
HAL Id: hal-03524247
https://hal.science/hal-03524247

Submitted on 17 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From genetic to bacteriological algorithms for
mutation-based testing

Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, Yves Le Traon

To cite this version:
Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, Yves Le Traon. From genetic to bacteriological
algorithms for mutation-based testing. Journal of Software Testing, Verification and Reliability, 2005,
15 (2), pp.73 - 96. �10.1002/stvr.313�. �hal-03524247�

https://hal.science/hal-03524247
https://hal.archives-ouvertes.fr


From Genetic to Bacteriological Algorithms for Mutation-Based Testing 

Contact author : Benoit Baudry,  
Franck Fleurey, Jean-Marc Jézéquel, Yves Le Traon  

IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France 

{bbaudry, ffleurey, jezequel, yletraon}@irisa.fr 

Abstract 

The level of confidence in a software component is often linked to the quality of its test cases. This quality can in 

turn be evaluated with mutation analysis: faults are injected into the software component (making mutants out of it) 

to check the proportion of mutants detected ("killed") by the test cases. But while the generation of basic test cases set 

is easy, improving its quality may require prohibitive effort. This paper focuses on the issue of automating the test 

optimization. The application of genetic algorithms looks like an interesting way to solve it. The optimization problem 

is modeled as follows: a test case can be considered as a predator while a mutant program is analogous to a prey. 

The aim of the selection process is to generate test cases able to kill as many mutants as possible, starting from an 

initial set of predators, which is the test cases set provided by the programmer. To overcome disappointing 

experimentation results, on .Net components and unit Eiffel classes, a slight variation on this idea is studied, no 

longer at the "animal" level (lions killing zebras) but at the bacteriological level. The bacteriological level indeed 

better reflects the test case optimization issue: it mainly differs from the genetic one by the introduction of a 

memorization function and the suppression of the cross over operator. The purpose of the paper is to explain how the 

genetic algorithms have been adapted to fit with the issue of test optimization. The resulting algorithm differs so much 

from genetic algorithms that it has been given another name: bacteriological algorithm. 

Keywords: automatic test generation, evolutionist algorithms, object-oriented testing, mutation analysis. 

1. Introduction 

Some specialists have claimed: “Progra mmers love writing tests” [1]. One reason for this is that they can 

incre mentally build confidence in their code when it passes their tests. The level of confidence one has into a given 

software component is then linked to the quality of its test cases. Conversely, one way to qualify the test cases 

consists in deliberately introducing faults in the software under test. The intuition of this technique, called mutation 



analysis [2], is that the quality of the test cases is related to the proportion of faulty programs (also called mutants) it 

detects. Faulty programs are generated by systematic fault injection in the original implementation. By measuring the 

quality of test cases (the revealing power of the test cases [3]), trust is built in a component passing those test cases. 

Mutation analysis has been successfully applied to qualify unit test cases for OO classes [4-6], and gives the 

programmer an interesting feed-back on the “revealing power” of his/her test cases. It also offers an estimate of how 

much new test cases are needed to better test a given software component.  

But while the generation of a basic test cases set is easy, improving its quality may require prohibitive effort. 

Indeed, the test cases that are generally provided by the tester easily cover 50-70 % of the mutants, but improving this 

score up to 90-100 % is a time-consuming and a very expensive task. This paper focuses on automating the test 

improvement stage, i.e. test optimization. 

The issue of automatically improving test cases is a non-linear optimization problem, and the application of 

genetic algorithms (GAs) looks like an interesting way to solve it. Furthermore, a strong analogy exists between 

natural selection and the process of generating new test cases based on an initial set of test cases. Initial test cases are 

of various efficiency, but each of them can participate to the optimization. In this paper, the optimization problem is 

modeled as follows: a test case can be considered as a predator while a mutant program is analogous to a prey. The 

aim of the selection process is to generate test cases able to kill as many mutants as possible, starting from an initial 

set of predators, which is the test cases set provided by the tester. The adaptation of genetic algorithms to this context 

is presented here, as well as the analysis of the results obtained with two case studies: one at the unit test cases level 

(for Eiffel classes) and the other at the system level testing (the testing of a C# parser in the .Net framework [7, 8]). 

