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.

A GENERALIZED SKEIN RELATION FOR KHOVANOV HOMOLOGY AND
A CATEGORIFICATION OF THE θ-INVARIANT

M. CHLOUVERAKI, D. GOUNDAROULIS, A. KONTOGEORGIS, AND S. LAMBROPOULOU

Abstract. The Jones polynomial is a famous link invariant that can be defined diagrammat-
ically via a skein relation. Khovanov homology is a richer link invariant that categorifies the
Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the
Khovanov homology. Thanks to this relation, we are able to generalize the Khovanov homology
in order to obtain a categorification of the θ-invariant, which is itself a generalization of the
Jones polynomial.

1. Introduction

One of the greatest achievements in knot theory and low-dimensional topology is the pioneering
construction of the Jones polynomial by V. F. R. Jones in 1984, which advanced spectacularly
the tabulation of knots. The value of the Jones polynomial J(L) on an oriented link L can be
calculated through different methods. One of them is algebraic and consists of computing the
Markov trace of the image of a braid representative of L in the Temperley–Lieb algebra. Another
one is diagrammatic and uses the fact that the Jones polynomial satisfies a “skein relation”, that
is, a linear relation between the values of the polynomial on a collection of three links that differ
from each other only on a selected crossing. More specifically, for an indeterminate q, we have

q−2J(L+)− q2J(L−) = (q−1 − q)J(L0)

where L+, L−, L0 is a so-called Conway triple, or equivalently,

q−2J( )− q2J( ) = (q−1 − q)J( ).

Combining this skein relation with the initial condition that the value of the Jones polynomial
on the unknot is equal to 1 allows us to compute the Jones polynomial of any link.

The Framization of the Temperley–Lieb algebra, introduced in [7], is a non-trivial extension
of the classical Temperley–Lieb algebra via the addition of the so-called “framing” generators,
each of which is a generator of a cyclic group of order d. It is also endowed with a Markov
trace, which gives rise to an invariant of framed links. When restricted to classical links, this
invariant is denoted by θ. It has been shown in [6, 8] that the θ-invariant can be also defined
diagrammatically through a skein relation, which is however not global as in the case of the
Jones polynomial. In fact, the same skein relation as the one satisfied by the Jones polynomial
holds, but only on crossings between different components; we call these crossings mixed crossings.
Using a recursive proof method developed originally by Lickorish–Millett [12] and adapted for
θ by Kauffman–Lambropoulou [9], it can be shown that calculating the value of θ on a link L
amounts to calculating the value of θ on links that are unions of unlinked knots and are obtained
via the skein relation. More specifically, a series of switchings and smoothings of mixed crossings
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transforms the initial link to a family of unions of unlinked knots, called descending stacks. Then,
if L is union of r unlinked knots, we have

θ(L) = dr−1J(L).

The invariant θ is stronger than the Jones polynomial, in the sense that it distinguishes links
that the Jones polynomial cannot distinguish [6, 8, 5].

Khovanov homology, introduced by M. Khovanov [11], is an oriented link invariant that arises
as the homology of a chain complex associated with a link. It is regarded as a categorification
of the Jones polynomial, which can be obtained as the graded Euler characteristic of this com-
plex. However, Khovanov homology encompasses more information about a link than its Jones
polynomial. Further, it is known that Khovanov homology can detect the unknot [10], while it
is still an open question whether the Jones polynomial can do the same.

Inspired by this and motivated by the fact that the θ-invariant is stronger than the Jones
polynomial, we expect that a categorification of the θ-invariant would be stronger than all the
invariants mentioned above. Given the skein-theoretic definition of θ, a first step towards a
possible categorification is the obtention of a skein relation satisfied by the Khovanov homology.
Unfortunately, the Khovanov homology does not satisfy a skein relation in the usual sense [15]. So
in the first part of our article we investigate a skein-type relation for Khovanov homology, using
the machinery of spectral sequences. We show that the Khovanov homology (more specifically, its
Poincaré polynomial) satisfies a generalized skein relation which involves its values on a Conway
triple, plus a “defect” term that arises from spectral sequences associated to the Khovanov chain
complex.

In the second part of our article, we aim to define a “framization” of the Khovanov homology,
which should have the θ-invariant as Euler characteristic. On a union of unlinked knots, we
achieve this by tensoring with the group algebra of the cyclic group of order d. On an arbitrary
link L, we follow the method of Lickorish–Millett and Kauffman–Lambropoulou. However, their
algorithm depends on several choices made on the link, such as, for instance, the ordering of
the link components and of the mixed crossings. So one has to show that the final result is
independent of these choices. This is achieved in [12] and in [9] thanks to the skein relation and
the properties of the base invariant involved. In our case though, we do not have a skein relation
in the classical sense and we cannot prove the independence of the choices made in the same way
that they did. This is why we slightly modify the generalized skein relation proved in the first
part of the article, before we apply it only to mixed crossings. By summing over several choices
and dividing by their number, we eventually obtain a link invariant Khd,d′ , depending on d and
an extra parameter d′, which is the Poincaré polynomial of a homology KH∗,∗d,d′(L), that is,

Khd,d′(L) =
∑
i,j∈Z

tiqj dimKH i,j
d,d′(L).

We prove that both the classical Khovanov homology and the θ-invariant can be obtained as
specializations of Khd,1; the former for d = 1, the latter for t = −1.

2. A generalized skein relation for Khovanov homology

Let q and t be indeterminates over Q.

2.1. Generalities on graded vector spaces. Let V = ⊕mV m be a graded Q-vector space.
The graded dimension qdim(V ) of V is the Laurent polynomial in q given by

qdim(V ) =
∑
m

qmdim(V m).
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If V ′ is another graded vector space, the graded dimension satisifes

qdim(V ⊗ V ′) = qdim(V )qdim(V ′) and qdim(V ⊕ V ′) = qdim(V ) + qdim(V ′).

Let l ∈ Z. We define the l-shift V {l} of V to be the graded vector space defined by

V {l}m = V m−l.

Note that qdim(V {l}) = qlqdim(V ).

