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Abstract: This work presents an application of the optimal control theory to find trade offs between
fuel consumption and pollutant emissions (CO, HC, NOx) of sustaining hybrid vehicles. Both cold
start and normal operations are considered. The problem formulation includes two state variables:
battery state of energy and catalyst temperature; and three control variables: torque repartition
between engine and motor, spark advance, and equivalence ratio. Optimal results were obtained
by delaying the first engine crank after the urban part of the mission. The results show that a quick
catalyst light off is performed. Once the catalyst is primed, special control parameters values are
adopted to operate the engine.

Keywords: hybrid vehicles; consumption; pollutant emissions; optimal control problem; cold start

1. Introduction

The Emissions Database for Global Atmospheric Research (EDGAR) is a global green-
house gas inventory developed by the Joint Research Centre at the European Commis-
sion [1]. Recent results show that global fossil CO2 emissions increased by 1.9% in 2018
and 0.9% in 2019. The transportation sector is responsible for 21% of these emissions,
with a slightly increasing trend. Several of the main CO2 emitting countries reduced their
emissions in 2019 compared to 2018, including the European Union (by 3.8%), United
States (by 2.6%), Japan (by 2.1%), and Russia (by 0.8%). Conversely, China (3.4%) and India
(1.6%) increased their emissions in 2019, representing 30.3%, and 6.8% of the global total,
respectively.

The effect of global warming is particularly evident when you walk through the alps;
the retreat of the glaciers is impressive. A recent study conducted by Vincent et al. [2]
shows that for the Intergovernmental Panel on Climate Change (IPCC) scenario RCP 4.5, in
which greenhouse gas emissions decline after 2050 and concentrations stabilize towards
the end of the 21st century, the Argentière glacier might disappear towards the end of the
21st century and the Mer de Glace surface area could decrease by 80%. The glaciers of the
Alps will then almost all disappear within 80 years.

However, the transportation sector is not only responsible for a large part of global
warming effects; it also impacts air pollution, which affects health. In 2018, the European
Environment Agency estimated that nitrogen dioxide (NO2) was linked to 54,000 premature
deaths across the 27 EU member states and the United Kingdom. Particulate matter and
black carbon also affect human health, from impairing the respiratory system to causing
premature death [3,4]. In the case of France, the road transportation sector is responsible
for 57% of total NOx emission [5]. Globally, fleet renewal leads to a decrease in emissions
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despite traffic growth. Emissions of particulate matter PM10, PM2.5, PM1.0, and black
carbon (BC) from the road transportation sector include particulate from vehicle exhausts.
It also encompasses PM from wear and tear on roads and certain vehicle components such
as tires and brakes. The road sector is responsible for 15 to 20% of total PM emissions
depending on their size, and 50% of black carbon is emitted by the combustion of fossil
fuels in the vehicles.

“Is it really the end of internal combustion engines and petroleum in transport?”
asked Pr Kalghatgi [6]. Obviously, the balance is very unfavorable to fossil fuels. Helmers
et al. [7] made a life cycle assessment (LCA) of electric vehicles (EVs) versus conventional
vehicles (CVs) using the ReCiPe characterization method. This method captures 18 impact
categories and a single score endpoint. The results show that EVs are very advantageous
with respect to climate change impacts. This is especially true when using all options, such
as green electricity charging, battery production under green electricity supply, and battery
second use. However, the study also reveals disadvantages of electric cars in several impact
categories (e.g., human and freshwater toxicity, freshwater eutrophication, mineral resource
depletion, and agricultural and urban land occupation).

Nevertheless, we have to be aware that at the time of writing, the share of renewables
in global electricity generation jumped to nearly 28% in Q1 2020 from 26% in Q1 2019. The
increase in renewables came mainly at the cost of coal and gas, though those two sources
still represent close to 60% of the global electricity supply [8]. Although this share will have
to increase in the future to limit global warming [9], a majority of our electricity still comes
from fossil fuels.

Even if conventional vehicle will be replaced by all electric vehicle in the future,
we must keep working on the combustion engine. There is still room for improvement.
Leach et al. [10] reviewed new developments that can improve engine efficiency. Among
these, we can cite increasing the expansion ratio with respect to the compression ratio,
reducing pumping work losses and throttle pressure drop with exhaust gas recirculation,
downsizing, supercharging, etc. Furthermore, during this transition phase, hybrid electric
vehicles (HEVs) will play a key role [11]. In this context, it is of primary importance to find
virtuous compromises between energy saving and pollutant emissions.

Some experiments conducted in our lab show that focusing on fuel economy can
induce extra pollution. This is the case for eco-driving research, as shown by Mensing et al.
in [12]. In this study, the authors compared two eco-driving strategies on a hybrid vehicle
equipped with an internal combustion engine controlled by a standard ECU (electronic
control unit). The strategy that minimized fuel consumption runs at full throttle during
part of the driving cycle. A slight enrichment of the fuel to air mixture occurs in this part
of the cycle in order to reduce high chamber temperatures. This induces high CO and
HC emissions.