While it was quite disappointing that these experimentation results were not as good as expected, biologists 

colleagues suggested to try a slight variation on this idea, no longer at the “animal” level (lions killing zebras) but at 

the bacteriological level. The bacteriological level indeed better reflects the test case optimization issue: it mainly 

differs from the genetic one by the introduction of a memorization function and the suppression of the crossover 

operation and the notion of individual (genotype). The main contribution of this paper concerns the way the GAs 

have been adapted to propose a novel algorithm: the bacteriological algorithm. The bacteriological model and its 

behavior are described and validated using the previous case studies.  

The rest of this paper is organized as follows. Section 2 opens with a brief summary about mutation analysis, and 

then introduces how it is adapted to test generation and optimization. Mutation analysis has never been applied to 



system testing, because of prohibitive execution times. A derived contribution of this paper concerns the flexibility of 

the mutation approach either to a single class or to a whole system. Section 3 presents a model for test optimization 

that builds on genetic algorithms. Section 4 presents two case studies that have been conducted with this model, and 

discusses the results of these experiments. That leads to section 5 which presents an adaptation of the genetic model 

called the bacteriological model, and new results for both case studies. In Section 6 some related work are discussed 

and Section 7 gives several conclusions about this work. 

2. Mutation testing for OO domain 

Mutation testing is a testing technique which was first designed to create effective test data, with an important fault 

revealing power [3, 9]. It has been originally proposed in 1978 [2], and consists of creating a set of faulty versions or 

mutants of a program with the ultimate goal of designing a test cases set that distinguishes the program from all its 

mutants. In practice, faults are modeled by a set of mutation operators where each operator represents a class of 

software faults. To create a mutant, it is sufficient to apply its associated operator to the original program.  

A test cases set is relatively adequate if it distinguishes the original program from all its non-equivalent mutants. 

Otherwise, a mutation score(MS)  is associated with the test cases set to measure its effectiveness in terms of 

percentage of the revealed non-equivalent mutants.  

Mutation Score. Let d be the number of dead mutants after applying the test cases, m the total number 

of mutants and equiv, the number of equivalent mutants. 

The mutation score MS for a test cases set T is defined as follows: 

  MS(T)= )m
d

(100 equiv−×  

It is to be noted that a mutant is considered equivalent to the original program if there is no input data at all on 

which the mutant and the original program produce a different output. A benefit of the mutation score is that even if 

no error is found, it still measures how well the software has been tested giving the user information about the 

program test quality. During the test selection process, a mutant program is said to be killed if at least one test case 

detects the fault injected into the mutant. Conversely, a mutant is said to be alive if no test cases detect the injected 

fault.  



The section is organized as follows. The general test selection process based on mutation analysis, and the chosen 

mutation operators are presented. Then, a generic framework is described for unit and system test cases optimization 

based on a common mutation core. 

2.1. Test selection process 

The whole process for generating test cases with fault injection is presented in Figure 1(a). It includes the 

generation of mutants from the Component Under Test (CUT) and the application of test cases against each mutant. 

Two types of oracles can be used to kill mutants:  

- the difference between the result of the initial implementation and the mutant result, 

- contracts as embedded oracle function derived from specification in a design by contract approach [10]. 
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Figure 1 - The mutation process 

In Figure 1, diagnosis designates a non-automated task which aims at determining why a mutant is alive after the 

execution of test cases: it may be due to the test cases, to incomplete specification (and particularly if contracts are 

used as oracle functions) or to the fact the mutant is equivalent. In the first case, it means that the set of test cases is 

weak, and that new test cases must be added to increase the mutation score. In the second case, it means that the 

embedded oracle functions are weak, and that the assertions (pre/post conditions, invariants) have to be reinforced. It 

has to be noted that when the set of test cases is selected, the mutation score is fixed as well as the test quality of the 

component. Moreover, except for the diagnosis, the process is completely automated.  



The assumption when applying mutation is that the original program passes its initial set of test cases (detected 

bugs have been corrected). Then test case optimization aims at enhancing this set so that it has a high mutation score. 

At the end of the process, the new test cases must be applied on the original program to check if they detect a fault. 

