, has been reported in

EPIC, in both men and women [39]. A negative associ-
ation with PC ae C36:2 was also observed separately in
men and women from the KORA F4 study when com-
paring moderate-to-heavy drinkers (≥20 g/day for
women, 40 g/day in men) with light drinkers (< 20 g/day
for women, 40 g/day in men) [40], and in the CARLA
study (men and women combined) [41].
The positive associations reported between PC ae C36:

2 and the WCRF/AICR and HLI scores, which integrate
alcohol and body weight components, likely reflect in-
verse associations of this metabolite with alcohol con-
sumption and adiposity as demonstrated in the analyses
of single correlates. These associations are in line with a
recent study conducted in EPIC on metabolic signatures
of a healthy lifestyle, assessed by the WCRF/AICR score
[42]. In this work, PCs ae 36:2 and C38:2 were among
endogenous metabolites with the greatest loadings (>
100 examined) in the signature of the WCRF/AICR
score. This metabolic signature showed the greatest cor-
relations with the recommendations regarding normal
weight maintenance and alcohol avoidance, in line with
the associations we report. In contrast, a study in

Fig. 2 Adjusted means of metabolite concentrations by categories of correlates (N = 2358). Only metabolites and variables for which a significant
association was detected in the discovery and validation sets are shown. Adjusted means and their 95% confidence intervals were obtained from
linear regression models adjusted for fasting status, center, age, date and time at blood collection, menopausal status, and phase of menstrual
cycle at blood collection. Dotted lines indicate the overall means of metabolite concentration. *Residuals on total energy intake. Abbreviations:
Asn, asparagine; AICR, American Institute for Cancer Research; BMI, body mass index; C2, acetylcarnitine; PC aa, phosphatidylcholine diacyl; PC ae,
phosphatidylcholine acyl-alkyl; WCRF, World Cancer Research Fund
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colorectal cancer patients indicated negative associations
between several PCs ae and aa and the WCRF/AICR
score [36]. However, the score was restricted to its diet-
ary components, therefore not considering the body
weight component.
Metabolomics studies on aging reported increasing

circulating concentrations of acylcarnitines, mostly long-
chain, with age [43, 44], which could reflect loss in mito-
chondrial function [45]. In a study [46] comparing me-
tabolites in serum samples obtained 7 years apart from
the same individuals (KORA S4 and KORA F4), acetyl-
carnitine and several other acylcarnitines increased in
the follow-up samples compared with baseline samples.
Associations of similar direction were observed in their
validation study on samples collected 4 years apart, al-
though not statistically significant after accounting for
multiple testing. Acylcarnitines have also been associated
with impaired glucose metabolism and insulin resistance,
but these associations were most often reported for
long-chain or odd short-chain acylcarnitines [47–51], al-
though associations with acetylcarnitine (which is an
even short-chain acylcarnitine) have also been reported
[52]. In our previous work, this metabolite was the only
one to show a positive association with breast cancer
risk in age-matched cases and controls, suggesting that
its association with age does not fully explain the associ-
ation with breast cancer. In the present work, we did not
observe any association of acetylcarnitine with anthropo-
metric factors likely associated with metabolic health, in
contrast with a positive association with BMI reported
in the EPIC Norfolk cohort [53].
A negative association between circulating asparagine

and obesity has been recently reported in different popu-
lations, including Europeans [50, 53], obese Iranian
adults [54], and Japanese [55]. Negative associations with
diabetes and coronary artery disease have also been re-
ported [50, 53], in lean as well as in obese subjects [49].
However, most studies exploring the associations be-
tween amino acids and obesity showed significant associ-
ations only with branched-chain amino acids (which do
not include asparagine) [49, 56]. Asparagine was also
part of the metabolic signature of a healthy lifestyle de-
rived in EPIC [42] and of the metabolic signature of
BMI, waist circumference, and waist/hip ratio [12].
In our study, arginine was not associated with any of

the factors investigated. This result contrasts with those
in several studies reporting negative associations of ar-
ginine with age [46] and with obesity and alcohol intake,
as well as a positive association with smoking in the
EPIC Norfolk cohort [53], which however had not ex-
cluded hormone users. Arginine has also been negatively
associated with hemoglobin concentrations and with
insulin-like growth factor 1 and estradiol [57] in pre-
menopausal women not using exogenous hormones.