Furthermore, special control parameters are adopted during cold start to shorten this
stage, which emits a large amount of pollutants for several reasons: firstly, the catalyst is not
efficient until it reaches its light-off temperature [13–15]. Secondly, the HC concentration
at low chamber temperatures is high due to flame quenching and misfires [16,17]. As a
consequence, special control parameters of the ICE are used during this period. Usually,
late ignition regarding optimal values is employed in order to bring more heat to the
after-treatment system [18,19]. In this context, the energy management strategy must take
into account the engine control parameters if we want to consider both fuel economy and
pollutant emissions.

The article is mainly based on works by Mrs. Guille des Buttes during her PhD [20]
and pursues new developments on those works. Optimal control theory was adopted to
show how the control parameters of the engine are actuated. A trade-off between fuel
consumption and pollutant emissions during both cold start and normal operation of the
engine was achieved. This work differs from what is usually described in the literature
because here no arbitrary choices were made to find these compromises. The article is
outlined as follow: after explaining the methodology in detail in Section 2, we present the
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results in Section 3. Section 4 is a discussion of the results. In the last section, we briefly
summarize our main results.

2. Materials and Methods
2.1. Base Line Application Object

The reference vehicle used in the present study is a parallel hybrid whose architecture
is described in Figure 1. It comprises an internal combustion engine (ICE) and an electric
motor (EM) coupled by a gear, a battery, and a power converter, two clutches (allowing
fully electric and hybrid operation), a gearbox, and a final drive connected to the wheels.
Table 1 gives the characteristics as well as the model used to simulate each of the main
components.

Gear-
box Final drive

Internal combustion
engine

Battery
Wheels

Clutch Clutch

 

Three way
catalyst

Electric motor

Figure 1. Parallel hybrid architecture corresponding to the reference vehicle.

Table 1. Main vehicle characteristics (Chassis Peugeot 308 SW—Model/Year 2009) and models used
in this study.

Component Size Type of Model

IDI gasoline engine 1.6 L Mean value engine model
Three-way catalytic converter EURO 6 compliant 0D model

PRIUS II type electric motor resized to 25 kW Quasistatic map(mechanical power)
Kokam Li-ion Battery 31 kW–1.7 kWh Voltage source and resistance

Gear box 20DP42 5 gears Constant efficiency
Vehicle weight 1504 kg Longitudinal forces

The simulation will be conducted on both the old NEDC and on the WLTC Class 3
driving cycle, a representation of which is provided in Figures 2 and 3. Gearbox values
are predefined.
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Figure 2. Speed profile and gearbox ratios for the NEDC driving cycle.
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Figure 3. Speed profile and gearbox ratios for the Class 3 WLTC driving cycle.

2.2. Optimal Control Theory

In 2015, Zhang et al. [21] made a comprehensive analysis of energy management
strategies (EMS) for HEV. The review, based on bibliometrics, analyzes almost 600 arti-
cles from the view of control problems. They classified EMS as rule-based strategies or
optimization-based strategies; the latter was subdivided between real time and global.
Two methods retain attention: dynamic programming (DP) and indirect methods, which
encompass the well known Pontryagin maximum principle (PMP). They concluded that
DP is very robust but must be solved numerically by approximations. The approach also
suffers from Bellman’s “curse of dimensionality” and is restricted to small state dimensions.
Therefore, there is a trade-off between convergence of the result and computational load.
On the other side, PMP reduces constrained global optimization into local Hamiltonian
minimization, but the underlying differential equations are often difficult to solve due to
strong non-linearity and instability [22].

The review from Zhang et al. not only focuses on the optimal methods that were used
in the literature, but also on the objective function studied: 75% of the research articles
concerned fuel economy and only a quarter focused on emissions. Moreover, they do
not mention any articles taking into account the engine control parameters. They suggest
that future trends of EMS should include multi-objective strategies which combine energy
conservation (fuel economy), environmental impact (pollutant emissions), safety (fault
tolerance and component reliability), and comfort (driveability).

2.3. Model Structure

The core of the methodology lies in the model of the engine and its after-treatment
system. Dynamic programming was used and, in our case, involved two state variables:
the first representing the state of energy of the battery and the second representing the
catalyst temperature. There were three control parameters in our algorithm, one being the
intake manifold pressure that drives engine torque and the two others being the relative
spark advance, ∆SA, and the air to fuel equivalence ratio, φ.

The vehicle dynamics and the resulting power demand are modeled using a backward
approach. The velocity as a function of time is known in advance and this driving cycle
corresponds to a necessary torque at the wheels to overcome the inertia of the vehicle as
well as the resistive forces acting on it. The mechanical transmission components have
constant efficiencies and the engine speed is saturated to its idle speed. All numerical
values of the equations and parameters are presented in [23]. The three-way catalyst (TWC)
efficiency model has also been described in [23]. This latter model uses two Wiebe functions
to model global efficiency:

• As a function of catalyst temperature, Tcat;
• Regarding the air to fuel equivalence ratio, φ.
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ηx = ηT(Tcat) · ηY(φ) (1)

In which x represents the different species: CO, HC, and NOx. Figure 4 presents the
shape of the curves.
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Figure 4. Catalyst conversion efficiency model (a): regarding air to fuel equivalence ratio; (b): function
of catalyst temperature.

Finally, the engine model, fully described in [24] (equations, parameters values and
measurements), comprises the following different parts:

• CO, HC, and NO tailpipe concentration;
• Fuel flow behavior;
• Brake torque model;
• Exhaust temperature depending on operating parameters.