This is the reason why as few test cases as possible must be added since they must still be associated to an oracle and 

applied on the original program: there is a supplementary cost due to the determination of the oracle for the original 

program. This paper focuses on the test optimization process to obtain automatically the most efficient set of test 

cases both in terms of fault revealing power (measured using mutation) and execution time (this aspect being crucial 

for testing a system). This corresponds to the automation of the test case enhancement phase after the diagnosis in the 

mutation process. In Figure 1(b) an “optimizer” operation has appeared that optimizes the initial test case to improve 

its mutation score. Different strategies have been tested to automate the “optimizer” operation: genetic algorithms (cf. 

section 3) or an adaptation of these algorithms that is called bacteriological algorithms (cf. section 5). 

In [5], a testing-for-trust methodology was proposed, based on an integrated design and test approach for OO 

software components, particularly adapted to a design-by-contract approach, where the specification is systematically 

transformed to executable assertions (invariant properties, pre/postconditions of methods) [10]. Here the focus is on 

test generation/optimization and the corresponding stages are extracted from the global methodology. Based on the 

process of Figure 1(b), Figure 2 proposes an incremental approach for testing and correcting software:  

1. Write an initial test cases set  

2. Automatically enhance the initial test cases set.  

3. The tester checks if the tests do not detect errors in the initial program. If errors are found, they must be 

corrected. then go back to step 2 for regression testing. 

11 22 33
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Figure 2 - Incremental process for software testing 

2.2. Mutation operators  

The set of mutation operators should  

- be general enough to be applied to various OO languages (Java, C++, Eiffel etc) 



- imply a limited computational expense, 

- ensure at least control-flow coverage of methods. 

The actual choice of mutation operators includes selective relational and arithmetic operator replacement, variable 

perturbation, but also referencing faults (aliasing errors) for declared objects. The choice of mutation operators is 

given in Table 1.  

Table 1 - Mutation operators set for OO programs  

Type Description 

EHF Exception Handling Fault 

AOR Arithmetic Operator Replacement 

LOR Logical Operator Replacement 

ROR Relational Operator Replacement 

NOR No Operation Replacement 

VCP Variable and Constant Perturbation 

MCR Methods Call Replacement 

RFI Referencing Fault Insertion 

 

Functionality of each of the mutation operators: 

EHF: Causes an exception when executed. This semantically large mutation operator forces code coverage. 

AOR:Replaces occurrences of "+" by "-" and vice-versa. 

arithmetic operator replaced by 

+ -, * 

- +, / (or div) 

* / (or div), + 

/ *, - 

 Div -, mod 

 Mod -, div 



LOR: Each occurrence of one of the logical operators (and, or, nand, nor, xor) is replaced by each of the other 

operators; in addition, the expression is replaced by TRUE and FALSE. 

ROR: Each occurrence of one of the relational operators (<, >, <=, >=, =, /=) is replaced by each one of the other 

operators.  

NOR: Replaces each statement by the Null statement. 

VCP: Constant and variables values are slightly modified to emulate domain perturbation testing. Each constant or 

variable of arithmetic type is both incremented by one and decremented by one. Each boolean is replaced by its 

complement. 

MCR: Methods calls are replaced by a call to another method with the same signature. 

RFI: Stuck-at void the reference of an object after its creation. Remove a clone or copy instruction. Insert a clone 

instruction for each reference affectation.  

The mutation operators AOR, LOR, ROR and NOR are traditional mutation operators [9, 11, 12], the other 

operators having been introduced in this paper for the object-oriented domain. The data perturbation operator VCP 

allows to disturb state of data and to obtain a sensitivity analysis of program similar to [3]. Operator RFI introduces 

object aliasing and object reference faults, specific to object-oriented programming: 

- reference to an object is stuck-at null,  

- object duplication instructions (clone/copy ) are removed, 

- each assignment of an object is preceded by the duplication of this object.  

The faults due to the RFI operator are more difficult to detect than those due to other operators, since it forces the 

test cases to detect that some data structures are not owned by the specified objects.  