2.2. Classical Khovanov homology. In this section, we give a short introduction to Khovanov
homology following the exposition of [14]. Let L be a link and D a diagram of L with n crossings.
Each crossing can be resolved in two ways:

Figure 1. Smoothings of a crossing

The first resolution in Figure 1 is called a 0-smoothing and the second one is a 1-smoothing.
Thus, there are 2n ways of resolving all crossings of D, each of them resulting to a collection of
circles in the plane. If now we number the crossings of D by 1, 2, . . . , n, then each such collection
can be represented by a binary n-string where the entry 0 or 1 in the j-th position corresponds
to a 0-smoothing or 1-smoothing respectively of the j-th crossing, for all j = 1, . . . , n. In the
end, D has 2n smoothings indexed by In := {0, 1}n. We can thus form a hypercube as in the
following figure (for n=3)

100 110

000 010 101 111

001 011

with an edge between words differing in exactly one place. For general n, we see the smoothings
as vertices of the hypercube indexed by In. For α ∈ In, we will denote by rα the number of 1’s
in α and by kα the number of circles in the plane of the associated smoothing.

In Khovanov homology we further assume that the link L is oriented. We denote by n+ =
n+(D) the number of positive crossings and by n− = n−(D) the number of negative crossings,
and we use the simpler notation n+ and n− whenever the diagram is fixed. Let V be a 2-
dimensional Q-vector space with basis {e, x}. We grade the two basis elements by deg(e) = 1
and deg(x) = −1. To each α ∈ In we associate the graded vector space

Vα := V ⊗kα{rα + n+ − 2n−}.
For i ∈ {−n−, . . . , n+}, we define Ci,∗(D) to be the direct sum

(2.1) Ci,∗(D) :=
⊕

α∈In with rα=i+n−

Vα.

For v ∈ Vα ⊂ C∗,∗(D), we have v ∈ Ci,j(D) if and only if i = rα − n− and j = deg(v) + rα +
n+ − 2n−. We then say that v has homological grading i and quantum grading j.
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We will now define a differential d turning (C∗,∗(D), d) into a complex. First, observe that
every edge of the hypercube is between elements of In differing in exactly one place. It can thus
be transformed into an arrow from the string with 0 in that place towards the string with 1 in
that place. This arrow can be labelled by a string that is the same as the ones labelling the tail
and the head except that it has a ? in the position that changes. For example, there is an arrow
from 0100 to 0110 which is denoted by 01 ? 0.

Now note that, for an arrow ζ : α → α′, the smoothings α and α′ are identical except for
a small disc, the changing disc, around the crossing that changes from a 0-smoothing to a 1-
smoothing (the one marked by a ? in the label of ζ). Since each circle in a smoothing has a copy
of the vector space V attached to it, we can define a linear map dζ : Vα → Vα′ as follows: Let
m : V ⊗ V → V be the linear map defined by

m(e⊗ e) = e, m(e⊗ x) = m(x⊗ e) = x, m(x⊗ x) = 0

and let ∆ : V → V ⊗ V be the linear map defined by

∆(e) = e⊗ x+ x⊗ e, ∆(x) = x⊗ x.

Then dζ is defined to be the identity on circles not entering the changing disc and either m or
∆ on the circles appearing in the changing disc (depending on whether two circles are fused into
one or a circle splits into two when going from α to α′).

Finally, we define a map di : Ci,∗(D)→ Ci+1,∗(D) by setting

di(v) :=
∑

ζ with Tail(ζ)=α

sign(ζ)dζ(v) for all v ∈ Vα ⊂ Ci,∗(D)

where sign(ζ) = (−1)# of 1’s to the left of ? in ζ . We have di+1 ◦ di = 0.
The graded Euler characteristic of this complex, i.e.,∑

i

(−1)iqdim(Ci,∗(D)) ∈ Q[q, q−1]

is the unnormalized Jones polynomial Ĵ(L) of L. Dividing Ĵ(L) by q + q−1 yields the Jones
polynomial J(L) of L.

We define the Khovanov homology of the diagram D by

KH∗,∗(D) := H(C∗,∗(D), d).

The Khovanov homology is invariant under the Reidemeister moves, and thus a link invariant.
Hence, it does not depend on the choice of diagram D, and we can talk about the Khovanov
homology of the link L. We have∑

i

(−1)iqdim(KH i,∗(L)) = Ĵ(L) = (q + q−1)J(L).

The Khovanov homology of L can be also read off the Khovanov polynomial Kh(L) of L, which
is given by

Kh(L) =
∑
i,j

tiqjdim(KH i,j(L)) =
∑
i

tiqdim(KH i,∗(L)).

Obviously, evaluating Kh(L) at t = −1 yields the unnormalized Jones polynomial Ĵ(L).
We choose not to give right now explicit examples of computations of the classical Khovanov

homology, because: (a) some will be given in §2.5 along with further computations; (b) the reader
can find plenty in literature (see, for example, [3] or [14]).
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2.3. The effect of switching a crossing. A skein relation relates the value of a link invariant
of a diagram D of a link L with the values of the diagrams obtained by switching and smoothing a
given crossing. Let us consider the numbering of the crossings of D and the associated hypercube
introduced in the previous section. If we switch the j-th crossing the sign from negative to
positive, then every 1 at the j-th position should become 0 and every 0 should change to 1,
as if we take the “not” operator on a given binary number at the j-th position. In general the
operation of switching the crossing induces an automorphism of the hypercube.

For example, if we take j = 2, then the hypercube

100 110

000 010 101 111

001 011

should change to

Notice that in order to map the new transformed cube to the Khovanov cube with this changed
position we have to rotate the two highlighted faces together with the maps at the edges. For a
detailed example explaining this rotation after switching a crossing from negative to positive we
refer to the example of the Hopf link in §2.5.1.

2.4. A generalized skein relation. Consider two link diagrams D+ and D− that differ on
exactly one crossing, which is positive in the former and negative in the latter. Equivalently,
we can see this crossing as the one we choose to switch, thus obtaining one diagram from the
other. In order to understand the relation between D+ and D− we will study the relation of
D+ (respectively D−) to the two resolutions D+

0 and D+
1 (respectively D−0 and D−1 ), obtained

respectively by the 0-smoothing and the 1-smoothing of the selected crossing, as in the following
picture:

Following [14, Chapter 3], we distinguish the following cases:
Case I: the selected crossing is positive. The diagram D+

0 inherits an orientation from D+ and
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for D+
1 we select an arbitrary orientation. Set

c+ := #{negative crossings in D+
1 } −#{negative crossings in D+}.