For clear comprehension of the results, it is mandatory to recall the equations of engine
emissions (see Equations (2)–(4)) and illustrate their shape for an arbitrary operating point
(N = 2000 rpm; Pintake = 0.9 bar) and various relative spark advance values (see Figure 5).
A zero relative spark advance (∆SA = 0) is optimal regarding engine efficiency; however,
emission models are defined in absolute spark advance with the following relationship:
SA = ∆SA + SAopti.

[CO] = co1

(
φ − 1 +

√
(φ − 1)2 + co2

)
(2)

[HC] = max(0, hc1 · N + hc2 · (φ − 0.9)2 + hc3 · SA + hc4 · Pintake + hc5) (3)

[NO] = max([NO]min, no1 · (φ − 0.9)2 + no2 · SA + no3 · Pintake + no4) (4)

In Equations (2)–(4), cox, hcx, and nox denote adjusting parameters determined by
experiments in [24].
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Figure 5. Emission model at 2000 rpm; 0.9 Bar; relative spark advance varies from −20◦ to 20◦.

2.4. Problem Formulation

The optimal control problem is given by Equation (5), which is the weighted sum of
pollutant emissions and fuel consumption.

J = ∑
cycle

(
ṁ f uel

ṁ f uel,re f
+ α

ṁCO
ṁCO,re f

+ β
ṁHC

ṁHC,re f
+ γ

ṁNOx

ṁNOx ,re f

)
δt (5)

Both fuel consumption and pollutant emissions show extremely different orders of
magnitude. To normalize them, we consider the EURO6 emission levels and the CO2 target
value (expressed in l/100 km) of the Corporate Average Fuel Economy for cars (CAFE
regulation, see [25]). These values are presented on Table 2.

Table 2. EURO6 and CAFE regulations.

Fuel Cons. CO2 CO HC NOx
l/100 km g/km g/km g/km g/km

4.0 95 1.0 0.1 0.060

The system is subjected to the following constraints:

• The battery state-of-charge (SOC) lies between 20% and 80% in order to avoid any damage;
• SOC variation is limited by the maximum and minimum battery currents;
• The torque of the ICE (respectively EM) is limited by torque vs speed curves in both

traction and friction (respectively regenerative) modes, see Figure 6;
• Catalyst temperature can vary freely during the driving cycle.
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The initial and final values of the state variables are given by the boundary conditions:

• Initial and final values of the SOC are equal to 50% to ensure a fair comparison of
scenarios without energy transfers from the battery to the tank, as the reference vehicle
is a self-charging hybrid;

• The initial catalyst temperature is set to ambient;
• The final catalyst temperature is unconstrained; of all possible temperatures corre-

sponding to a null electrical energy balance, the one that minimizes the objective
function is selected.

2.5. Algorithm Overview

Dynamic programming is based on Bellman’s principle of optimality [26]. The core of
the algorithm was developed with MATLAB® and is presented in detail in Appendix A. It
consists of calculating the cost-to-go matrix of the three-dimensional graph. This graph
is defined by the time of drive cycle in the X-axis, the battery state of charge in the Y-axis,
and the TWC temperature in the Z-axis. The optimal policy can only be calculated when
the entire drive cycle has been performed, so the graph has to be stored in RAM or HDD
in this implementation. As we consider three control variables, the lowest value of the
objective function can be obtained by any of the combinations of the control variables,
which considerably increases the size of the problem. Hopefully, this minimization can be
done at each time step. Finally, the optimal policy is calculated with a backward approach,
by breaking the decision problem into smaller subproblems.

2.6. Problem Discretization

In the most general form of solving a dynamic programming problem, the solution
space typically needs to be discretized and interpolation is used to evaluate the cost-to-go
function between the grid points. This produces rounding errors if the discretization is not
fine enough [27,28].

The size of the problem is constrained as it must fit in the 256 GB of memory available
in our computer and run in a reasonable time. In this context, some compromises have to
be made given the combinatorial increase in the dimensions of the system.

2.6.1. Battery Energy Step

The battery state of energy (SOEbat) is the first state variable. Starting with the variation
in SOE between two step times, we can calculate the battery power, and by reversing the
electric motor loss map, the mechanical power required at the motor shaft. In a backward
approach, the power required to drive the vehicle is perfectly known. Accordingly, we
can calculate the engine power and torque. The engine model comprises three control
variables: intake pressure, relative spark advance, and air to fuel equivalence ratio. By
mixing equations, we calculate the necessary intake pressure that satisfies the required
engine torque for the particular values of spark advance and equivalence ratio. With this
procedure, we eliminate the rounding errors between intake pressure and torque and there
is no need to interpolate. Another important fact is that the all-electric mode is obtained
by construction of the graph without rounding errors; indeed, the lower SOE bound, which
represents the maximum discharge of the battery, is defined by the all-electric mode of
the vehicle.

A parametric study was conducted on the battery net energy step size. The calculations
were conducted with a step time of 1 s, for a stoichiometric equivalence ratio (φ = 1) and an
optimal spark advance. Only fuel was optimized, that is α = β = γ = 0 (see Equation (5)).

