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Introduction

One of the greatest achievements in knot theory and low-dimensional topology is the pioneering construction of the Jones polynomial by V. F. R. Jones in 1984, which advanced spectacularly the tabulation of knots. The value of the Jones polynomial J(L) on an oriented link L can be calculated through different methods. One of them is algebraic and consists of computing the Markov trace of the image of a braid representative of L in the Temperley-Lieb algebra. Another one is diagrammatic and uses the fact that the Jones polynomial satisfies a "skein relation", that is, a linear relation between the values of the polynomial on a collection of three links that differ from each other only on a selected crossing. More specifically, for an indeterminate q, we have q -2 J(L + ) -q 2 J(L -) = (q -1 -q)J(L 0 )

where L + , L -, L 0 is a so-called Conway triple, or equivalently, q -2 J( ) -q 2 J( ) = (q -1 -q)J( ).

Combining this skein relation with the initial condition that the value of the Jones polynomial on the unknot is equal to 1 allows us to compute the Jones polynomial of any link.

The Framization of the Temperley-Lieb algebra, introduced in [START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF], is a non-trivial extension of the classical Temperley-Lieb algebra via the addition of the so-called "framing" generators, each of which is a generator of a cyclic group of order d. It is also endowed with a Markov trace, which gives rise to an invariant of framed links. When restricted to classical links, this invariant is denoted by θ. It has been shown in [START_REF] Chlouveraki | Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras[END_REF][START_REF] Goundaroulis | A new two-variable generalization of the Jones polynomial[END_REF] that the θ-invariant can be also defined diagrammatically through a skein relation, which is however not global as in the case of the Jones polynomial. In fact, the same skein relation as the one satisfied by the Jones polynomial holds, but only on crossings between different components; we call these crossings mixed crossings. Using a recursive proof method developed originally by Lickorish-Millett [START_REF] Lickorish | A polynomial invariant of oriented links[END_REF] and adapted for θ by Kauffman-Lambropoulou [START_REF] Kauffman | New skein invariants of links[END_REF], it can be shown that calculating the value of θ on a link L amounts to calculating the value of θ on links that are unions of unlinked knots and are obtained via the skein relation. More specifically, a series of switchings and smoothings of mixed crossings transforms the initial link to a family of unions of unlinked knots, called descending stacks. Then, if L is union of r unlinked knots, we have θ(L) = d r-1 J(L).

The invariant θ is stronger than the Jones polynomial, in the sense that it distinguishes links that the Jones polynomial cannot distinguish [START_REF] Chlouveraki | Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras[END_REF][START_REF] Goundaroulis | A new two-variable generalization of the Jones polynomial[END_REF][START_REF] Chlouveraki | From the Framisation of the Temperley-Lieb algebra to the Jones polynomial: an algebraic approach[END_REF].

Khovanov homology, introduced by M. Khovanov [START_REF] Khovanov | A categorification of the Jones polynomial[END_REF], is an oriented link invariant that arises as the homology of a chain complex associated with a link. It is regarded as a categorification of the Jones polynomial, which can be obtained as the graded Euler characteristic of this complex. However, Khovanov homology encompasses more information about a link than its Jones polynomial. Further, it is known that Khovanov homology can detect the unknot [START_REF] Kronheimer | Khovanov homology is an unknot-detector[END_REF], while it is still an open question whether the Jones polynomial can do the same.

Inspired by this and motivated by the fact that the θ-invariant is stronger than the Jones polynomial, we expect that a categorification of the θ-invariant would be stronger than all the invariants mentioned above. Given the skein-theoretic definition of θ, a first step towards a possible categorification is the obtention of a skein relation satisfied by the Khovanov homology. Unfortunately, the Khovanov homology does not satisfy a skein relation in the usual sense [START_REF] Wehrli | Khovanov Homology and Conway Mutation[END_REF]. So in the first part of our article we investigate a skein-type relation for Khovanov homology, using the machinery of spectral sequences. We show that the Khovanov homology (more specifically, its Poincaré polynomial) satisfies a generalized skein relation which involves its values on a Conway triple, plus a "defect" term that arises from spectral sequences associated to the Khovanov chain complex.

In the second part of our article, we aim to define a "framization" of the Khovanov homology, which should have the θ-invariant as Euler characteristic. On a union of unlinked knots, we achieve this by tensoring with the group algebra of the cyclic group of order d. On an arbitrary link L, we follow the method of Lickorish-Millett and Kauffman-Lambropoulou. However, their algorithm depends on several choices made on the link, such as, for instance, the ordering of the link components and of the mixed crossings. So one has to show that the final result is independent of these choices. This is achieved in [START_REF] Lickorish | A polynomial invariant of oriented links[END_REF] and in [START_REF] Kauffman | New skein invariants of links[END_REF] thanks to the skein relation and the properties of the base invariant involved. In our case though, we do not have a skein relation in the classical sense and we cannot prove the independence of the choices made in the same way that they did. This is why we slightly modify the generalized skein relation proved in the first part of the article, before we apply it only to mixed crossings. By summing over several choices and dividing by their number, we eventually obtain a link invariant Kh d,d , depending on d and an extra parameter d , which is the Poincaré polynomial of a homology KH * , * d,d (L), that is,

Kh d,d (L) = i,j∈Z t i q j dim KH i,j d,d (L).
We prove that both the classical Khovanov homology and the θ-invariant can be obtained as specializations of Kh d,1 ; the former for d = 1, the latter for t = -1.

A generalized skein relation for Khovanov homology

Let q and t be indeterminates over Q.

2.1. Generalities on graded vector spaces. Let V = ⊕ m V m be a graded Q-vector space.

The graded dimension qdim(V ) of V is the Laurent polynomial in q given by qdim

(V ) = m q m dim(V m ).
If V is another graded vector space, the graded dimension satisifes

qdim(V ⊗ V ) = qdim(V )qdim(V ) and qdim(V ⊕ V ) = qdim(V ) + qdim(V ).
Let l ∈ Z. We define the l-shift V {l} of V to be the graded vector space defined by

V {l} m = V m-l .
Note that qdim(V {l}) = q l qdim(V ).