For each j there is a short exact sequence:

0→ Ci−c
+−1,j−3c+−2(D+

1 )→ Ci,j(D+)→ Ci,j−1(D+
0 )→ 0.

Case II: the selected crossing is negative. In this case D−1 inherits its orientation from D− and
for D−0 we select the same orientation as for D+

1 . Set

c− := #{negative crossings in D−0 } −#{negative crossings in D−}.

For each j there is a short exact sequence:

0→ Ci,j+1(D−1 )→ Ci,j(D−)→ Ci−c
−,j−3c−−1(D−0 )→ 0.

Now, we observe that D+
0 = D−1 and D−0 = D+

1 , after choosing the same orientation for the
second pair. We thus have c+ = c− + 1, and so

(i− 2)− c− = i− c+ − 1 and (j − 4)− 3c− − 1 = j − 3c− − 5 = j − 3c+ − 2.

Therefore, the two short exact sequences above can be combined in a long one:

0 // Ci−2,j−3(D+
0 )

ψ1 // Ci−2,j−4(D−)
φ1 // C(i−2)−c−,(j−4)−3c−−1(D−0 ) // 0

0 // Ci−c
+−1,j−3c+−2(D−0 )

φ2 // Ci,j(D+)
ψ2 // Ci,j−1(D+

0 ) // 0

Lemma 1. The above exact sequence can be compactified to a 4-term exact sequence:

(2.2) 0 // Ci−2,j−3(D+
0 )

ψ1 // Ci−2,j−4(D−)
φ // Ci,j(D+)

ψ2 // Ci,j−1(D+
0 ) // 0

where φ = φ2 ◦ φ1.

Proof. Observe that

kerφ = {x ∈ Ci−2,j−4(D−) |φ2(φ1(x)) = 0} = {x ∈ Ci−2,j−4(D−) |φ1(x) = 0} = kerφ1 = imψ1.

Similarly,

imφ = φ2

(
φ1(Ci−2,j−4(D−))

)
= φ2(C(i−2)−c−,(j−4)−3c−−1(D−0 )) = imφ2 = kerψ2.

�

Equation (2.2) gives rise to a double complex which is not zero on a parallel band of four lines
and also only if i ∈ {−n−(D−), . . . , n+(D+)} (recall the definition of Ci,∗ in (2.1) and note that
n−(D−) > n−(D+

0 ) = n−(D+) and n+(D−) = n+(D+
0 ) < n+(D+)), so it behaves like a first

quadrant double complex. On this parallel band the quantum degrees j−3, j−4, j, j−1 appear.
For every fixed j we will form a spectral sequence out of this double complex and we will denote
elements on the n-th page by Ei,jn,j , so that the second subindex shows the dependence on the
quantum degree. For a good introduction to spectral sequences, the reader may refer to [16,
Chapter 5].
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0

��

0

��
// Ci−2,j−3(D+

0 ) //

��

Ci−1,j−3(D+
0 ) //

��
// Ci−2,j−4(D−) //

��

Ci−1,j−4(D−) //

��
// Ci,j(D+) //

��

Ci+1,j(D+) //

��
// Ci,j−1(D+

0 ) //

��

Ci+1,j−1(D+
0 ) //

��
0 0

For the creation of the first vertical page Ei,j1,j , we compute Kernel over Image along each row.
This coincides with taking the Khovanov homology in each position. Thus the first page measures
how far each horizontal sequence is from being exact. The vertical arrows are preserved, and we
obtain:

0

��

0

��

0

��

0

��
KHi−3,j−3(D+

0 )

αi−3,j

��

KHi−2,j−3(D+
0 )

αi−2,j

��

KHi−1,j−3(D+
0 )

αi−1,j

��

KHi,j−3(D+
0 )

ai,j

��
KHi−3,j−4(D−)

βi−3,j

��

KHi−2,j−4(D−)

βi−2,j

��

KHi−1,j−4(D−)

βi−1,j

��

KHi,j−4(D−)

βi,j

��
KHi−1,j(D+)

γi−1,j

��

KHi,j(D+)

γi,j

��

KHi+1,j(D+)

γi+1,j

��

KHi+2,j(D+)

γi+2,j

��
KHi−1,j−1(D+

0 )

��

KHi,j−1(D+
0 )

��

KHi+1,j−1(D+
0 )

��

KHi+2,j−1(D+
0 )

��
0 0 0 0

In the above diagram we introduce the notation αi,j , βi,j and γi,j for the functions corre-
sponding to the vertical arrows KH i,j−3(D+

0 )→ KH i,j−4(D−), KH i,j−4(D−)→ KH i+2,j(D+),
KH i,j(D+)→ KH i,j−1(D+

0 ), respectively. That is, we have:
(2.3)

0 // KH i−2,j−3(D+
0 )

αi−2,j // KH i−2,j−4(D−)
βi−2,j // KH i,j(D+)

γi,j // KH i,j−1(D+
0 ) // 0 .

The second subindex j illustrates that we are on the spectral sequence E∗,∗∗,j .
For the creation of the second page Ei,j2,j (Table 1), we take Kernel over Image along each

column. Thus, the second page measures how far the sequences of the first page are from being
exact. Now, in each position we no longer get a link invariant, so we will use the notation D+t

0
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Table 1. The E2-page; the positions marked in grey are exact.

0 0

0

Ei−2,j−3
2,j (D+t

0 ) Ei−1,j−3
2,j (D+t

0 )

Ei−2,j−4
2,j (D−)

Ei−1,j
2,j (D+) Ei,j2,j(D

+)

Ei−1,j−1
2,j (D+b

0 )

0 0

0

and D+b
0 to differentiate between the copy of D+

0 appearing in the top line and the copy of D+
0

appearing in the bottom line. We obtain arrows that go two positions down and one left. We
have that:

Ei−2,j−3
2,j (D+t

0 ) = kerαi−2,j(2.4)

Ei−2,j−4
2,j (D−) =

kerβi−2,j

imαi−2,j

Ei,j2,j(D
+) =

kerγi,j
imβi−2,j

Ei,j−1
2,j (D+b

0 ) = cokerγi,j .