We observed the deviation in fuel and emissions compared to a reference strategy
where the discretization is very fine. We also constructed a form factor that describes how
the different strategies differ from the reference one. This form factor is defined as follows
(see Equation (6)):
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Form Factor = 1 − 1
nsample

∑
nsample

(
abs(Pintake − Pintake,re f )

Pintake,re f

)
(6)

Deviation in fuel consumption or emissions are very small for all values of battery
energy step, as shown in Table 3. The form factor also stays very stable. This allows us to
use a relatively large discretization step without affecting the accuracy of the calculations.

Table 3. Parametric study on battery energy step over the WLTC cycle (100 J is the reference).

δ(SOEbat) Fuel Cons. CO HC NOx Form FactorJ l/100 km (%) g/km g/km g/km

100 4.392 (0.0) 0,131 0.009 0.165 1.0
500 4.393 (0.03) 0.133 0.009 0.167 0.997
750 4.395 (0.06) 0.133 0.009 0.167 0.996

1500 4.398 (0.13) 0.133 0.009 0.167 0.993
3000 4.403 (0.26) 0.132 0.009 0.166 0.987
5000 4.416 (0.54) 0.137 0.010 0.165 0.978

2.6.2. Catalyst Temperature STEP

The second state variable is the catalyst temperature, as it drives overall efficiency and
the associated emitted pollutants. The catalyst monolith temperature varies continuously
despite the discrete control variable. In order to match the temperature discretization and
limit the rounding errors, the mesh has to be very fine, especially between the ambient
and light-off temperatures, where the catalyst efficiency is low. For example, Figure 7
represents a cooling period with fuel cut-off followed by constant operation at 2500 rpm,
38% throttle. We see that the gradient’s temperature falls below 0.2 K/s at around 370 K
and below 0.05 K/s at 345 K. Catching cooling behaviors is particularly important for
hybrid applications where engine can be off during long periods of time, thus deactivating
the after-treatment system.
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Figure 7. Catalyst temperature evolution.

Previous work [23] shows that a step of 0.2 K was mandatory for a time step of 1 s.
Indeed, as can be seen in Figure 7, the cooling speed is lower than 0.2 K/s near ambient
temperature. To continue to account for air cooling during the cold start phase while
reducing the size of the state vector, it is possible to change the time step used for the
calculation. A cooling rate of 0.2 K/s corresponds to 0.4 K for a duration of 2 s. This
increase in the time step reduces the number of calculations to be carried out by half, with a
corresponding reduction in the maximum amount of memory used to calculate the graph.

Another way of solving this problem lies in the fact that we need precision under
catalyst light-off temperature, but as soon as the catalyst is primed, we can increase the
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temperature step. Thus, as an alternative, a non-regular discretization was chosen. This
allows the calculation of the model with a step time of 1 s. A linearly increasing temperature
gradient that begins at 0.1 K/s and that matches natural cooling was chosen (see Figure 8).
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Figure 8. Natural cooling try (a): Temperature evolution; (b): Temperature gradient.

2.6.3. Time Step

Increasing the time step has an effect on the precision of the calculations. The power
demanded from the wheel by the cycle is calculated numerically from the velocity and
acceleration vectors. To increase the time step, a new velocity vector is determined by
interpolation from the velocity profile of the cycle sampled at 1 s. This new vector is used
to evaluate the acceleration of the vehicle and thus the inertial forces.

In order to quantify the variation of the power profile as a function of the time step, the
traction energy required to move the vehicle is calculated. This corresponds to the integral
of the positive power over the whole cycle (determined by means of a trapezoidal numerical
integration) divided by the distance traveled. The traction energies after resampling are
compared to the reference corresponding to a time step of 0.1 s. Table 4 summarizes
the results.

From Table 4, we can conclude that a time step of 1.0 s presents an error less than 1%
and constitutes a good compromise between calculation time and precision.

Table 4. Variation of the traction energy over the WLTC cycle as a function of the time step (10 Hz
reference).

Step Time (s) δt = 0.1 δt = 1.0 δt = 2.0 δt = 5.0

Traction Energy (Wh/km) 135.9 135.2 133.0 124.7
Variation (%) Reference −0.5 −2.2 −8.2

2.6.4. Selected Optimization Parameters

In this section we have discussed the influence of the discretization of the system. As
a result, two groups of optimization parameters are retained in this study:

• Group A:

– The time step is 1 s;
– The SOE step is 1500 J;
– The temperature step varies linearly to limit grid errors during the natural cooling

of the catalyst.

• Group B:

– The time step is 2 s;
– For the SOE grid, the step is 3000 J;
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– The temperature step is fixed. It increases from 0.2 K to 0.4 K, but the cooling rate
stays at 0.2 K/s due to the increased time step.

Under these assumptions, the Group B scenario consumes more RAM than the Group
A scenario, all other things being equal. Finally, for the ignition timing and air to fuel
equivalence ratio, the steps studied will be specified in the following sections.

3. Results
3.1. Consumption Centered Scenario

The best efficiency area lies at an equivalence ratio of φ = 0.97 (the model is from [29]
and is fully developed in [24]). However, the efficiency improvement is less than 2%
between φ = 0.97 and φ = 1.0, and the value φ = 0.97 emits a very large amount of NOx (the
NOx conversion efficiency falls from 100% to almost 0 in this narrow window; see Figure 4).
Therefore, this strategy will not be studied.