2.2. Classical Khovanov homology. In this section, we give a short introduction to Khovanov homology following the exposition of [START_REF] Turner | Five Lectures on Khovanov Homology[END_REF]. Let L be a link and D a diagram of L with n crossings. Each crossing can be resolved in two ways:

Figure 1.

Smoothings of a crossing

The first resolution in Figure 1 is called a 0-smoothing and the second one is a 1-smoothing. Thus, there are 2 n ways of resolving all crossings of D, each of them resulting to a collection of circles in the plane. If now we number the crossings of D by 1, 2, . . . , n, then each such collection can be represented by a binary n-string where the entry 0 or 1 in the j-th position corresponds to a 0-smoothing or 1-smoothing respectively of the j-th crossing, for all j = 1, . . . , n. In the end, D has 2 n smoothings indexed by I n := {0, 1} n . We can thus form a hypercube as in the following figure (for n=3) 100 110 000 010 101 111 001 011 with an edge between words differing in exactly one place. For general n, we see the smoothings as vertices of the hypercube indexed by I n . For α ∈ I n , we will denote by r α the number of 1's in α and by k α the number of circles in the plane of the associated smoothing.

In Khovanov homology we further assume that the link L is oriented. We denote by n + = n + (D) the number of positive crossings and by n -= n -(D) the number of negative crossings, and we use the simpler notation n + and n -whenever the diagram is fixed. Let V be a 2dimensional Q-vector space with basis {e, x}. We grade the two basis elements by deg(e) = 1 and deg(x) = -1. To each α ∈ I n we associate the graded vector space

V α := V ⊗kα {r α + n + -2n -}.
For i ∈ {-n -, . . . , n + }, we define C i, * (D) to be the direct sum

(2.1) C i, * (D) := α∈In with rα=i+n - V α .
For v ∈ V α ⊂ C * , * (D), we have v ∈ C i,j (D) if and only if i = r α -n -and j = deg(v) + r α + n + -2n -. We then say that v has homological grading i and quantum grading j.

We will now define a differential d turning (C * , * (D), d) into a complex. First, observe that every edge of the hypercube is between elements of I n differing in exactly one place. It can thus be transformed into an arrow from the string with 0 in that place towards the string with 1 in that place. This arrow can be labelled by a string that is the same as the ones labelling the tail and the head except that it has a in the position that changes. For example, there is an arrow from 0100 to 0110 which is denoted by 01 0. Now note that, for an arrow ζ : α → α , the smoothings α and α are identical except for a small disc, the changing disc, around the crossing that changes from a 0-smoothing to a 1smoothing (the one marked by a in the label of ζ). Since each circle in a smoothing has a copy of the vector space V attached to it, we can define a linear map d ζ : V α → V α as follows: Let m : V ⊗ V → V be the linear map defined by m(e ⊗ e) = e, m(e ⊗ x) = m(x ⊗ e) = x, m(x ⊗ x) = 0 and let ∆ : V → V ⊗ V be the linear map defined by

∆(e) = e ⊗ x + x ⊗ e, ∆(x) = x ⊗ x.
Then d ζ is defined to be the identity on circles not entering the changing disc and either m or ∆ on the circles appearing in the changing disc (depending on whether two circles are fused into one or a circle splits into two when going from α to α ).

Finally, we define a map d i : C i, * (D) → C i+1, * (D) by setting

d i (v) := ζ with Tail(ζ)=α sign(ζ)d ζ (v) for all v ∈ V α ⊂ C i, * (D)
where sign(ζ) = (-1) # of 1's to the left of in ζ . We have

d i+1 • d i = 0.
The graded Euler characteristic of this complex, i.e., i

(-1) i qdim(C i, * (D)) ∈ Q[q, q -1 ]
is the unnormalized Jones polynomial Ĵ(L) of L. Dividing Ĵ(L) by q + q -1 yields the Jones polynomial J(L) of L.

We define the Khovanov homology of the diagram D by

KH * , * (D) := H(C * , * (D), d).
The Khovanov homology is invariant under the Reidemeister moves, and thus a link invariant. Hence, it does not depend on the choice of diagram D, and we can talk about the Khovanov homology of the link L. We have i (-1) i qdim(KH i, * (L)) = Ĵ(L) = (q + q -1 )J(L).

The Khovanov homology of L can be also read off the Khovanov polynomial Kh(L) of L, which is given by

Kh(L) = i,j t i q j dim(KH i,j (L)) = i t i qdim(KH i, * (L)).
Obviously, evaluating Kh(L) at t = -1 yields the unnormalized Jones polynomial Ĵ(L).

We choose not to give right now explicit examples of computations of the classical Khovanov homology, because: (a) some will be given in §2.5 along with further computations; (b) the reader can find plenty in literature (see, for example, [START_REF] Bar-Natan | On Khovanov's categorification of the Jones polynomial[END_REF] or [START_REF] Turner | Five Lectures on Khovanov Homology[END_REF]).

2.3.

The effect of switching a crossing. A skein relation relates the value of a link invariant of a diagram D of a link L with the values of the diagrams obtained by switching and smoothing a given crossing. Let us consider the numbering of the crossings of D and the associated hypercube introduced in the previous section. If we switch the j-th crossing the sign from negative to positive, then every 1 at the j-th position should become 0 and every 0 should change to 1, as if we take the "not" operator on a given binary number at the j-th position. In general the operation of switching the crossing induces an automorphism of the hypercube.