We now create the third page Ei,j3,j (Table 2) by taking Kernel over Image along each sequence
of the E2-page. We obtain arrows that go 3 positions down and 2 left. By looking at the E4-page,
we immediately obtain that all positions in the E3-page are exact. Moreover, we observe that
Ei−1,j

3,j (D+) ∼= Ei,j3,j(D
+) ∼= Ei−2,j−4

3,j (D−) ∼= 0, whence we deduce that the positions marked in
grey in the E2-page are exact.
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Table 2. The E3-page; all positions are exact.

0 0

0

0 0

Ei−2,j−3
3,j (D+t

0 ) Ei−1,j−3
3,j (D+t

0 )

Ei−2,j−4
3,j (D−)

Ei−1,j
3,j (D+) Ei,j3,j(D

+)

Ei−2,j−1
3,j (D+b

0 ) Ei−1,j−1
3,j (D+b

0 )

0

0 0

0

By looking at the second, third and fourth pages we obtain the following exact sequences:

(2.5) 0 // Ei−1,j−3
3,j (D+t

0 ) // Ei−1,j−1
3,j (D+b

0 ) // 0

0 // Ei−2,j−3
3,j (D+t

0 ) // Ei−2,j−3
2,j (D+t

0 ) // Ei−1,j
2,j (D+) // 0

0 // Ei−2,j−4
2,j (D−) // Ei−1,j−1

2,j (D+b
0 ) // Ei−1,j−1

3,j (D+b
0 ) // 0

From now on, abusing notation, we will write Kh(En(D∗)) for
∑

i,j t
iqjdim(Ei,jn,j(D

∗)). The
short exact sequences above imply that

tq3Kh(E3(D+t
0 )) = tqKh(E3(D+b

0 )) ,(2.6)

tKh(E2(D+)) = t2q3Kh(E2(D+t
0 ))− t2q3Kh(E3(D+t

0 )) ,(2.7)

t2q4Kh(E2(D−)) = tqKh(E2(D+b
0 ))− tqKh(E3(D+b

0 )).(2.8)

Now, Equation (2.3) combined with (2.4) yields

(2.9) (t2q3 − q)Kh(D+
0 )− t2q4Kh(D−) + Kh(D+) = C ,

where

C = t2q3Kh(E2(D+t
0 ))− t2q4Kh(E2(D−)) + Kh(E2(D+))− qKh(E2(D+b

0 )).
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Note again that Kh(E2(D+t
0 )) is not necessarily equal to Kh(E2(D+b

0 )). Substituting Kh(E2(D+))
and Kh(E2(D−)) in the above formula with the use of (2.7) and (2.8) respectively, we obtain

C = (t2q3 + tq3)Kh(E2(D+t
0 ))− (q + tq)Kh(E2(D+b

0 ))− tq3Kh(E3(D+t
0 )) + tqKh(E3(D+b

0 ))

The last two terms cancel out because of (2.6), and we conclude that

(2.10) C = (t+ 1)tq3Kh(E2(D+t
0 ))− (t+ 1)qKh(E2(D+b

0 )) =: C(D+
0 , D

−, D+).

We have thus proved the main result of this section:

Theorem 1. The Khovanov polynomial Kh satisfies the generalized skein relation

(2.11) (t2q3 − q)Kh(D+
0 )− t2q4Kh(D−) + Kh(D+) = C(D+

0 , D
−, D+)

where C(D+
0 , D

−, D+) is given by Equation (2.10). The generalized skein relation can be also
written more symmetrically as

(2.12) t−1q−2Kh(D+)− tq2Kh(D−) = (t−1q−1 − tq)Kh(D+
0 ) + Csym(D+

0 , D
−, D+)

where

(2.13) Csym(D+
0 , D

−, D+) = (t+ 1)qKh(E2(D+t
0 ))− (t−1 + 1)q−1Kh(E2(D+b

0 )).

Remark 1. We observe that for t = −1, we have C(D+
0 , D

−, D+) = 0, and so we recover the
usual skein relation for the unnormalized Jones polynomial (and for the Jones polynomial as
well):

q−2Ĵ(D+)− q2Ĵ(D−) = (q−1 − q)Ĵ(D+
0 ).

Remark 2. The skein relation given in Theorem 1 is not local, in contrast with the usual skein
relations in literature. This means that the quantity C(D+

0 , D
−, D+) depends on all remaining

diagrams D+
0 , D

−, D+.

2.5. Examples. In this subsection we will apply Theorem 1 to the Hopf link and the left-handed
trefoil knot.

Figure 2. Hopf link with two negative crossings and resolution of one crossing

2.5.1. The Hopf Link. First we will study the Hopf link with two negative crossings (Figure 2).
Using the invariance of classical Khovanov theory under Reidemeister moves we see that

D+
0 = D−1 has the Khovanov homology of the unknot:

KH0,1(D+
0 ) = 〈e⊗ e〉 ∼= Q and KH0,−1(D+

0 ) = 〈x⊗ e〉 ∼= Q.

The Khovanov homology of D− is given in [14, Example 3.7], while D+ is the union of two
unlinked unknots. The Khovanov homology of the two links is given in the following tables:
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KH(D−):

j\i -2 0
0 Q
-2 Q
-4 Q
-6 Q

KH(D+):

j\i 0
2 Q
0 Q2

-2 Q

We thus have:

(i, j) KH i−2,j−3(D+
0 ) KH i−2,j−4(D−) KH i,j(D+) KH i,j−1(D+

0 )
(0,2) Q Q
(0,0) Q Q2 Q
(0,-2) Q Q
(2,4) Q Q
(2,2) Q Q

and the following exact sequence, given in (2.3), is exact for every i, j:

0→ KH i−2,j−3(D+
0 )→ KH i−2,j−4(D−)→ KH i,j(D+)→ KH i,j−1(D+

0 )→ 0.

Therefore, in this example, the skein relation (2.11) for the Khovanov polynomial holds with
C(D+

0 , D
−, D+) = 0.