2.3. Mutation for Unit and System testing 

In this section, the issue of mutation for a system composed of a set of unit classes is tackled and a pragmatic 

solution is proposed. Mutation analysis has never been applied to global system testing. In the case of unit testing, the 

faults are injected in a single class under test. With system testing faults are injected in all the components of the 

system, a mutant system being a system in which a single fault has been injected as for a unit class mutant. Since the 

purpose of unit and system testing are different, mutation must be adapted and considered in a different way. At 

system level, the fundamental assumption for mutation that is the “Competent Programmer Hypothesis” has to be 



reformulated into the “Competent Designer Hypothesis”: mutation operators specific to design faults should be 

proposed. Since the complexity of a system is higher than a single class, two main specific issues for using mutation 

at the scale of a system level appear: 

1. combinatory explosion of the number of mutants: while it is reasonable to inject many different types of 

faults in a class, it is not realistic to inject all the possible faults in the system. The execution/compilation 

time for applying all the test cases on a mutant system is much greater than on a unit class.  

2. determination of equivalent system mutant: if mutant equivalence is often decidable on a class, it is not 

possible for a tester to decide system equivalence. 

Considering these issues, the solution proposed in this paper is pragmatic and aims at reusing the unit level results 

and operators for system testing. A methodology based on mutation testing consists in testing unit classes using 

mutation before the mutation is applied at system level. When performing system testing, classes are expected to 

have been successfully tested at unitary level (with respect to the whole set of mutation operators). System testing 

then focuses on the relationships between the classes in the system, i.e. the structural design (class diagram). In 

consequence, one may choose a subset of existing operators to perform system testing. Second, equivalent mutants 

are avoided so that the 2nd point is no more an issue. The LOR and NOR operators should generate only non-

equivalent mutant systems, since any terms of a logical expression and any statement should have an impact on the 

system result (or it may correspond to dead code that must be suppressed). By choosing a subset of the unit mutation 

operators, the combinatory explosion is avoided for systems of medium sizes. This is the pragmatic solution that has 

been applied for this work. 

To make clearer the concepts and how unit mutation operators are reused at system level, Figure 3 presents the 

generic UML model for the two variants (unit/system) of the mutation tool. For unit testing, the operators that 

implement the UnitTesting interface (all) are applied, in the same way, for system testing operators that implement 

SystemTesting interface (LOR and NOR) are available.  
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Figure 3 - A generic model for the mutation tool 

The objective of this paper is not to solve the problem of mutation for a system but to show that genetic algorithms 

can be adapted to optimize a set of test cases both for unit classes and for a set of interconnected classes (called 

system in the context of the paper).  

3. Test cases generation: Genetic algorithms for test generation 

Writing a first set of test cases is easy, and most developers do such basic testing. Experiments showed that such 

test cases easily reach 60 % of test quality (see [13]). Improving test quality implies a particular and specific 

supplementary testing effort. In this section the use of genetic algorithms is investigated as a pragmatic way to 

automatically improve the basic test cases set in order to reach a better test quality level with limited effort. Indeed, 

the basic test cases set carries information that can be optimized to create better test cases, by some cross-checking 

and “mutation” of the test cases themselves. So, at the beginning there is a population of mutants programs to be 

killed and a test cases pool. Those test cases (or “gene pool”) are randomly combined to build an initial population of 

test cases seen as predators of the mutant population. A genetic algorithm is applied to improve the ability of this 

initial population to kill mutants programs. 



3.1. Genetic algorithms  

Genetic algorithms [14] have been first developed by John Holland [15], whose goal was to rigorously explain 

natural systems and  then design artificial systems based on natural mechanisms. So, genetic algorithms are 

optimization algorithms based on natural genetics and selection mechanisms. In nature, creatures which best fit their 

environment (which are able to avoid predators, which can handle cold weather…) reproduce and thanks to crossover 

and mutation, the next generation will fit better. This is just how a genetic algorithm works: it uses an objective 

criterion to select the fittest individuals in one population, it copies them and creates new individuals with pieces of 

the old ones. 

This objective criteria used to go from one generation to the other is one of the interesting points of genetic 

algorithms, but there are others. As it will be seen, these algorithms are computationally simple, they improve rapidly 

and they work at the population level, not on a single individual. 

To apply genetic algorithms to a particular problem, it has to be decomposed in atomic units that correspond to 

genes. Then individuals can be build, corresponding to a finite string of genes, and a set of individuals is called a 

population. A second criterion needs to be defined: a fitness function F which, for every individual among a 

population, gives F(x), the value which is the quality of the individual regarding the problem to solve. This 

corresponds to the function that has to be maximized. 