For example, if we take j = 2, then the hypercube 

c + := #{negative crossings in D + 1 } -#{negative crossings in D + }.
For each j there is a short exact sequence:

0 → C i-c + -1,j-3c + -2 (D + 1 ) → C i,j (D + ) → C i,j-1 (D + 0 ) → 0.
Case II: the selected crossing is negative. In this case D - 1 inherits its orientation from D -and for D - 0 we select the same orientation as for D + 1 . Set

c -:= #{negative crossings in D - 0 } -#{negative crossings in D -}.
For each j there is a short exact sequence:

0 → C i,j+1 (D - 1 ) → C i,j (D -) → C i-c -,j-3c --1 (D - 0 ) → 0.
Now, we observe that D + 0 = D - 1 and D - 0 = D + 1 , after choosing the same orientation for the second pair. We thus have c + = c -+ 1, and so

(i -2) -c -= i -c + -1 and (j -4) -3c --1 = j -3c --5 = j -3c + -2.
Therefore, the two short exact sequences above can be combined in a long one:

0 / / C i-2,j-3 (D + 0 ) ψ 1 / / C i-2,j-4 (D -) φ 1 / / C (i-2)-c -,(j-4)-3c --1 (D - 0 ) / / 0 0 / / C i-c + -1,j-3c + -2 (D - 0 ) φ 2 / / C i,j (D + ) ψ 2 / / C i,j-1 (D + 0 ) / / 0
Lemma 1. The above exact sequence can be compactified to a 4-term exact sequence:

(2.2) 0 / / C i-2,j-3 (D + 0 ) ψ 1 / / C i-2,j-4 (D -) φ / / C i,j (D + ) ψ 2 / / C i,j-1 (D + 0 ) / / 0 where φ = φ 2 • φ 1 .
Proof. Observe that

ker φ = {x ∈ C i-2,j-4 (D -) | φ 2 (φ 1 (x)) = 0} = {x ∈ C i-2,j-4 (D -) | φ 1 (x) = 0} = ker φ 1 = im ψ 1 .
Similarly,

im φ = φ 2 φ 1 (C i-2,j-4 (D -)) = φ 2 (C (i-2)-c -,(j-4)-3c --1 (D - 0 )) = im φ 2 = ker ψ 2 .
Equation (2.2) gives rise to a double complex which is not zero on a parallel band of four lines and also only

if i ∈ {-n -(D -), . . . , n + (D + )} (recall the definition of C i, * in (2.1) and note that n -(D -) > n -(D + 0 ) = n -(D + ) and n + (D -) = n + (D + 0 ) < n + (D +
)), so it behaves like a first quadrant double complex. On this parallel band the quantum degrees j -3, j -4, j, j -1 appear. For every fixed j we will form a spectral sequence out of this double complex and we will denote elements on the n-th page by E i,j n,j , so that the second subindex shows the dependence on the quantum degree. For a good introduction to spectral sequences, the reader may refer to [START_REF] Weibel | An introduction to homological algebra[END_REF]Chapter 5].

0 0 / / C i-2,j-3 (D + 0 ) / / C i-1,j-3 (D + 0 ) / / / / C i-2,j-4 (D -) / / C i-1,j-4 (D -) / / / / C i,j (D + ) / / C i+1,j (D + ) / / / / C i,j-1 (D + 0 ) / / C i+1,j-1 (D + 0 ) / / 0 0
For the creation of the first vertical page E i,j 1,j , we compute Kernel over Image along each row. This coincides with taking the Khovanov homology in each position. Thus the first page measures how far each horizontal sequence is from being exact. The vertical arrows are preserved, and we obtain:

0 0 0 0 KH i-3,j-3 (D + 0 ) α i-3,j KH i-2,j-3 (D + 0 ) α i-2,j KH i-1,j-3 (D + 0 ) α i-1,j KH i,j-3 (D + 0 ) a i,j KH i-3,j-4 (D -) β i-3,j KH i-2,j-4 (D -) β i-2,j KH i-1,j-4 (D -) β i-1 ,j KH i,j-4 (D -) β i,j KH i-1,j (D + ) γ i-1,j KH i,j (D + ) γ i,j KH i+1,j (D + ) γ i+1,j KH i+2,j (D + ) γ i+2,j KH i-1,j-1 (D + 0 ) KH i,j-1 (D + 0 ) KH i+1,j-1 (D + 0 ) KH i+2,j-1 (D + 0 ) 0 0 0 0
In the above diagram we introduce the notation α i,j , β i,j and γ i,j for the functions corresponding to the vertical arrows KH i,j-3 (D + 0 ) → KH i,j-4 (D -), KH i,j-4 (D -) → KH i+2,j (D + ), KH i,j (D + ) → KH i,j-1 (D + 0 ), respectively. That is, we have:

(2.3) 0 / / KH i-2,j-3 (D + 0 ) α i-2,j / / KH i-2,j-4 (D -) β i-2,j / / KH i,j (D + ) γ i,j / / KH i,j-1 (D + 0 ) / / 0 .
The second subindex j illustrates that we are on the spectral sequence E * , * * ,j . For the creation of the second page E i,j 2,j (Table 1), we take Kernel over Image along each column. Thus, the second page measures how far the sequences of the first page are from being exact. Now, in each position we no longer get a link invariant, so we will use the notation D +t 0 Table 1. The E 2 -page; the positions marked in grey are exact.

0 0 0 E i-2,j-3 2,j (D +t 0 ) E i-1,j-3 2,j (D +t 0 ) E i-2,j-4 2,j (D -) E i-1,j 2,j (D + ) E i,j 2,j (D + ) E i-1,j-1 2,j (D +b 0 )
0 0 0 and D +b 0 to differentiate between the copy of D + 0 appearing in the top line and the copy of D + 0 appearing in the bottom line. We obtain arrows that go two positions down and one left. We have that:

E i-2,j-3 2,j (D +t 0 ) = kerα i-2,j (2.4) E i-2,j-4 2,j (D -) = kerβ i-2,j imα i-2,j E i,j 2,j (D + ) = kerγ i,j imβ i-2,j E i,j-1 2,j (D +b 0 ) = cokerγ i,j .
We now create the third page E i,j 3,j (Table 2) by taking Kernel over Image along each sequence of the E 2 -page. We obtain arrows that go 3 positions down and 2 left. By looking at the E 4 -page, we immediately obtain that all positions in the E 3 -page are exact. Moreover, we observe that

E i-1,j 3,j (D + ) ∼ = E i,j 3,j (D + ) ∼ = E i-2,j-4
3,j (D -) ∼ = 0, whence we deduce that the positions marked in grey in the E 2 -page are exact.

Table 2. The E 3 -page; all positions are exact.