2.5.2. The left-handed trefoil knot. In this example we will study the trefoil knot D− with three
negative crossings. Then D+ is the unknot and D+

0 is the Hopf link. The Khovanov homology
of the three links is given in the following tables:

KH(D−):

j\i 0 -2 -3
-9 Q
-5 Q
-3 Q
-1 Q

KH(D+):
j\i 0
1 Q
-1 Q

KH(D+
0 ):

j\i -2 0
0 Q
-2 Q
-4 Q
-6 Q

From the above tables we compute

Kh(D−) =
1

t3q9
+

1

t2q5
+

1

q3
+

1

q

Kh(D+) =
1

q
+ q

Kh(D+
0 ) =

1

t2q6
+

1

t2q4
+

1

q2
+ 1

We thus have:

(i, j) KH i−2,j−3(D+
0 ) KH i−2,j−4(D−) KH i,j(D+) KH i,j−1(D+

0 )
(-2,-3) Q
(-2,-5) Q
(-1,-5) Q
(0,1) Q Q
(0,-1) Q Q Q Q
(0,-3) Q
(2,3) Q Q
(2,1) Q Q
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By looking at the table above, we only need to study the cases where j ∈ {−5,−3,−1, 1, 3}.

Case j = −5: In the first page, we have the following sequences of Khovanov homology:

0

��

0

��
0 = KH−4,−8(D+

0 )

��

0 = KH−3,−8(D+
0 )

��
0 = KH−4,−9(D−)

��

E−3,−9
2,−5 (D−)

∼=

��

∼= Q ∼= KH−3,−9(D−)

��
0 = KH−2,−5(D+)

��

0 = KH−1,−5(D+)

��
Q ∼= KH−2,−6(D+

0 )

��

∼= E−2,−6
2,−5 (D+b

0 ) 0 = KH−1,−6(D+
0 )

��
0 0

The above diagonal morphism fits within the third sequence in (2.5) for i = −1, j = −5

0 // E−3,−9
2,−5 (D−) ∼= Q // E−2,−6

2,−5 (D+b
0 ) ∼= Q // E−2,−6

3,−5 (D+b
0 ) // 0

whence E−2,−6
3,−5 (D+b

0 ) = 0.
Case j = −3: In the first page, we have the following sequences of Khovanov homology:

0

��

0

��
0 = KH−4,−6(D+

0 )

��

0 = KH−3,−6(D+
0 )

��
0 = KH−4,−7(D−)

��

E−3,−7
2,−3 (D−)

��

∼= 0 = KH−3,−7(D−)

��
0 = KH−2,−3(D+)

��

0 = KH−1,−3(D+)

��
Q ∼= KH−2,−4(D+

0 )

��

∼= E−2,−4
2,−3 (D+b

0 ) 0 = KH−1,−4(D+
0 )

��
0 0

The above diagonal morphism fits within the third sequence in (2.5) for i = −1, j = −3

0 // E−3,−7
2,−3 (D−) ∼= 0 // E−2,−4

2,−3 (D+b
0 ) ∼= Q // E−2,−4

3,−3 (D+b
0 ) // 0
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whence E−2,−4
3,−3 (D+b

0 ) ∼= Q.
We also have the following sequences of Khovanov homology:

0

��

0

��
0 = KH−3,−6(D+

0 )

��

E−2,−6
2,−3 (D+t

0 ) ∼=

��

Q = KH−2,−6(D+
0 )

��
0 = KH−3,−7(D−)

��

0 = KH−2,−7(D−)

��
0 = KH−1,−3(D+)

��

∼= E−1,−3
2,−3 (D+) 0 = KH0,−3(D+)

��
0 = KH−1,−4(D+

0 )

��

0 = KH0,−4(D+
0 )

��
0 0

The above diagonal morphism fits within the second sequence in (2.5) for i = 0, j = −3

0 // E−2,−6
3,−3 (D+t

0 ) // E−2,−6
2,−3 (D+t

0 ) ∼= Q // E−1,−3
2,−3 (D+) ∼= 0 // 0

whence E−2,−6
3,−3 (D+t

0 ) ∼= Q.

Cases j ∈ {−1, 1, 3}: In these cases all vertical sequences are exact so the corresponding elements
in the second page are all zero.

0

��
KH−2,−4(D+

0 ) ∼= Q

��
KH−2,−5(D−) ∼= Q

��
KH0,−1(D+) ∼= Q

��
KH0,−2(D+

0 ) ∼= Q

��
0

0

��
KH0,−2(D+

0 ) ∼= Q

��
KH0,−3(D−) ∼= Q

��
KH2,1(D+) = 0

��
KH2,0(D+

0 ) = 0

��
0

0

��
KH0,0(D+

0 ) ∼= Q

��
KH0,−1(D−) ∼= Q

��
KH2,3(D+) = 0

��
KH2,2(D+

0 ) = 0

��
0
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There is also a sequence where the Khovanov homology of D− is equal to 0:

0

��
KH−2,−2(D+

0 ) = 0

��
KH−2,−3(D−) = 0

��
KH0,1(D+) ∼= Q

��
KH0,0(D+

0 ) ∼= Q

��
0

We now compute:

Kh(E2(D+b
0 )) =

1

t2q6
+

1

t2q4
and Kh(E2(D+t

0 )) =
1

t2q6

and so

C(D+
0 , D

−, D+) = (t+ 1)q
(
tq2Kh(E2(D+t

0 ))−Kh(E2(D+b
0 )
)

= (t+ 1)q

(
1

tq4
− 1

t2q6
− 1

t2q4

)
= (t+ 1)

(
tq2 − 1− q2

t2q5

)
.

Moreover, we have

(t2q3 − q)Kh(D+
0 )− t2q4Kh(D−) + Kh(D+) =

1

q3
+

1

q
+ t2q + t2q3 − 1

t2q5
− 1

t2q3
− 1

q
− q

− 1

tq5
− 1

q
− t2q − t2q3 +

1

q
+ q

=
1

q3
− 1

t2q5
− 1

t2q3
− 1

tq5

=
t2q2 − 1− q2 − t

t2q5

= (t+ 1)

(
tq2 − q2 − 1

t2q5

)
.

Therefore, Equation (2.11) is satisfied.

3. A categorification of the θ-invariant

3.1. The θ-invariant. Our initial motivation for looking for a skein relation for the Khovanov
homology was our desire to categorify the θ-invariant, a skein link invariant that generalizes the
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Jones polynomial. The θ-invariant is a 2-variable polynomial invariant defined in [8], and is
obtained as a specialization of the 3-variable polynomial skein link invariant Θ introduced in [6],
in the same way that the Jones polynomial is obtained as a specialization of the HOMFLYPT
polynomial. The invariants Θ and θ are generalizations of invariants obtained from Markov
traces on the Yokonuma–Hecke algebra of type A and the Framization of the Temperley–Lieb
algebra respectively using Jones’s method (see [6, 7] for these algebraic constructions).

