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Abstract: This paper is dedicated to study the concept of Fermat's triples in rings. Also, it determines the 

possible Fermat's triples in the neutrosophic ring of integers Z(I). Also, it discussed these triples in several 

finite commutative rings such as 𝑍𝑛. 
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1.Introduction 

Number Theory is always a rich material for pure mathematical ideas. Where concepts such as ideals, and 

cyclic groups were derived from number theory [16]. 

The equation 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑛 = 2, appeared firstly from Pythagoras famous theorem, and then it was 

generalized to the integers.  

In the literature, Fermat  presented his famous conjecture that the Diophantine equation 𝑋𝑛 + 𝑌𝑛 =

𝑍𝑛; 𝑛 ≥ 3  has only trivial solutions in the ring of integers. This conjecture was solved completely  in 

1993 by Andrew Wiles  [16]. 

Neutrosophy is a new kind of generalized logic founded by Smarandache [1]. It represents a useful tool in 

the study of spaces [2], rings [6,7,9], number theory [15], and geometry [10]. 

In this work, we extend  the Fermat's equation 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑛 ≥ 3  to Neutrosophic algebraic rings, 

where we define the concept of Fermat's triples in any ring as the solutions of the previous equation, and 
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we handle some special cases in several finite rings such as 𝑍𝑛 (integers modulo n) and neutrosophic 

rings of integers. 

This work is motivated by finding novel applications and connections between number theory and 

algebraic structures. Also, it will provide some new open questions, which will represent the future of this 

theory.  

Main discussion 

Definition: [5] 

Let (R,+,×) be a ring, R(I)={a+bI ; a,b∈ 𝑅} is called the neutrosophic ring where I is a neutrosophic element with 

condition 𝐼2 = 𝐼.  

Definition 2: 

Let R be a ring, 𝐹 = (𝑋, 𝑌, 𝑍) be a triple, where 𝑋, 𝑌, 𝑍 ∈ 𝑅. F is called a general Fermat's triple if and 

only if 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑛 ≥ 3 .  

Definition 3: 

Let R be a ring, 𝐹 = (𝑋, 𝑌, 𝑍) be a triple, where 𝑋, 𝑌, 𝑍 ∈ 𝑅. F is called an n-Fermat's triple if and only if 

𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑓𝑜𝑟 𝑎 𝑓𝑖𝑥𝑒𝑑  𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛 ≥ 3 .  

Example 4: 

Let 𝑍3 be the ring of integers modulo 3, then (0,1,1) is a general Fermat's triple, that is because for all 

integers 𝑛 ≥ 3, 0𝑛 + 1𝑛 = 1𝑛 

Example 5: 

Let 𝑍5 be the ring of integers modulo 5, then (0,2,1) is a 4-Fermat's triple, that is because: 

04 + 24 = 14. 

Theorem 6: [16] 

Let Z be the ring of integers, then: 

(a) The set of general Fermat's triples is {(0,1,1),(1,0,1),(0,0,0)}. 

(b) For every fixed integer 𝑛 ≥ 3  , the set of n-Fermat's triples is {(0,1,1),(1,0,1),(0,0,0)}. 

Theorem 7: 

Let R be any ring, F be the set of all general Fermat's triples in R, 𝐹𝑛 be the set of all n-Fermat's triples in 

R, then 𝐹 = ⋂ 𝐹𝑛
∞
𝑛=1  . 
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Proof: 

The proof holds directly from the definition. 

Theorem 8: 

Let Z(I)={𝑎 + 𝑏𝐼; 𝑎, 𝑏 ∈ 𝑍 𝑎𝑛𝑑 𝐼2 = 𝐼} be the ring of neutrosophic integers. The equation 𝑋𝑛 +

𝑌𝑛 = 𝑍𝑛; 𝑛 ≥ 3, has nine solutions where 𝑋, 𝑌, 𝑍 ∈ 𝑍(𝐼). 

Proof. 

𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛 ⟺ 𝑥0
𝑛 + 𝐼[(𝑥0 + 𝑥1)𝑛 − 𝑥0

𝑛] + 𝑦0
𝑛 + 𝐼[(𝑦0 + 𝑦1)𝑛 − 𝑦0

𝑛]

= 𝑧0
𝑛 + 𝐼[(𝑧0 + 𝑧1)𝑛 − 𝑧0

𝑛] 

𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛 ⟺ {
𝑥0

𝑛 + 𝑦0
𝑛 = 𝑧0

𝑛 … (1)
(𝑥0 + 𝑥1)𝑛 + (𝑦0 + 𝑦1)𝑛 = (𝑧0 + 𝑧1)𝑛 … (2)

 

Now, solutions of (1) is. 

{

𝑥0 = 𝑦0 = 𝑧0 = 0 … (𝑎)
𝑥0 = 𝑧0 = 1, 𝑦0 = 0 … (𝑏)
𝑦0 = 𝑧0 = 1, 𝑥0 = 0 … (𝑐)

 

And solutions of (2) is. 