0 0 0 0 0 E i-2,j-3 3,j (D +t 0 ) E i-1,j-3 3,j (D +t 0 ) E i-2,j-4 3,j (D -) E i-1,j 3,j (D + ) E i,j 3,j (D + ) E i-2,j-1 3,j (D +b 0 ) E i-1,j-1 3,j (D +b 0 ) 0 0 0 0
By looking at the second, third and fourth pages we obtain the following exact sequences:

(2.5)

0 / / E i-1,j-3 3,j (D +t 0 ) / / E i-1,j-1 3,j (D +b 0 ) / / 0 0 / / E i-2,j-3 3,j (D +t 0 ) / / E i-2,j-3 2,j (D +t 0 ) / / E i-1,j 2,j (D + ) / / 0 0 / / E i-2,j-4 2,j (D -) / / E i-1,j-1 2,j (D +b 0 ) / / E i-1,j-1 3,j (D +b 0 ) / / 0
From now on, abusing notation, we will write Kh(E n (D * )) for i,j t i q j dim(E i,j n,j (D * )). The short exact sequences above imply that

tq 3 Kh(E 3 (D +t 0 )) = tqKh(E 3 (D +b 0 )) , (2.6) tKh(E 2 (D + )) = t 2 q 3 Kh(E 2 (D +t 0 )) -t 2 q 3 Kh(E 3 (D +t 0 )) , (2.7) t 2 q 4 Kh(E 2 (D -)) = tqKh(E 2 (D +b 0 )) -tqKh(E 3 (D +b 0 )). (2.8)
Now, Equation (2.3) combined with (2.4) yields (2.9)

(t 2 q 3 -q)Kh(D + 0 ) -t 2 q 4 Kh(D -) + Kh(D + ) = C ,
where

C = t 2 q 3 Kh(E 2 (D +t 0 )) -t 2 q 4 Kh(E 2 (D -)) + Kh(E 2 (D + )) -qKh(E 2 (D +b 0 )).
Note again that Kh(E 2 (D +t 0 )) is not necessarily equal to Kh(E 2 (D +b 0 )). Substituting Kh(E 2 (D + )) and Kh(E 2 (D -)) in the above formula with the use of (2.7) and (2.8) respectively, we obtain

C = (t 2 q 3 + tq 3 )Kh(E 2 (D +t 0 )) -(q + tq)Kh(E 2 (D +b 0 )) -tq 3 Kh(E 3 (D +t 0 )) + tqKh(E 3 (D +b 0 
)) The last two terms cancel out because of (2.6), and we conclude that (2.10)

C = (t + 1)tq 3 Kh(E 2 (D +t 0 )) -(t + 1)qKh(E 2 (D +b 0 )) =: C(D + 0 , D -, D + ).
We have thus proved the main result of this section: Theorem 1. The Khovanov polynomial Kh satisfies the generalized skein relation

(2.11) (t 2 q 3 -q)Kh(D + 0 ) -t 2 q 4 Kh(D -) + Kh(D + ) = C(D + 0 , D -, D + )
where C(D + 0 , D -, D + ) is given by Equation (2.10). The generalized skein relation can be also written more symmetrically as

(2.12) t -1 q -2 Kh(D + ) -tq 2 Kh(D -) = (t -1 q -1 -tq)Kh(D + 0 ) + C sym (D + 0 , D -, D + )
where

(2.13) C sym (D + 0 , D -, D + ) = (t + 1)qKh(E 2 (D +t 0 )) -(t -1 + 1)q -1 Kh(E 2 (D +b 0 )). Remark 1.
We observe that for t = -1, we have C(D + 0 , D -, D + ) = 0, and so we recover the usual skein relation for the unnormalized Jones polynomial (and for the Jones polynomial as well):

q -2 Ĵ(D + ) -q 2 Ĵ(D -) = (q -1 -q) Ĵ(D + 0 ). Remark 2.
The skein relation given in Theorem 1 is not local, in contrast with the usual skein relations in literature. This means that the quantity C(D + 0 , D -, D + ) depends on all remaining diagrams D + 0 , D -, D + . 2.5. Examples. In this subsection we will apply Theorem 1 to the Hopf link and the left-handed trefoil knot. 

KH(D -): j\i -2 0 0 Q -2 Q -4 Q -6 Q KH(D + ): j\i 0 2 Q 0 Q 2 -2 Q
We thus have:

(i, j) KH i-2,j-3 (D + 0 ) KH i-2,j-4 (D -) KH i,j (D + ) KH i,j-1 (D + 0 ) (0,2) Q Q (0,0) Q Q 2 Q (0,-2) Q Q (2,4) Q Q (2,2)
Q Q and the following exact sequence, given in (2.3), is exact for every i, j:

0 → KH i-2,j-3 (D + 0 ) → KH i-2,j-4 (D -) → KH i,j (D + ) → KH i,j-1 (D + 0
) → 0. Therefore, in this example, the skein relation (2.11) for the Khovanov polynomial holds with C(D + 0 , D -, D + ) = 0.

2.5.2.

The left-handed trefoil knot. In this example we will study the trefoil knot D -with three negative crossings. Then D + is the unknot and D + 0 is the Hopf link. The Khovanov homology of the three links is given in the following tables:

KH(D -): j\i 0 -2 -3 -9 Q -5 Q -3 Q -1 Q KH(D + ): j\i 0 1 Q -1 Q KH(D + 0 ): j\i -2 0 0 Q -2 Q -4 Q -6 Q
From the above tables we compute

Kh(D -) = 1 t 3 q 9 + 1 t 2 q 5 + 1 q 3 + 1 q Kh(D + ) = 1 q + q Kh(D + 0 ) = 1 t 2 q 6 + 1 t 2 q 4 + 1 q 2 + 1
We thus have:

(i, j) KH i-2,j-3 (D + 0 ) KH i-2,j-4 (D -) KH i,j (D + ) KH i,j-1 (D + 0 ) (-2,-3) Q (-2,-5) Q (-1,-5) Q (0,1) Q Q (0,-1) Q Q Q Q (0,-3) Q (2,3) Q Q (2,1) Q Q
By looking at the table above, we only need to study the cases where j ∈ {-5, -3, -1, 1, 3}.