The consumption centered scenario is calculated for stoichiometric combustion and
an optimal spark advance. Results are presented in Table 5.

Table 5. Performance of the consumption centered scenario.

Optim. Driving Fuel Cons. CO2 CO HC NOx
Parameter Cycle l/100 km g/km g/km g/km g/km

Group A NEDC 3.58 84 0.213 0.014 0.171
Group A WLTC 4.40 103 0.133 0.009 0.167

These values must be compared to the CO2 emissions targets for cars, established at
95 g CO2/km, and the EU current regulations (EURO6) as given in Table 2.

The first analysis shows that even very efficient sustaining hybrid drive trains have
difficulties achieving the new regulations in term of CO2 emissions. In this example, the
WLTC driving cycle consumes 20% more than its NEDC predecessor. This new cycle must
be welcomed, as it is closer to real-world conditions, but it makes the 95 g CO2/km target
all the more difficult to achieve.

Figure 9 shows the efficiency maps of ICE and EM (the points correspond to the
hybrid mode only; i.e., we do not represent the electrical machine operating points in
all-electric mode).

Firstly, we notice that the best efficiency of the engine used in this article is 32% (which
corresponds to a BSFC of 245 g/kWh). Better efficiency is currently possible; for example, a
minimum BSFC value of 225 g/kWh is obtained with the Atkinson cycle engine that equips
the Prius II (Model/Year 2004, see [30]).

Secondly, we notice that the engine works in its best efficiency area, which is quite
normal for this strategy. This is also the case for the electric machine.

A supplementary degree of freedom that is not in the scope of this work is the gearbox.
Neither the number and ratios of the gears, nor the instances where the gears change have
been optimized. This latter option can bring improvements in fuel consumption without
sacrificing vehicle driveability [31]. The five gear ‘20DP42’ gearbox used in this study is
quite old and we currently see automated gearbox with six, seven, and even eight gears in
today’s vehicle. This greatly improves fuel consumption, especially in highway mode [32].
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Figure 9. Operating points for consumption-centered strategy in the WLTC driving cycle. (red
squares mean that the catalyst temperature is higher than the light-off temperature; blue squares
mean that it is lower). (a): engine; (b): electric motor.

In term of emissions, CO or HC are very low compared to the current regulations.
However, the NOx level is almost three times higher than EURO6 limit. Figure 10 shows
the cumulative emissions, while Figure 11 shows the temporal evolution of the catalyst
temperature and efficiency.

Before the catalyst light off, almost half of the total amount of CO and HC has already
been emitted. For the total NOx, 15% has already been dispersed in the environment.

Catalyst is primed after 250 s (the time when the efficiency exceeds 50%, symbolized
with blue stars in Figures 10 and 11), during which half of the urban part of the driving
cycle has been performed. Between 250 and 600 s, the catalyst is cooling and is not far from
being inefficient due to low temperature (light-off temperature is 550 K in our model). This
can happen in real usage (stops or congested areas, for example) and must be managed by
the engine ECU.
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Figure 10. Cumulative emissions for consumption-centered strategy in the WLTC driving cycle.
(a): Carbon monoxyde; (b): unburned Hydrocarbons; (c): Nytrogen oxides.
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Figure 11. Temperature evolution and catalyst efficiency for the consumption-centered strategy in
the WLTC driving cycle.

3.2. Emission-Centered Scenario

In this section, we consider a scenario in which the weighting parameters are equals
(α = β = γ = 1, see Equation (5)) and the Group A hypothesis concerning the optimization
parameters is selected.

An analysis of the use of RAM on the computing machine has shown that the imple-
mentation of the method does not allow the use of more than 16 values of advance and/or
equivalence ratio without reaching the limits of the available memory (256 GB) for the
Group A parameters. Therefore, four values for the air to fuel equivalence ratio and four
values for the relative spark advance are considered.

Table 6 summarizes the discretization steps used in Section 3.2.

Table 6. Discretization step size used in this section.

Variable Steps Min. Value Max. Value

Optimization parameter Group A not applicable

Equivalence ratio 0.005 0.993 1.008

Relative spark advance 10◦ −30◦ 0◦

Step time 1 s not applicable

Global results are presented in Table 7 and a comparison with the consumption-
centered scenario is drawn in Figure 12 for the WLTC driving cycle. In this drawing, the
performance index is represented by the normalized value of the component. For example,
the performance index of the fuel is:

ṁ f uel
ṁ f uel,re f

(see Equation (5)).

Table 7. Performance of the emission-centered scenario.

Drive Fuel Cons. CO2 CO HC NOx RAM Calc.
Cycle l/100 km g/km g/km g/km g/km Gb Time (h)

NEDC 3.77 89 0.302 0.007 0.009 133 57
WLTC 4.52 106 0.306 0.007 0.008 155 95
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Figure 12. Comparison of the performance index in the WLTC driving cycle.

Aggregated results show that, whatever the driving cycle considered, a small increase
in fuel consumption (between 3% to 5%) allows a great reduction in NOx emission (divided
by a factor 20), thus passing the EURO6 rules (0.060 g/km). One can also notice that CO
emissions increase, but still stay three times lower than EU limits.

Let us take a deeper look at the results. Figures 13–17 shows the temporal evolution of
key variables in the WLTC driving cycle.