Moreover, a genetic algorithm uses three operators: reproduction, crossover, mutation. 

− Reproduction copies the individuals which are going to participate in crossover: they are chosen according to 

their F(x) value. The choice can be seen as spinning a roulette wheel where each individual has a slot 

proportional to its fitness value. The wheel is spinned as many times as the size of the population, and so a new 

population is available, which is going to participate to crossover. This new population is made of individuals of 

the old one, and the number of each type of individual is proportional to its fitness (there are many of the fittest 

and few of the ones with a low fitness). 

− Crossover : the members of the population after reproduction are mated randomly, then every pair is crossed, to 

create as many new pairs, like this : first, you choose, at random, an integer value k between 0 and the size n of 

an individual less one. Secondly, you create two new individuals A’ and B’ with a pair (A,B), A’ is made of the 

k first genes of A and n-k last genes of B, and B’ is made of the k first genes of B and the n-k last genes of A. 



− The mutation operator modifies one or several genes’ value. (e.g. if an individual is a bit string, mutation means 

changing a 1 to 0 and vice versa ) 

Once the problem is defined in terms of genes, and the fitness function is available, a genetic algorithm is 

computed following the process described Figure 4. 

•choose an initial population
•calculate the fitness value for each individual

•reproduction
•crossover
•mutation on one or several individuals

•several stopping criteria : x number of
generations, a given fitness value reached …

Genetic 
loop

 

Figure 4 - The global process of a genetic algorithm 

3.2. Genetic algorithms for test optimization 

This section presents an adaptation of genetic algorithm to automatically optimize an initial tests set, based on 

mutation score as a quality criterion. First, a generic model that can be applied to optimize any type of test data is 

presented. Then specializations for unit and system testing are discussed. The points discussed there are specific 

adaptations of the genetic model to test optimization that strongly depend on the type of test data that is improved. 

a) Modeling Reproduction and Crossover 

The decomposition of the problem as presented in section 3.1 appears clearly: a population is a set of individuals, 

and an individual is a set of genes. The size of the population and the size of an individual are constant values for a 

given run of the genetic algorithm. In the case of test optimization, a gene corresponds to a test case. However 

subsections b) and c) will show that a test case is not represented in the same way depending on the testing level (unit 

or system). The mutation score associated to a test case corresponds to its fitness value. 

The reproduction and crossover operations can be expressed at a generic level. Those two operators are 

independent from a specific gene model, and are thus independent from a particular component under test. 

Conversely, the mutation operator is very dependent from a particular gene model and will thus be defined separately 

for unit and system testing in the following subsections. 

− Reproduction :  the slot for each individual in the roulette wheel, is proportional to its mutation score. 



− Crossover : let m be the size of an individual, and let’s select an integer i at random between  1 and m-1, then 

from two individuals  ind1 and ind2, two new individuals ind3 and ind4 are created; one made of the i first 

genes of ind1 and the m-i  last genes of ind2, and the other made of the i first genes of ind2 and m-i last genes 

of ind1. This operator is illustrated Figure 5. 

ind1 = {G1 1, ... G1 i, G1 i+1, .. G1 m}      ind2 = {G2 1, ... G2 i, G2 i+1, .. G2 m}

ind3 = {G1 1, ... G1 i, G2 i+1, .. G2 m}      ind2 = {G2 1, ... G2 i, G1 i+1, .. G1 m}  

Figure 5 - The crossover operator 

Next subsections detail unit or system dependent aspects of the genetic modeling for test optimization: the gene 

model and the associated mutation operator. The gene model also has to be correct according to the other operators, 

in particular it has to permit the usage of the crossover operator. This means that wherever genes are located inside an 

individual, this individual must be a correct set of inputs for the CUT.    

b) Specialization for Unit Testing 

A unit test case is a method which creates one or several instances of the class under test, and calls methods on 

these objects. This way of writing unit test cases has been standardized with the emergence of the XUnit test 

frameworks family.  

To apply genetic algorithms to unit test cases optimization, a gene is thus modeled as a method. Two parts are 

clearly identified in this method as detailed in the following definition. 