Case j = -5: In the first page, we have the following sequences of Khovanov homology:

0 0 0 = KH -4,-8 (D + 0 ) 0 = KH -3,-8 (D + 0 ) 0 = KH -4,-9 (D -) E -3,-9 2,-5 (D -) ∼ = ∼ = Q ∼ = KH -3,-9 (D -) 0 = KH -2,-5 (D + ) 0 = KH -1,-5 (D + ) Q ∼ = KH -2,-6 (D + 0 ) ∼ = E -2,-6 2,-5 (D +b 0 ) 0 = KH -1,-6 (D + 0 ) 0 0
The above diagonal morphism fits within the third sequence in (2.5) for i = -1, j = -5

0 / / E -3,-9 2,-5 (D -) ∼ = Q / / E -2,-6 2,-5 (D +b 0 ) ∼ = Q / / E -2,-6 3,-5 (D +b 0 ) / / 0 whence E -2,- 6 
3,-5 (D +b 0 ) = 0. Case j = -3: In the first page, we have the following sequences of Khovanov homology:

0 0 0 = KH -4,-6 (D + 0 ) 0 = KH -3,-6 (D + 0 ) 0 = KH -4,-7 (D -) E -3,-7 2,-3 (D -) ∼ = 0 = KH -3,-7 (D -) 0 = KH -2,-3 (D + ) 0 = KH -1,-3 (D + ) Q ∼ = KH -2,-4 (D + 0 ) ∼ = E -2,-4 2,-3 (D +b 0 ) 0 = KH -1,-4 (D + 0 ) 0 0
The above diagonal morphism fits within the third sequence in (2.5) for i = -1, j = -3

0 / / E -3,-7 2,-3 (D -) ∼ = 0 / / E -2,-4 2,-3 (D +b 0 ) ∼ = Q / / E -2,-4 3,-3 (D +b 0 ) / / 0
whence E -2,-4 3,-3 (D +b 0 ) ∼ = Q. We also have the following sequences of Khovanov homology:

0 0 0 = KH -3,-6 (D + 0 ) E -2,-6 2,-3 (D +t 0 ) ∼ = Q = KH -2,-6 (D + 0 ) 0 = KH -3,-7 (D -) 0 = KH -2,-7 (D -) 0 = KH -1,-3 (D + ) ∼ = E -1,-3 2,-3 (D + ) 0 = KH 0,-3 (D + ) 0 = KH -1,-4 (D + 0 ) 0 = KH 0,-4 (D + 0 ) 0 0
The above diagonal morphism fits within the second sequence in (2.5) for i = 0, j = -3

0 / / E -2,-6 3,-3 (D +t 0 ) / / E -2,-6 2,-3 (D +t 0 ) ∼ = Q / / E -1,-3 2,-3 (D + ) ∼ = 0 / / 0 whence E -2,-6 3,-3 (D +t 0 ) ∼ = Q.
Cases j ∈ {-1, 1, 3}: In these cases all vertical sequences are exact so the corresponding elements in the second page are all zero.

0 KH -2,-4 (D + 0 ) ∼ = Q KH -2,-5 (D -) ∼ = Q KH 0,-1 (D + ) ∼ = Q KH 0,-2 (D + 0 ) ∼ = Q 0 0 KH 0,-2 (D + 0 ) ∼ = Q KH 0,-3 (D -) ∼ = Q KH 2,1 (D + ) = 0 KH 2,0 (D + 0 ) = 0 0 0 KH 0,0 (D + 0 ) ∼ = Q KH 0,-1 (D -) ∼ = Q KH 2,3 (D + ) = 0 KH 2,2 (D + 0 ) = 0 0
There is also a sequence where the Khovanov homology of D -is equal to 0: 0

KH -2,-2 (D + 0 ) = 0 KH -2,-3 (D -) = 0 KH 0,1 (D + ) ∼ = Q KH 0,0 (D + 0 ) ∼ = Q 0
We now compute:

Kh(E 2 (D +b 0 )) = 1 t 2 q 6 + 1 t 2 q 4 and Kh(E 2 (D +t 0 )) = 1 t 2 q 6
and so

C(D + 0 , D -, D + ) = (t + 1)q tq 2 Kh(E 2 (D +t 0 )) -Kh(E 2 (D +b 0 ) = (t + 1)q 1 tq 4 - 1 t 2 q 6 - 1 t 2 q 4 = (t + 1) tq 2 -1 -q 2 t 2 q 5 .
Moreover, we have

(t 2 q 3 -q)Kh(D + 0 ) -t 2 q 4 Kh(D -) + Kh(D + ) = 1 q 3 + 1 q + t 2 q + t 2 q 3 - 1 t 2 q 5 - 1 t 2 q 3 - 1 q -q - 1 tq 5 - 1 q -t 2 q -t 2 q 3 + 1 q + q = 1 q 3 - 1 t 2 q 5 - 1 t 2 q 3 - 1 tq 5 = t 2 q 2 -1 -q 2 -t t 2 q 5 = (t + 1) tq 2 -q 2 -1 t 2 q 5 .
Therefore, Equation (2.11) is satisfied.

A categorification of the θ-invariant

3.1. The θ-invariant. Our initial motivation for looking for a skein relation for the Khovanov homology was our desire to categorify the θ-invariant, a skein link invariant that generalizes the Jones polynomial. The θ-invariant is a 2-variable polynomial invariant defined in [START_REF] Goundaroulis | A new two-variable generalization of the Jones polynomial[END_REF], and is obtained as a specialization of the 3-variable polynomial skein link invariant Θ introduced in [START_REF] Chlouveraki | Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras[END_REF], in the same way that the Jones polynomial is obtained as a specialization of the HOMFLYPT polynomial. The invariants Θ and θ are generalizations of invariants obtained from Markov traces on the Yokonuma-Hecke algebra of type A and the Framization of the Temperley-Lieb algebra respectively using Jones's method (see [START_REF] Chlouveraki | Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras[END_REF][START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF] for these algebraic constructions). Let L denote the set of oriented links. Let L ∈ L with components K 1 , . . . , K r (r ≥ 1). Given a diagram D of L, we will call a crossing mixed if it is between two different components of D. We will write L = r i=1 K i if there exists a diagram of L without mixed crossings, that is, L is a union of r unlinked knots. We can define θ as follows [8, Theorem 1]: Theorem 2. Let q, E be indeterminates. There exists a unique ambient isotopy invariant

θ : L → C[q ±1 , E ±1 ]
defined by the following rules: (a) For all r ≥ 1, we have

(3.1) θ( r i=1 K i ) = E 1-r J( r i=1 K i ). (b)
On mixed crossings the skein relation of the Jones polynomial holds, that is,

(3.2) q -2 θ(L + ) -q 2 θ(L -) = (q -1 -q)θ(L 0 )
where L + , L -, L 0 is a Conway triple.