Let L denote the set of oriented links. Let L ∈ L with components K1, . . . ,Kr (r ≥ 1).
Given a diagram D of L, we will call a crossing mixed if it is between two different components
of D. We will write L = tri=1Ki if there exists a diagram of L without mixed crossings, that is,
L is a union of r unlinked knots. We can define θ as follows [8, Theorem 1]:

Theorem 2. Let q, E be indeterminates. There exists a unique ambient isotopy invariant

θ : L → C[q±1, E±1]

defined by the following rules:
(a) For all r ≥ 1, we have

(3.1) θ(tri=1Ki) = E1−rJ(tri=1Ki).

(b) On mixed crossings the skein relation of the Jones polynomial holds, that is,

(3.2) q−2θ(L+)− q2θ(L−) = (q−1 − q)θ(L0)

where L+, L−, L0 is a Conway triple.

Remark 3. The skein relation (3.2) is actually not the same as the one of [8, Theorem 1]. We
have changed it slightly, replacing q by −q, in order to be in agreement with the skein relation
satisfied by the Jones polynomial in this paper.

Remark 4. We have J(tri=1Ki) = (q−1 + q)r−1
∏r
i=1 J(Ki).

Remark 5. Note that in L0 the two components involved in the mixed crossing have been fused
into one.

The invariant θ is a specialization of the 3-variable polynomial invariant, first introduced in [6,
Theorem 8.1], Θ : L → C[q±1, E±1, µ±1], which is is defined in the same way as θ, but satisfying
the skein relation

µ−1Θ(L+)− µΘ(L−) = (q−1 − q)θ(L0).

Taking µ = q2 yields θ.
The existence of the invariant Θ is proved in [6] by showing that it coincides with a variation

of a 3-variable invariant for tied links defined by Aicardi and Juyumaya in [1, 2]. Another
diagrammatic proof of its existence is given by Kauffman and Lambropoulou in [9], using the
notion of “descending stacks”. We will make use of them when we define the categorification of
θ in the next sections.

Let d ∈ N∗. For E = 1/d, the invariants Θ and θ can be defined algebraically as Markov
traces on the Yokonuma–Hecke algebra of type A and the Framization of the Temperley–Lieb
algebra respectively, using Jones’s technique. This algebraic construction is the third proof of
their existence. For the rest of the paper, we will only be interested in this case, that is, when
E is the inverse of a positive integer d. For d = 1, the invariants Θ and θ coincide with the
HOMFLYPT and the Jones polynomial respectively. In general, by [6, Theorem 8.2] and [8,
Theorem 5] (see also [5, Example 4.16]), we have:

Theorem 3. The invariants Θ and θ are stronger than the HOMFLYPT and the Jones polyno-
mial respectively.



16 M. CHLOUVERAKI, D. GOUNDAROULIS, A. KONTOGEORGIS, AND S. LAMBROPOULOU

By “stronger” we mean that these invariants distinguish links that the others (the “weaker”
ones) cannot distinguish.

3.2. Knot theory via recursive relations. In this section, we will describe the algorithm of
[12] and [9] for associating to each oriented link diagram a family of unions of unlinked knots,
called “descending stacks”. This will allow us to compute the value of any map f on L that
satisfies a generalized skein relation via a recursive process whose initial condition is the value
of f on any union of unlinked knots. However, constructing the descending stacks depends on
several choices that we make, so in order to prove the f is well-defined, we have to further show
that the value of f on an oriented link does not depend on the choices made.

Let L be an oriented link diagram. We say that L is ordered, if an order is given to its
components, and based, if a basepoint is chosen on each component. If L is both ordered and
based, we say that L is generic. We can turn every oriented link diagram to a generic one by
making the needed choices. Of course, the associated generic diagram is not unique.

A generic diagram is a descending stack if, when walking along its components in their given
order following their orientations and starting from their basepoints, every mixed crossing is first
traversed along its over-arc. The structure of a descending stack depends on the ordering of its
components, but not on the choice of basepoints or the numbering of the mixed crossings.

Starting from a generic link diagram L, with components K1,K2, . . . ,Kr, we can associate to
it a family of descending stacks as follows:

Step 1. We perform the following procedure for i = 1, then i = 2, i = 3, until we reach i = r:
We start walking from the basepoint on Ki following its orientation and every time we
come across a mixed crossing along its under-arc, we mark it. We continue until we
return to the basepoint. Note that if all marked mixed crossings so far are switched, we
obtain a generic diagram with r components, where K1, . . . ,Ki are unlinked from the
remaining components and lie above them, and K1 lies above K2, K2 lies above K3,
etc.

Step 2. We proceed with replacing our initial diagram by two new generic diagrams as follows:
The first one, denoted by L1, is obtained by switching the first marked mixed crossing
of the previous step, and thus has r components. The second one, denoted by L(1),
is obtained by smoothing the first marked mixed crossing of Step 1, and thus has
r − 1 components (two of the original components are fused into one). These two new
diagrams are made generic by the same choices as for L. For a component resulting from
the merging of two, we choose as basepoint the one of the smaller in order component
involved. We repeat the same procedure on the second marked mixed crossing of L1,
and obtain two diagrams L2 and L(2). We continue until have done the same thing for
all marked mixed crossings of Step 1. If s is the total number of such mixed crossings,
then we end up with an r-component link Ls =: δL, which is a descending stack with
components K1,K2, . . . ,Kr, and s (r − 1)-component links L(1), L(2), . . . , L(s). We
define s to be the distance of L from δL. Clearly, the distance of a generic diagram is
well-defined.

Step 3. We apply the above procedure (Steps 1 and 2) for each generic diagram L(1), L(2), . . . , L(s)

obtained through the smoothing of mixed crossings of L.