Figure 13 represents the variation of the state of charge of the battery. The lower bound
(in blue line) corresponds to the strategy that maximizes the discharge of the battery (i.e.,
the all-electric mode), while the red curve represents its maximum charge (i.e., the engine
is providing maximum power). Of course, because we are simulating a charge sustaining
hybrid, the curve must converge at the end of the driving cycle. This surface defines the
admissible operating area. The yellow line is the optimal trajectory regarding the objective
function. We conclude that the first part of the driving cycle is made in all-electric mode.
This is confirmed in Figure 14, where we observe that the urban part is driven with the
electric motor alone. We also notice that when the IC engine is started, the electric motor
runs in recovery mode, thus recharging the battery. We also observe in Figure 13 that the
optimal strategy is not far from the maximum discharge rate. This is only due to the fact
that the more aggressive part of the driving cycle happens at the end, which gives the right
conditions for the ICE to develop high power and recharge the battery with the best global
efficiency (see Figure 14).
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Figure 13. SOC trajectory with the emission-centered strategy in the WLTC driving cycle.
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Figure 14. Power sharing with the emission-centered strategy in the WLTC driving cycle.
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Figure 15. Operating points for the emission-centered strategy in the WLTC driving cycle. (red
squares mean that the catalyst temperature is higher than the light-off temperature; blue squares
mean that it is lower). (a): engine; (b): electric motor.
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Figure 16. Control parameters with the emission-centered strategy in the WLTC driving cycle.
(a): intake pressure; (b): relative spark advance; (c): air to fuel equivalence ratio.
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Figure 17. Pollutant emissions with the emission-centered strategy in the WLTC driving cycle.
(a): Carbon monoxyde; (b): unburned Hydrocarbons; (c): Nytrogen oxides.

Figure 15 shows how the strategy operates regarding the operating points of the ICE
and EM. First, we notice that a cloud of points is located near the full load of the ICE, which
also matches with the best efficiency area. The blue points denote the operating point used
with a cold and thus low efficiency catalyst. Although these points correspond to full open
throttle (see intake pressure in Figure 16, plot a), as the spark advance is delayed by 20 to
30 degrees (plot b), the resulting torque is low. During this stage, the strategy increases
exhaust enthalpy in order to quickly warm the catalyst. Of course, these operating points
present a low thermal efficiency, but this behavior last only a few seconds over the WLTC
driving cycle, thus producing a minor impact on global fuel consumption. At the same
time, engine admits a lean mixture (air to fuel equivalence ratio lower than 1, see Figure 16,
plot c), but as the catalyst is cold, it has no impact on its behavior. This has a small effect,
but increases engine efficiency and exhaust temperature while reducing CO emissions at
the engine outlet.

As soon as the catalyst is primed, the strategy has to conciliate conflicting constraints:

• For the fuel, the major parameters will be the relative spark advance, which has
to be close to its optimal value (∆SA = 0). It is also clear that an intake pressure
close to atmospheric pressure eliminates pressure drop at the intake valve, thus
maximizing efficiency;

• CO is not influenced by the spark advance, but only by the equivalent air to fuel ratio.
A low value of φ is better for CO engine emission. That is not what we observed.
Several factors explain this result:

– In this narrow window, CO emissions variation are low;
– CO efficiency is very high when catalyst is primed;
– The strategy greatly reduces CO emission before catalyst light-off (see Figure 10).

• The HC level is very low, and its performance index, ṁHC
ṁHC,re f

is less than 0.1 (see
Figure 12), so it has no impact on the control parameters;

• NOx clearly deeply influences the strategy; we observe a slight enrichment of the
mixture (φ = 1.008) that drives the catalyst efficiency to 0.995 (see Figure 4). Conversely,
we notice an alternation of the relative spark advance between 0 and −10◦. This
last value means firing later than is optimal, thus reducing the temperature in the
combustion chamber and the feedgas NO level. Finally, the temporal distribution of
the spark advance values is questionable. It seems to be correlated with the driving
power; the strategy adopts a null relative spark advance when the driving power
is high, and delays ignition when the wheel power decreases. This interpretation is
highlighted in Figure 18.
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Figure 18. Correlation between relative spark advance and wheel power (zoom during the highway
part of the WLTC driving cycle). (a): intake pressure; (b): relative spark advance; (c): wheel power.

3.3. Parametric Study on Engine Displacement

We propose in this section to analyze the impact of engine displacement on the
performance of the pollution-centered scenario. The displacement varies from 0.8 up to
2.0 L. Accordingly, the engine weight and its inertia vary with the same proportions. The
computations are conducted with the Group B parameters values in the WLTC driving
cycle (see Table 8). Eight combinations of spark advance and air to fuel equivalence ratio
are considered.

Table 8. Discretization step size used in the parametric study.

Variable Steps Min. Value Max. Value

Optimization parameters Group B not applicable

Fuel/air eq. ratio 0.15 0.993 1.008

Relative spark advance 10◦ −30◦ 0◦

Step time 2 s not applicable

Results are presented in Table 9 and Figure 19.

Table 9. Results of the parameter study.