{

𝑥0 + 𝑥1 = 𝑦0 + 𝑦1 = 𝑧0 + 𝑧1 = 0 … (𝑑)
𝑥0 + 𝑥1 = 𝑧0 + 𝑧1 = 1, 𝑦0 + 𝑦1 = 0 … (𝑒)
𝑦0 + 𝑦1 = 𝑧0 + 𝑧1 = 1, 𝑥0 + 𝑥1 = 0 … (𝑓)

 

We discuss possible cases. 

Case1. If (𝑥0 = 𝑦0 = 𝑧0 = 0) 𝑎𝑛𝑑 (𝑥0 + 𝑥1 = 𝑦0 + 𝑦1 = 𝑧0 + 𝑧1 = 0), then 𝑋 = 𝑌 = 𝑍 = 0. 

Case2. If (𝑥0 = 𝑦0 = 𝑧0 = 0) 𝑎𝑛𝑑 (𝑥0 + 𝑥1 = 𝑧0 + 𝑧1 = 1, 𝑦0 + 𝑦1 = 0), then 𝑋 = 𝑍 = 1, 𝑌 = 0. 

Case3. If (𝑥0 = 𝑦0 = 𝑧0 = 0) 𝑎𝑛𝑑 (𝑦0 + 𝑦1 = 𝑧0 + 𝑧1 = 1, 𝑥0 + 𝑥1 = 0), then 𝑌 = 𝑍 = 1, 𝑋 = 0. 

Case4. If (𝑥0 = 𝑧0 = 1, 𝑦0 = 0) 𝑎𝑛𝑑 (𝑥0 + 𝑥1 = 𝑧0 + 𝑧1 =  𝑦0 + 𝑦1 = 0), then 𝑋 = 1 − 𝐼, 𝑌 = 0, 𝑍 =

1 − 𝐼. 

Case5. If (𝑥0 = 𝑧0 = 1, 𝑦0 = 0) 𝑎𝑛𝑑 (𝑥0 + 𝑥1 = 𝑧0 + 𝑧1 = 1, 𝑦0 + 𝑦1 = 0), then 𝑋 = 1, 𝑌 = 0, 𝑍 = 1. 
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Case6. If (𝑥0 = 𝑧0 = 1, 𝑦0 = 0) 𝑎𝑛𝑑 (𝑧0 + 𝑧1 =  𝑦0 + 𝑦1 = 1, 𝑥0 + 𝑥1 = 0), then 𝑋 = 1 − 𝐼, 𝑌 =

𝐼, 𝑍 = 1. 

Case7. If (𝑧0 = 𝑦0 = 1, 𝑥0 = 0) 𝑎𝑛𝑑 (𝑧0 + 𝑧1 =  𝑦0 + 𝑦1 = 𝑥0 + 𝑥1 = 0), then 𝑋 = 0, 𝑌 = 1 − 𝐼, 𝑍 =

1 − 𝐼. 

Case8. If (𝑧0 = 𝑦0 = 1, 𝑥0 = 0) 𝑎𝑛𝑑 (𝑥0 + 𝑥1 = 𝑧0 + 𝑧1 = 1, 𝑦0 + 𝑦1 = 0), then 𝑋 = 0, 𝑌 = 1 −

𝐼, 𝑍 = 1 − 𝐼. 

Case9. If (𝑥0 = 𝑧0 = 1, 𝑦0 = 0) 𝑎𝑛𝑑 (𝑦0 + 𝑦1 = 𝑧0 + 𝑧1 = 1, 𝑥0 + 𝑥1 = 0), then 𝑋 = 0, 𝑌 = 1, 𝑍 = 1. 

Theorem 9: 

Let 𝑍2 be the ring of integers modulo 2, hence it has exactly 4 general Fermat's triples. 

Proof: 

Consider the equation 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑛 ≥ 3   , where X,Y,Z∈ 𝑍2   . We have the following 

solutions: 

(1,1,0), (0,1,1),(1,0,1),(0,0,0). 

Theorem 10: 

Let 𝑍3 be the ring of integers modulo 3. If n is odd then it has exactly 9  n-Fermat's triples. 

Proof: 

Consider the equation 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑛 ≥ 3 

Where n is odd. It has the following solutions: 

(0,0,0), (1,0,1), (0,1,1), (2,0,2), (0,2,2), (2,2,1), (2,1,0), (1,2,0), (1,1,2). 

Theorem 11: 

Let 𝑍3  be the ring of integers modulo 3. If n is even, then it has exactly 5  n-Fermat's triples. 
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Proof: 

Consider the equation 𝑋𝑛 + 𝑌𝑛 = 𝑍𝑛; 𝑛 ≥ 3 

Where n is even. It has the following solutions: 

(0,0,0), (1,0,1), (0,1,1),(0,2,1),(2,0,1). 

Remark 12: 

According to the previous two theorems, the set of general Fermat's triples in 𝑍3 is 

{(0,0,0),(1,0,1),(0,1,1)}. 

Conclusion 

In this paper, we have presented an algorithm to solve the Fermat's Diophantine equation in neutrosophic 

rings. Also, we solved this Diohantine equation in some numerical rings modulo n. 

As a future research direction, we aim to solve the Fermat's Diohantine equation in refined neutrosophic 

rings and n-refined neutrosophic rings respectively. 
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