We repeat Steps 1–3 until we end up with a family of descending stacks {δ1 := δL, δ2, . . . , δm}.
Among them only δ1 has r components, while all other descending stacks have less than r
components.
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Let now R be an integral domain, and let D be the set of all oriented link diagrams. We say
that f : D → R satisfies a generalized skein relation if

(3.3) r+f(L+) + r−f(L−) + r0f(L0) + r∞(L+, L−, L0) = 0,

where r+, r− ∈ R×, r0, r∞(L+, L−, L0) ∈ R and L+, L−, L0 is a Conway triple. In a classical
skein relation, we have r∞(L+, L−, L0) = 0, but the above expression allows us to handle also
the case of the Khovanov homology.

Let L be an oriented link diagram, which we turn to a generic one by making the needed
choices. Let ∆ = {δ1, δ2, . . . , δm} be the family of descending stacks associated to it. Applying
the generalized skein relation to every marked mixed crossing that we switch or smooth to reach
∆ (let us denote their number by M) yields

(3.4) f(L) =
m∑
i=1

αi(r+, r−, r0)f(δi) + α∞(r∞),

where the coefficients αi(r+, r−, r0) are products of ±r±1
+ , ±r±1

− , ±r0, for i = 1, . . . ,m, while
α∞(r∞), is a product of M terms of the form −r∞(c), where c runs over Conway triples, multi-
plied with either r−1

+ or r−1
− . Therefore, if we have an “inital condition” that gives the value of f

on any union of unlinked knots, then we can compute f(L).
Now, the map f is well-defined if and only if the value of f(L) given by (3.4) is independent of

the choice of basepoints and the ordering of the components of L, when L is turned to a generic
link diagram. If further f respects the Reidemeister moves, f is an ambient isotopy invariant of
links. Link invariants that satisfy skein relations or generalized skein relations, such as the Jones
polynomial, the θ-invariant or the Khovanov homology, are particularly interesting.

3.3. Categorifying θ: the case of knots. Let d ∈ N∗ and E = 1/d. As in the case of the
Jones polynomial, we would like to construct a homology whose Poincaré polynomial, evaluated
at t = −1, yields the unnormalized θ-invariant θ̂, which is given by θ̂(L) = d(q + q−1)θ(L) on
any oriented link L. Further, for d = 1, it should become the classical Khovanov homology.

Let now G be the cyclic group of order d. For any knot K, we define

(3.5) KH i,j
d (K) := Q[G]⊗Q KH

i,j(K).

The corresponding Poicaré polynomial is

Khd(K) =
∑
i

tiqdim(KH i,∗
d (K)) = d ·Kh(K).

If now L1, L2 are unions of unlinked knots, then we can define inductively KH i,j
d on L1 t L2

as follows:

(3.6) KH i,j
d (L1 t L2) :=

⊕
ν1+ν2=i
µ1+µ2=j

KHν1,µ1
d (L1)⊗KHν2,µ2

d (L2).

The above result implies the multiplicativity of the corresponding Poincaré polynomial:

Khd(L1 t L2) = Khd(L1) ·Khd(L2).

Remark 6. For d = 1, and thus the classical Khovanov homology, one can prove (3.6) using the
Künneth spectral sequence [16, Theorem 3.6.1], after observing that the Khovanov complex of
L1 t L2 is the tensor product of the Khovanov complexes of L1 and L2. It is important that we
are working over the field Q for this to hold. The case of Khovanov homology with coefficients
in Z or, even worse, over an arbitrary ring is much more complicated.
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We deduce that if K1, . . . ,Kr are knots, then

(3.7) Khd(tri=1Ki) =

r∏
i=1

Khd(Ki) =

r∏
i=1

dKh(Ki) = drKh(tri=1Ki).

Evaluating the above formula at t = −1 yields:

Khd(tri=1Ki) |t=−1= drKh(tri=1Ki) |t=−1= drĴ(tri=1Ki) = θ̂(tri=1Ki).

3.4. Categorifying θ: the case of links. Equation (3.7) is the categorified equivalent of
Equation (3.1). We would now like to obtain the value of Khd on any link L by applying the
following rule: On mixed crossings the skein relation of the Khovanov polynomial holds. However,
the Khovanov polynomial does not satisfy a skein relation in the classical sense; the closest to a
skein relation that we have is Equation (2.12), which can be rewritten as follows:

(3.8) Kh(L) = y2εPKh(σPL)− εP yεP zKh(sPL) + C ′(L, σPL, sPL)

where z = tq − (tq)−1, y = tq2, σPL is the link with a given crossing P switched (that is, L+

for L− and vice versa), sPL is the link with the crossing P smoothed, εP = ±1 is the sign
of the crossing P and C ′(L, σPL, sPL) = εP y

εPCsym(sPL,L−, L+) ∈ Q[q±1, t±1]. We say that
C ′(L, σPL, sPL) is the defect of the skein relation. Unfortunately, C ′(L, σPL, sPL) depends on
all three diagrams L, σPL and sPL. Because of our lack of control on the value of the defect,
we were not able to show that, by applying rule (3.8) only on mixed crossings, we obtained a
well-defined link invariant. This is the reason why we decided to introduce and extra framing
variable d′ and the following variation of the generalized skein relation

(3.9) Khd,d′(L) = y2εPKhd,d′(σPL)− εP yεP zd′Khd,d′(sPL) + dα(L)C ′(L, σPL, sPL)

where α(L) is the number of components of the link L. We can now construct a link invariant
as follows:

We start with an oriented link L with components K1, . . . ,Kr. There are r! ways of ordering
the components of L, each corresponding to a permutation β ∈ Sr. We will consider the ordering
as part of the structure of L and we will denote the link L with the ordering β by Lβ .

Now, let β ∈ Sr and let ΓLβ denote the set of diagrams representing Lβ that have minimal
number of crossings. It is clear that any diagram in this set can be transformed to another
one in this set by a sequence of Reidemeister moves. For every diagram D ∈ ΓLβ , we denote
by mix(D) the set of its mixed crossings and by Cmix(D) the subset of mix(D) of crossings at
which the component below is smaller than the component above with respect to the β-ordering.
Therefore, the set Cmix(D) consists of the mixed crossings that need to be switched so that in
the descending stack δLβ the order of the resulting knot components from top to bottom is given
by the β-ordering (with the smallest component on top).