These observations may suggest that arginine concentra-
tions could potentially be more tightly regulated by en-
dogenous metabolism compared to lifestyle exposures.
Major strengths of this work include the wide var-

iety of data collected which enabled us to investigate
many potential correlates for the metabolites associ-
ated with breast cancer risk, and the large sample size
of our study, compared to other metabolomics stud-
ies, where large studies are essential [58]. With the
detailed information available on characteristics of
women at blood collection, we were also able to ex-
clude hormone users from our analysis, which is
important as hormone use could possibly affect con-
centrations of some metabolites [59].
A first limitation to this work is the cross-sectional de-

sign, which prevents us from drawing any conclusions
on the timing or causality of the associations. Another
limitation is that the large sample size was achieved by
pooling data from different previous studies, rather than
by initial design, therefore adding methodological com-
plexity because of analyses performed by different la-
boratories, with different instruments, and on different
biological matrices. However, the analytical protocol
used has shown high inter-laboratory reproducibility
[60], and we addressed potential heterogeneity in metab-
olite concentrations by developing a dedicated pipeline
[24] applied to the data prior to statistical analyses. In
addition, for all metabolites included (except asparagine,
not evaluated), high correlations were reported between
measures in serum and in plasma (r ≥ 0.78, except for
arginine, r = 0.50), although concentrations were gener-
ally higher in serum than in plasma, in particular for ar-
ginine [61]. Good reliability of measurements was also
reported for both matrices (intra-class correlations for
the metabolites of interest ≥0.58 in plasma, ≥0.67 in
serum) [62]. Furthermore, exclusion of serum samples
did not substantially modify the results. A third limita-
tion is the heterogeneity of fasting status of participants.
However, variables to determine fasting status were
carefully recorded, therefore enabling us to test the ef-
fect of this variable on the results, and we found no evi-
dence of heterogeneity in the associations by fasting
status. Dietary intakes were assessed using food fre-
quency questionnaires adapted to local habits. These
questionnaires were validated through a calibration ap-
proach using a common 24-h diet recall [63] to adjust
for possible systematic misclassification in dietary mea-
surements, and a validation study using 24-h urine sam-
ples was conducted [64]. Despite these methodological
efforts, however, potential measurement error may per-
sist because of recall bias, misreporting of consumption
for certain foods, or errors related to the food compos-
ition tables used (despite careful matching [15]). Never-
theless, several cross-sectional studies showing good
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correlations [65, 66] between intakes measured by food
questionnaires and expected specific biomarkers suggest
that data from food frequency questionnaires can be
used for the purposes of the present work. Finally, the
applied technology for PC measurement does not allow
for precise identification of the compounds measured,
since the signal observed is not specific and may corres-
pond to different structural isomers. Further work is
needed to investigate specifically associations with lipid
compounds.

Conclusions
In conclusion, this cross-sectional analysis identified sev-
eral modifiable correlates of blood concentrations of me-
tabolites associated with breast cancer risk. These
associations may indicate possible mechanisms under-
lying associations between lifestyle and anthropometric
factors, and risk of breast cancer. To better understand
how our results could improve our current knowledge
on the association between lifestyle factors and breast
cancer risk, dedicated tools, such as mediation analysis,
bring promising perspectives. Intervention studies would
be required to evaluate the possible causality of the asso-
ciations observed with modifiable factors and to assess
whether concentrations of these specific metabolites
could be modified through lifestyle changes.
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