Engine Fuel Cons. CO2 CO HC NOx RAM Calc.
Displ. l/100 km g/km g/km g/km g/km Gb Time (h)

0.8 4.26 100 0.291 0.007 0.011 19 5
1.0 4.26 100 0.294 0.006 0.008 22 7
1.2 4.29 101 0.299 0.007 0.009 (Results not available) 9
1.4 4.38 103 0.298 0.006 0.008 (Results not available) 10
1.6 4.48 105 0.304 0.006 0.008 34 12
1.8 4.57 108 0.312 0.007 0.008 40 12
2.0 4.69 110 0.319 0.007 0.008 40 13

One can see on Table 9 that emissions stay relatively stable while the engine displace-
ment varies, but there is a certain gap in fuel consumption; indeed, there is an almost 10%
increase in fuel economy between 2.0 and 1.0 L. The variation in global vehicle weight and
inertia only explains 3 to 4%. This means that there is an optimal engine size that minimizes
whole drive train losses; i.e., it allows the engine to run in its optimal operating range while
lowering electric motor and battery losses.
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Figure 19. Results of the parametric study.

We also compare, for the nominal case (i.e., engine displacement = 1.6 L) the result of
the two simulations. Figure 20 shows that the aggregated results are very close and this is
the same for temporal behavior, as shown in Figure 21. The last simulation runs eight times
faster and consumes almost five times less memory. This is encouraging, as compromises
can be found between the two groups of hypotheses.

Group B Group A
0

0.2

0.4

0.6

0.8

1

1.2

P
e
rf

o
rm

a
n

c
e

Consumption

CO

HC

NO
X

Figure 20. Comparison of the performance index between Group A and Group B discretization in
the WLTC driving cycle.
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Figure 21. SOC profile evolution between Group A and Group B discretization in the WLTC driv-
ing cycle.
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4. Discussion

We chose to balance each pollutant with the same weighting factor in the objective
function. The optimal strategy depends on these values used to scale and weight the
emissions. Different compromises can be obtained, but the results presented in this paper
show that with a small increase in fuel consumption (less than 3% for NEDC and 5% for
WLTC), we observe a reduction of NOx emissions by a factor 20, and thus pass the EU6
regulation limits.

HC emissions are very low, even for the fuel consumption scenario. This is due to
the fact that we do not take into account internal cylinder temperature during a cold
start. This factor has an effect on the quality of combustion and increases HC emission
before that the cylinder’s walls become hot. Moreover, to stabilize combustion during this
phase, enrichment occurs, which promotes unburned hydrocarbons. This pollutant is very
influenced by the cold start and less influenced by the operating parameters during the
whole drive cycle [33]. To take this phenomenon in account, we should add a new state
variable simulating the cylinder mean temperature.

Given the verticality of the catalyst efficiency curves, especially the NOx one, a very
small change in the equivalence ratio or efficiency S-curve shape can have a significant
influence on the results. In practice, it is not possible to control the gas chemistry with such
precision in a real engine, especially in the case of transient operations that are common
with hybridization. Actual equivalence ratio control strategies usually consist of oscillating
around the unit value of equivalence ratio to oxidize CO and HC on the one hand and
reduce NO on the other. In addition, the catalyst has oxygen storage capabilities that allow
small deviations during transient operations. The model of this equivalence ratio control
loop is very complex and involves many state variables, so it is not realistic to take it into
account when using dynamic programming.

Regarding the method used in this paper, we wanted to run the code with a step time
of 1 s, as it is the necessary condition to limit the rounding errors due to quantization. We
used a computer that was equipped with two processors running at 2.2 GHz and with
256 GB of RAM. We tried to limit the use of memory by storing only the variables that were
mandatory to solve the graph. The conclusion is that the calculation time is long, resource
intensive, and it is difficult to increase the combinatory on the control variables or add
more state variables to the models.

Running the code with a step time of 2 s allows the use of natural cooling with a more
reasonable temperature grid. Results presented on Section 3.3 are promising, as the same
results were observed while using almost five times less computer memory.

5. Conclusions

This study shows how to drive the control parameters of a port fuel injection engine
in a hybrid architecture with respect to fuel consumption and pollutant emissions. It gives
insight on how to use the degree of freedom represented by spark advance, air to fuel
equivalence ratio, and intake pressure. It is known that delaying spark advance allows
the early priming of the catalyst. However, our algorithm demonstrates when it should be
done and the level of magnitude go bring it to optimality.

To summarize the work, we analyzed the influence of three parameters of close engine
control: intake pressure (by the way of SOE), equivalence ratio, and ignition timing:

• Over a wide range of variation, the equivalence ratio acts on the trade-off between
the efficiency of the pollution control system and the fuel consumption because the
optimal efficiency of the engine is with a lean mixture. However, when emissions are
taken into account, the optimal range of variation of the equivalence ratio is reduced
by a stoichiometric proportion. In this small range of variation, the equivalence ratio
plays a role in the trade-off between the reduction of NO on one hand and of HC and
CO on the other. As previously mentioned, a more precise model of the influence of
this variable would be necessary to deepen this analysis of equivalence ratio control;
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• The optimal strategy degrades the ignition timing to optimize the catalyst priming
phase, as in a conventional vehicle. Indeed, despite the reduction in the efficiency of
the combustion engine, the ignition delay has a double positive effect on pollution. A
significant delay in relation to optimal ignition increases the temperature of the gases
at the engine outlet while reducing the concentrations of HC and NO. This ensures
that the catalyst is primed as soon as possible while reducing emissions during this
critical phase when the catalyst is not yet active. Once the catalyst is primed, the
hybrid strategy taking into account pollutant emissions and therefore often tends to
delay the advance. This impacts the temperature in the chamber and thus reduces
NO emissions;

• The intake pressure is directly linked to the power developed by the internal com-
bustion engine and acts on the one hand on the concentration of NO and HC at the
engine outlet and on the other hand on the efficiency of the engine. This latter effect
is predominant in the optimal strategy, as the weighted factor for fuel is high in the
objective function.