Let D ∈ ΓLβ . For any mixed crossing P ∈ Cmix(D), we can perform a switching and
smoothing according to the relation given in Equation (3.9). More specifically, we have (we
change the notation to KhPd,d′ in order to keep track of the crossing P ):

KhPd,d′(D) = y2εPKhPd,d′(σPD)− εP yεP zd′KhPd,d′(sPD) + dα(L)C ′(D,σPD, sPD).

We observe that the number of components α(L) of L does not depend on the choice of the
diagram D. As far as the ordering is concerned, the link σPD, where the components at the
mixed crossing P are switched, inherits the ordering of Lβ , while in sPD, where the components
at the mixed crossing P are merged together, the new component inherits its numbering from
the smallest of the two components involved; the ordering of the components of sPD corresponds
to a permutation β′ ∈ Sr−1 which respects otherwise the β-ordering of the components of L.
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It is clear that repeating this procedure will result in descending stacks, where Khd,d′ can be
defined with the use of Equation (3.7) (replacing Khd with Khd,d′). Indeed, the diagram σPD

has smaller distance from the descending stack δLβ than the original diagram D and the diagram
sPD has a mixed crossing less than D.

If now L is a union of r unlinked knots, then we define Khd,d′(L) := Khd(L). Otherwise, we
have #Cmix(D) 6= 0 for all D ∈ ΓLβ with β ∈ Sr, and we define

(3.10) Khd,d′(L) :=
1

r!

∑
β∈Sr

1

#ΓLβ

∑
D∈Γ

Lβ

1

#Cmix(D)

∑
P∈Cmix(D)

KhPd,d′(D)

This is essentially a quantity which is summed over all possible choices we made on the level of
the generic diagram, hence it is independent of them. It is also clear that, thanks to the use of
the set ΓLβ , the value of Khd,d′(L) is invariant under Reidemeister moves. Hence, Khd,d′ is a
well-defined link invariant.

We will now see why we consider the link invariant Khd,d′ a categorification of θ. First, we
observe that for d′ = 1 and t = −1, Equation (3.9) becomes

Khd,1(L) = y2εPKhd,1(σPL)− εP yεP zKhd,1(sPL)

with z = q−1−q and y = −q2, which is the same skein relation satisfied by θ on mixed crossings.
Since θ is a well-defined link invariant, it is invariant under all possible choices. So in Equation
(3.10), we sum over all possible choices the same value and obtain

Khd,d′(L) � t=−1,d′=1 // θ(L).

Let us now consider the case d′ = d. We extend the definition of Khd on any link L by
establishing the following rule: On mixed crossings Khd satisfies the generalized skein relation

Khd(L) = y2εPKhd(σPL)− εP yεP zdKhd(sPL) + dα(L)C ′(L, σPL, sPL).

We will show that Khd is well-defined; in particular, we have Khd(L) = dα(L)Kh(L). We deduce
that

Khd,d′(L) � d=d′ // Khd(L).

We start with a generic diagram of an oriented link L with r components. We follow the algo-
rithm described in §3.2 in order to form the family of descending stacks {δ1, . . . , δm} associated
to it. We can draw a graph, called the skein tree of L, whose vertices are labelled by the link
diagrams appearing when applying the algorithm (starting from L at the top and resulting to
the descending stacks δ1, . . . , δm at the bottom) and whose edges connect any link diagram with
its switched and smoothed versions at a given mixed crossing. Each vertex of the skein tree is
the outcome of a series of switchings and smoothings, starting from the link diagram L.

Assume that we are in the vertex Lv of the skein tree of L, and that Lv is obtained from
L after applying rv switchings and r′v smoothings. This link Lv has r − r′v components and
its contribution Khd(Lv) in the computation of Khd(L) is multiplied by dr

′
v . Therefore, by

construction, the “total defect” in the computation of Khd(L) is given by∑
v

dr−r
′
vdr

′
vC ′(Lv, σPvLv, sPvLv),

where Pv is the mixed crossing that is switched and smoothed at the vertex Lv of the skein tree
according to the algorithm. It is clear that Khd(L) = drKh(L).

We note that, in order to be able to obtain both θ and Khd as specializations of the link
invariant Khd,d′ , we could not have simply imposed the rule (3.9) on mixed crossings, because
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we would not be able show invariance under Reidemeister moves. This is why we defined Khd,d′
by summing over all possible choices as in Equation (3.10).

3.5. Open questions. As mentioned in the introduction and in the previous section, it is an
open question whether we could have applied the method of Lickorish–Millett and Kauffman–
Lambropoulou in order to define a framization of the Khovanov homology with the use of the
generalized skein relation (2.12), which is the one satisfied by the classical Khovanov homology
with scalars extended to Q[G]. It is certain that we cannot imitate their proof and show that our
function Khd is independent of all choices made by relying on the properties of the base invariant
involved. This is why we choose to (a) sum over all possible choices and divide by their number,
and (b) introduce the framing parameter d′.

The next step is to prove that this new function is indeed a link invariant by showing stability
under the Reidemeister moves. The Reidemeister I move poses no problem, since it is handled
by the base invariant at each individual component. However, stability under the Reidemeister
II move does not seem to hold, since the proofs found in [12] and in [9] use the independence
of the choices made and such a treatment is not possible in our case. So instead of working
with an arbitrary diagram representing a link L, we work with diagrams with minimal number
of crossings. In this way, we arrive at the invariant Khd,d′ defined by Equation (3.10).

The drawback of our method is that it seems very difficult to compute the value of the
invariant Khd,d′ . Given a link L, there is no simple way to find all diagrams with minimal
number of crossings. Moreover, assuming that we have a diagram of L with minimal number of
crossings, it seems equally difficult to find all other diagrams which represent L and still have
the same minimal number of crossings.

We believe that it is interesting, in order to address the above problem, to find a way of
constructing all link diagrams with a given number of minimal crossings. The existing lists, for
example in the “Knot Atlas” [4], give information of only one representative of the Reidemeister
equivalence class. If such a set ΓL of minimal crossings diagrams for a given link L is provided,
then summing a well-defined function f on the set of link diagrams over D ∈ ΓL provides us
with a link invariant hf , that is,

hf (L) :=
∑
D∈ΓL

f(D).

In this article we have selected the appropriate function to give us the θ-invariant. An interesting
example for a function to integrate in this way in a future work is the ζ-function of graphs
(cf. [13]). We would like also to investigate further properties of these “integrals”, such as the
existence of a generalized skein relation.
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