Remark 3. The skein relation (3.2) is actually not the same as the one of [8, Theorem 1]. We have changed it slightly, replacing q by -q, in order to be in agreement with the skein relation satisfied by the Jones polynomial in this paper.

Remark 4. We have J( r i=1 K i ) = (q -1 + q) r-1 r i=1 J(K i ). Remark 5. Note that in L 0 the two components involved in the mixed crossing have been fused into one.

The invariant θ is a specialization of the 3-variable polynomial invariant, first introduced in [6, Theorem 8.1], Θ : L → C[q ±1 , E ±1 , µ ±1 ], which is is defined in the same way as θ, but satisfying the skein relation µ -1 Θ(L + ) -µΘ(L -) = (q -1 -q)θ(L 0 ). Taking µ = q 2 yields θ.

The existence of the invariant Θ is proved in [START_REF] Chlouveraki | Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras[END_REF] by showing that it coincides with a variation of a 3-variable invariant for tied links defined by Aicardi and Juyumaya in [START_REF] Aicardi | Markov trace on the algebra of braids and ties[END_REF][START_REF] Aicardi | Tied links[END_REF]. Another diagrammatic proof of its existence is given by Kauffman and Lambropoulou in [START_REF] Kauffman | New skein invariants of links[END_REF], using the notion of "descending stacks". We will make use of them when we define the categorification of θ in the next sections.

Let d ∈ N * . For E = 1/d, the invariants Θ and θ can be defined algebraically as Markov traces on the Yokonuma-Hecke algebra of type A and the Framization of the Temperley-Lieb algebra respectively, using Jones's technique. This algebraic construction is the third proof of their existence. For the rest of the paper, we will only be interested in this case, that is, when E is the inverse of a positive integer d. For d = 1, the invariants Θ and θ coincide with the HOMFLYPT and the Jones polynomial respectively. In general, by [START_REF] Chlouveraki | Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras[END_REF]Theorem 8.2] and [8, Theorem 5] (see also [START_REF] Chlouveraki | From the Framisation of the Temperley-Lieb algebra to the Jones polynomial: an algebraic approach[END_REF]Example 4.16]), we have: Theorem 3. The invariants Θ and θ are stronger than the HOMFLYPT and the Jones polynomial respectively.

By "stronger" we mean that these invariants distinguish links that the others (the "weaker" ones) cannot distinguish.

3.2. Knot theory via recursive relations. In this section, we will describe the algorithm of [START_REF] Lickorish | A polynomial invariant of oriented links[END_REF] and [START_REF] Kauffman | New skein invariants of links[END_REF] for associating to each oriented link diagram a family of unions of unlinked knots, called "descending stacks". This will allow us to compute the value of any map f on L that satisfies a generalized skein relation via a recursive process whose initial condition is the value of f on any union of unlinked knots. However, constructing the descending stacks depends on several choices that we make, so in order to prove the f is well-defined, we have to further show that the value of f on an oriented link does not depend on the choices made.

Let L be an oriented link diagram. We say that L is ordered, if an order is given to its components, and based, if a basepoint is chosen on each component. If L is both ordered and based, we say that L is generic. We can turn every oriented link diagram to a generic one by making the needed choices. Of course, the associated generic diagram is not unique.

A generic diagram is a descending stack if, when walking along its components in their given order following their orientations and starting from their basepoints, every mixed crossing is first traversed along its over-arc. The structure of a descending stack depends on the ordering of its components, but not on the choice of basepoints or the numbering of the mixed crossings.

Starting from a generic link diagram L, with components K 1 , K 2 , . . . , K r , we can associate to it a family of descending stacks as follows:

Step 1. We perform the following procedure for i = 1, then i = 2, i = 3, until we reach i = r:

We start walking from the basepoint on K i following its orientation and every time we come across a mixed crossing along its under-arc, we mark it. We continue until we return to the basepoint. Note that if all marked mixed crossings so far are switched, we obtain a generic diagram with r components, where K 1 , . . . , K i are unlinked from the remaining components and lie above them, and K 1 lies above K 2 , K 2 lies above K 3 , etc.

Step 2. We proceed with replacing our initial diagram by two new generic diagrams as follows:

The first one, denoted by L 1 , is obtained by switching the first marked mixed crossing of the previous step, and thus has r components. The second one, denoted by L (1) , is obtained by smoothing the first marked mixed crossing of Step 1, and thus has r -1 components (two of the original components are fused into one). These two new diagrams are made generic by the same choices as for L. For a component resulting from the merging of two, we choose as basepoint the one of the smaller in order component involved. We repeat the same procedure on the second marked mixed crossing of L 1 , and obtain two diagrams L 2 and L (2) . We continue until have done the same thing for all marked mixed crossings of Step 1. If s is the total number of such mixed crossings, then we end up with an r-component link L s =: δL, which is a descending stack with components K 1 , K 2 , . . . , K r , and s (r -1)-component links L (1) , L (2) , . . . , L (s) . We define s to be the distance of L from δL. Clearly, the distance of a generic diagram is well-defined.

Step 3. We apply the above procedure (Steps 1 and 2) for each generic diagram L (1) , L (2) , . . . , L (s) obtained through the smoothing of mixed crossings of L.

We repeat Steps 1-3 until we end up with a family of descending stacks {δ 1 := δL, δ 2 , . . . , δ m }. Among them only δ 1 has r components, while all other descending stacks have less than r components.

Let now R be an integral domain, and let D be the set of all oriented link diagrams. We say that f : D → R satisfies a generalized skein relation if

(3.3) r + f (L + ) + r -f (L -) + r 0 f (L 0 ) + r ∞ (L + , L -, L 0 ) = 0,
where r + , r -∈ R × , r 0 , r ∞ (L + , L -, L 0 ) ∈ R and L + , L -, L 0 is a Conway triple. In a classical skein relation, we have r ∞ (L + , L -, L 0 ) = 0, but the above expression allows us to handle also the case of the Khovanov homology.