The work is conducted in a backward model environment that allows optimal methods
to be deployed. This is a great improvement compared to trial-and-error methods, which
are complex and time consuming when the search domain is wide. Dynamic programming
is robust and supplies a reference on how to operate an engine in a hybrid vehicle. The
drawback of this method is that the dynamic description of the engine has to be quite simple.
Other optimization methods can now be explored in light of these results. Additional state
variables can be introduced to the models. This work is a milestone that provides us with
the opportunity to develop models and to move towards real-time applications.
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Abbreviations
The next list describes acronyms and symbols used within the body of the document:

Acronyms and chemical components
BC Black Carbon
BSFC Brake Specific Fuel Consumption in g/kWh
BTDC Before Top Dead Center
CAD Crank Angle Degree
CO Carbon Monoxide
CPU Central Processing Unit
DP Dynamic Programming
ECU Engine Control Unit
EM Electric Machine
HC Unburned Hydrocarbons
ICE Internal Combustion Engine
NEDC New European Driving Cycle
NO Nitrogen Oxide
NOx Nitrogen Oxides
PM Particulate Matter
PMP Pontryaguin Maximum Principle
RAM Random Access Memory
SA Spark Advance
TWC Three Way Catalyst
WLTC Worldwide harmonized Light-duty vehicles Test Cycle
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Symbols used in the equations
[CO] CO concentration in ppm
[HC] HC concentration in ppm
[NO] NO concentration in ppm
[NOmin] Saturation value for [NO model]
α Weighting factor expressing the relative influence of consumption versus CO emissions
β Weighting factor expressing the relative influence of consumption versus HC emissions
γ Weighting factor expressing the relative influence of consumption versus NO emissions
∆SA Relative spark advance in CAD BTDC
δt Discretization step for the time in s
φ Air to fuel equivalence ratio (/)
cox Adjusting parameters for the [CO model]
hcx Adjusting parameters for the [HC model]
ṁ f ,re f Reference fuel mass flow in g·s−1

ṁ f uel Fuel mass flow in g·s−1

ṁx,re f Reference mass flow of pollutant species X in g·s−1

ṁx Mass flow of pollutant species X in g·s−1

nox Adjusting parameters for the [NO model]
Pintake Intake pressure in bar
SA Spark advance (CAD BTDC)
SOC Battery state of charge in %
SOEbat Battery state of energy in J

Appendix A. Algorithm Overview

The core of the algorithm was developed with MATLAB® and comprises three
main parts:

1. Constructing the graph: this consists of calculating at each time step the cost-to-go
function represented by all the feasible commands that satisfy the constraints of the
system. This is the costliest part (in term of CPU and RAM), as all paths between the
two time steps have to be calculated in term of SOC and temperature, fuel, emissions,
and finally cost-to-go function. The size of certain variables depends on the states and
the size others depend on the commands. Finally, they are classified using a unique
identifier denoted hereafter:
n = size(costToGo) = size(SOC) ∗ size(Temperature) ∗ size(commands)
A minimization is done at this stage; several commands lead to a particular node in
the graph, specified by a value of (SOC, temperature). For each node, the command
that minimizes the cost-to-go function must be found (see below). This is the place in
the algorithm dealing with the largest number of variables. It initially uses MATLAB’s
sortrows function. As explained in the help function:
[B,I] = sortrows(A,. . . ) also returns an index vector I, which describes the order of the
sorted rows, namely, B = A(I,:).
By making a vector A of size (n, 2) with the identifier in the first column and the
cost-to-go function in the second column, one can ordinate the identifier in B and the
corresponding indices in I. At this step, it is easy to get the indices of the minimal cost
in the original vectors. The job is done, but the drawback with this function is that the
element of Matrix A must be of the same type, i.e., double precision floating numbers
(for input arguments and output arguments also). This uses a large amount of memory.
By developing our own C-sfunction in MATLAB with a fast top-down implementation
of a merge-sort algorithm, we created our own prototype, thus enabling an identifier
of type uint32, such as this one (freeing a lot of memory):
[id_in_order(uint32), order_cost(uint32)] = csortrows(id(uint32), cost(double))

2. Storing the variables: to solve the graph (third part of the algorithm), the vector of the
optimal commands
(size(OptCommands) = size(soc) ∗ size(Temperature))
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has to be stored at each time step along with the previous nodes to know where they
come from.

3. Finding the optimal path: the optimal path is characterized by the minimal cost-to-go
function at the end of the driving cycle that satisfies the SOC constraints. Obtaining
this index allows one, starting from the end and going backwards step by step up to
the beginning of the cycle, to know the optimal commands and the preceding node.
Once this is done, all intermediate variables can be recalculated.
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