Let L be an oriented link diagram, which we turn to a generic one by making the needed choices. Let ∆ = {δ 1 , δ 2 , . . . , δ m } be the family of descending stacks associated to it. Applying the generalized skein relation to every marked mixed crossing that we switch or smooth to reach ∆ (let us denote their number by M ) yields

(3.4) f (L) = m i=1 α i (r + , r -, r 0 )f (δ i ) + α ∞ (r ∞ ),
where the coefficients α i (r + , r -, r 0 ) are products of ±r ±1 + , ±r ±1 -, ±r 0 , for i = 1, . . . , m, while α ∞ (r ∞ ), is a product of M terms of the form -r ∞ (c), where c runs over Conway triples, multiplied with either r -1 + or r -1 -. Therefore, if we have an "inital condition" that gives the value of f on any union of unlinked knots, then we can compute f (L). Now, the map f is well-defined if and only if the value of f (L) given by (3.4) is independent of the choice of basepoints and the ordering of the components of L, when L is turned to a generic link diagram. If further f respects the Reidemeister moves, f is an ambient isotopy invariant of links. Link invariants that satisfy skein relations or generalized skein relations, such as the Jones polynomial, the θ-invariant or the Khovanov homology, are particularly interesting.

3.3.

Categorifying θ: the case of knots. Let d ∈ N * and E = 1/d. As in the case of the Jones polynomial, we would like to construct a homology whose Poincaré polynomial, evaluated at t = -1, yields the unnormalized θ-invariant θ, which is given by θ(L) = d(q + q -1 )θ(L) on any oriented link L. Further, for d = 1, it should become the classical Khovanov homology.

Let now G be the cyclic group of order d. For any knot K, we define

(3.5) KH i,j d (K) := Q[G] ⊗ Q KH i,j (K). The corresponding Poicaré polynomial is Kh d (K) = i t i qdim(KH i, * d (K)) = d • Kh(K).
If now L 1 , L 2 are unions of unlinked knots, then we can define inductively KH i,j d on L 1 L 2 as follows:

(3.6) KH i,j d (L 1 L 2 ) := ν 1 +ν 2 =i µ 1 +µ 2 =j KH ν 1 ,µ 1 d (L 1 ) ⊗ KH ν 2 ,µ 2 d (L 2 ).
The above result implies the multiplicativity of the corresponding Poincaré polynomial: We will now see why we consider the link invariant Kh d,d a categorification of θ. First, we observe that for d = 1 and t = -1, Equation (3.9) becomes Kh d,1 (L) = y 2 P Kh d,1 (σ P L) -P y P zKh d,1 (s P L) with z = q -1 -q and y = -q 2 , which is the same skein relation satisfied by θ on mixed crossings. Since θ is a well-defined link invariant, it is invariant under all possible choices. So in Equation (3.10), we sum over all possible choices the same value and obtain We will show that Kh d is well-defined; in particular, we have Kh d (L) = d α(L) Kh(L). We deduce that

Kh d (L 1 L 2 ) = Kh d (L 1 ) • Kh d (L 2
Kh d,d (L) d=d / / Kh d (L).
We start with a generic diagram of an oriented link L with r components. We follow the algorithm described in §3.2 in order to form the family of descending stacks {δ 1 , . . . , δ m } associated to it. We can draw a graph, called the skein tree of L, whose vertices are labelled by the link diagrams appearing when applying the algorithm (starting from L at the top and resulting to the descending stacks δ 1 , . . . , δ m at the bottom) and whose edges connect any link diagram with its switched and smoothed versions at a given mixed crossing. Each vertex of the skein tree is the outcome of a series of switchings and smoothings, starting from the link diagram L.

Assume that we are in the vertex L v of the skein tree of L, and that L v is obtained from L after applying r v switchings and r v smoothings. This link L v has r -r v components and its contribution Kh d (L v ) in the computation of Kh d (L) is multiplied by d r v . Therefore, by construction, the "total defect" in the computation of Kh d (L) is given by

v d r-r v d r v C (L v , σ Pv L v , s Pv L v ),
where P v is the mixed crossing that is switched and smoothed at the vertex L v of the skein tree according to the algorithm. It is clear that Kh d (L) = d r Kh(L).

We note that, in order to be able to obtain both θ and Kh d as specializations of the link invariant Kh d,d , we could not have simply imposed the rule (3.9) on mixed crossings, because we would not be able show invariance under Reidemeister moves. This is why we defined Kh d,d by summing over all possible choices as in Equation (3.10).

3.5. Open questions. As mentioned in the introduction and in the previous section, it is an open question whether we could have applied the method of Lickorish-Millett and Kauffman-Lambropoulou in order to define a framization of the Khovanov homology with the use of the generalized skein relation (2.12), which is the one satisfied by the classical Khovanov homology with scalars extended to Q[G]. It is certain that we cannot imitate their proof and show that our function Kh d is independent of all choices made by relying on the properties of the base invariant involved. This is why we choose to (a) sum over all possible choices and divide by their number, and (b) introduce the framing parameter d .

The next step is to prove that this new function is indeed a link invariant by showing stability under the Reidemeister moves. The Reidemeister I move poses no problem, since it is handled by the base invariant at each individual component. However, stability under the Reidemeister II move does not seem to hold, since the proofs found in [START_REF] Lickorish | A polynomial invariant of oriented links[END_REF] and in [START_REF] Kauffman | New skein invariants of links[END_REF] use the independence of the choices made and such a treatment is not possible in our case. So instead of working with an arbitrary diagram representing a link L, we work with diagrams with minimal number of crossings. In this way, we arrive at the invariant Kh d,d defined by Equation (3.10).

The drawback of our method is that it seems very difficult to compute the value of the invariant Kh d,d . Given a link L, there is no simple way to find all diagrams with minimal number of crossings. Moreover, assuming that we have a diagram of L with minimal number of crossings, it seems equally difficult to find all other diagrams which represent L and still have the same minimal number of crossings.

We believe that it is interesting, in order to address the above problem, to find a way of constructing all link diagrams with a given number of minimal crossings. The existing lists, for example in the "Knot Atlas" [START_REF] Bar-Natan | The Knot Atlas[END_REF], give information of only one representative of the Reidemeister equivalence class. If such a set Γ L of minimal crossings diagrams for a given link L is provided, then summing a well-defined function f on the set of link diagrams over D ∈ Γ L provides us with a link invariant h f , that is,

h f (L) := D∈Γ L f (D).
In this article we have selected the appropriate function to give us the θ-invariant. An interesting example for a function to integrate in this way in a future work is the ζ-function of graphs (cf. [START_REF] Terras | Zeta functions of graphs[END_REF]). We would like also to investigate further properties of these "integrals", such as the existence of a generalized skein relation.

  Notice that in order to map the new transformed cube to the Khovanov cube with this changed position we have to rotate the two highlighted faces together with the maps at the edges. For a detailed example explaining this rotation after switching a crossing from negative to positive we refer to the example of the Hopf link in §2.5.1.2.4.A generalized skein relation. Consider two link diagrams D + and D -that differ on exactly one crossing, which is positive in the former and negative in the latter. Equivalently, we can see this crossing as the one we choose to switch, thus obtaining one diagram from the other. In order to understand the relation between D + and D -we will study the relation of D + (respectively D -) to the two resolutions D + 0 and D + 1 (respectively D - 0 and D - 1 ), obtained respectively by the 0-smoothing and the 1-smoothing of the selected crossing, as in the following picture:Following [14, Chapter 3], we distinguish the following cases: Case I: the selected crossing is positive. The diagram D + 0 inherits an orientation from D + and for D + 1 we select an arbitrary orientation. Set

Figure 2 .

 2 Figure 2. Hopf link with two negative crossings and resolution of one crossing

  Kh d,d (L) t=-1,d =1 / / θ(L). Let us now consider the case d = d. We extend the definition of Kh d on any link L by establishing the following rule: On mixed crossings Kh d satisfies the generalized skein relation Kh d (L) = y 2 P Kh d (σ P L) -P y P zdKh d (s P L) + d α(L) C (L, σ P L, s P L).

  ). For d = 1, and thus the classical Khovanov homology, one can prove (3.6) using the Künneth spectral sequence[START_REF] Weibel | An introduction to homological algebra[END_REF] Theorem 3.6.1], after observing that the Khovanov complex of L 1 L 2 is the tensor product of the Khovanov complexes of L 1 and L 2 . It is important that we are working over the field Q for this to hold. The case of Khovanov homology with coefficients in Z or, even worse, over an arbitrary ring is much more complicated. It is clear that repeating this procedure will result in descending stacks, where Kh d,d can be defined with the use of Equation (3.7) (replacing Kh d with Kh d,d ). Indeed, the diagram σ P D has smaller distance from the descending stack δL β than the original diagram D and the diagram s P D has a mixed crossing less than D. If now L is a union of r unlinked knots, then we define Kh d,d (L) := Kh d (L). Otherwise, we have #Cmix(D) = 0 for all D ∈ Γ L β with β ∈ S r , and we define This is essentially a quantity which is summed over all possible choices we made on the level of the generic diagram, hence it is independent of them. It is also clear that, thanks to the use of the set Γ L β , the value of Kh d,d (L) is invariant under Reidemeister moves. Hence, Kh d,d is a well-defined link invariant.

	Remark 6. (3.10)	Kh d,d (L) :=	1 r!	β∈Sr	1 #Γ L β D∈Γ L β	1 #Cmix(D)	P ∈Cmix(D)	Kh P d,d (D)
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We deduce that if K 1 , . . . , K r are knots, then

Evaluating the above formula at t = -1 yields: [START_REF] Bar-Natan | The Knot Atlas[END_REF]. Categorifying θ: the case of links. Equation (3.7) is the categorified equivalent of Equation (3.1). We would now like to obtain the value of Kh d on any link L by applying the following rule: On mixed crossings the skein relation of the Khovanov polynomial holds. However, the Khovanov polynomial does not satisfy a skein relation in the classical sense; the closest to a skein relation that we have is Equation (2.12), which can be rewritten as follows:

(3.8) Kh(L) = y 2 P Kh(σ P L) -P y P zKh(s P L) + C (L, σ P L, s P L)

where z = tq -(tq) -1 , y = tq 2 , σ P L is the link with a given crossing P switched (that is, L + for L -and vice versa), s P L is the link with the crossing P smoothed, P = ±1 is the sign of the crossing P and C (L, σ P L, s P L)

We say that C (L, σ P L, s P L) is the defect of the skein relation. Unfortunately, C (L, σ P L, s P L) depends on all three diagrams L, σ P L and s P L. Because of our lack of control on the value of the defect, we were not able to show that, by applying rule (3.8) only on mixed crossings, we obtained a well-defined link invariant. This is the reason why we decided to introduce and extra framing variable d and the following variation of the generalized skein relation

where α(L) is the number of components of the link L. We can now construct a link invariant as follows:

We start with an oriented link L with components K 1 , . . . , K r . There are r! ways of ordering the components of L, each corresponding to a permutation β ∈ S r . We will consider the ordering as part of the structure of L and we will denote the link L with the ordering β by L β . Now, let β ∈ S r and let Γ L β denote the set of diagrams representing L β that have minimal number of crossings. It is clear that any diagram in this set can be transformed to another one in this set by a sequence of Reidemeister moves. For every diagram D ∈ Γ L β , we denote by mix(D) the set of its mixed crossings and by Cmix(D) the subset of mix(D) of crossings at which the component below is smaller than the component above with respect to the β-ordering. Therefore, the set Cmix(D) consists of the mixed crossings that need to be switched so that in the descending stack δL β the order of the resulting knot components from top to bottom is given by the β-ordering (with the smallest component on top).

Let D ∈ Γ L β . For any mixed crossing P ∈ Cmix(D), we can perform a switching and smoothing according to the relation given in Equation (3.9). More specifically, we have (we change the notation to Kh We observe that the number of components α(L) of L does not depend on the choice of the diagram D. As far as the ordering is concerned, the link σ P D, where the components at the mixed crossing P are switched, inherits the ordering of L β , while in s P D, where the components at the mixed crossing P are merged together, the new component inherits its numbering from the smallest of the two components involved; the ordering of the components of s P D corresponds to a permutation β ∈ S r-1 which respects otherwise the β-ordering of the components of L.