Gene modeling for unit testing. A gene is a test case for a unit. It is modeled as a method composed of 

two parts: 

1 creation and initialization of objects that are tested 

2 method calls on these objects 

Let m1,…, mn be n methods calls and p1,…, pn instances of the parameters for the method calls 

A gene is notated: G = [I , S] where S = (m1(p1),…,mn(pn)) 

Based on this model, the mutation operator consists in changing the value of the parameters for one method call in 

the set S of one gene. 



Mutation operator for unit testing. The mutation operator changes the parameters value of one 

method call in one gene, as illustrated in the figure below. 

G = [I , S]  ⇒  G = [I , Smut] 

         S=(m1(p1),…, mi(p i),…, mn(pn))   ⇒  Smut=(m1(p1),…, mi(p imut),…, mn(pn))  

This mutation operator is important for control-flow coverage.  

Concrete examples of a source file and the mutation operator are given in appendix B. 

c) Specialization for System Testing  

The gene model and mutation operator described in this section strongly depend on the case study for system 

testing: a parser. For this particular system, the input data is a source file that is parsed to build a syntax tree. The 

gene model is given in the following definition. 

 Gene modeling for system testing. In the particular case of a parser a gene is a source file for the 

particular language. Each file contains several constructs from the language (nodes from the 

syntax tree). If there are x nodes in the file a gene can be represented as follows: 

      G = [N1,…,Nx] 

Based on this gene modeling, the mutation operator consists in replacing a syntax node in a source file (an 

individual) by another licit node.  

Mutation operator for unit testing. The mutation operator, chooses a gene at random in an individual 

and  replaces a node in that gene by another one: 

G = [N1,…, N i,…, Nx] ⇒ Gmut = [N1,…, N imut,…, Nx] 

Concrete examples of a source file and the mutation operator are given in appendix A. 

4. Case studies with genetic algorithms  

This section describes two case studies that have been conducted to study the automation of test cases optimization 

using a genetic algorithm. The two case studies concentrate on different levels of testing. The first one concerns unit 

testing and is based on an Eiffel library. The second study applies a genetic algorithm to optimize tests for a small 

system written in C# in the .NET framework. The two case studies have been chosen to represent classical categories 



of software. The studied classes are typical classes, since methods are small and manipulate a few data. The .Net 

component is typical from any software that transforms input data in a given format into a new format. For instance, 

the same type of model for optimization can be used for testing software using the XML as an exchange format.  

4.1. Unit test data optimization : an Eiffel example  

The case study for unit testing is based on the Pylon library. It is a small, portable, freely available Eiffel library 

for data structures and other basic features. The experiments focus on three classes from the package that deals with 

time and dates management. The ma in class of this package is called p_date_time.e. The way in which the various 

classes used in this package interact is presented in Figure 6.  

p_text_object Hashtable comparable

+is_equal()
+hash_code()
+set_hour()
+set_minute()
+set_second()
+set()
+is_am()
+is_pm()
+to_iso()
+to_rfc()

p_time

+make()
+is_equal()
+hash_code()
+set_date()
+set_time()
+set()
+is_valid()
+is_local()
+is_utc()
+timezone_bias()
+set_timezone_bias()
+local_timebias()
+internal_tz()
+to_iso()
+to_iso_long()
+to_rfc()
+add_iso_timezone()

p_date_time

+is_equal()
+hash_code()
+set_year()
+set_month()
+set_day()
+set()
+is_valid_date()
+is_valid()
+is_leap_year()
+max_day()
+to_iso()
+to_iso_long()
+to_rfc()

p_date

p_format

+Rfc_january()
+Rfc_february()
+Rfc_march()
+Rfc_april()
+Rfc_may()
+Rfc_june()
+Rfc_july()
+Rfc_august()
+Rfc_september()
+Rfc_october()
+Rfc_november()
+Rfc_december()

p_date_const

 

Figure 6 - Classes of  package "date -time" 

An initial tests set has been written for the three classes p_date, p_date_time and p_time. Then, the mutation 

scores of theses three tests set were computed. The results are summarized in Table 2. The differences for the number 

of mutants generated are due to the differences of complexity of the methods in the classes. The number of mutants is 

proportional to the number of lines of code, the number of control points, as well as the number of predicates in logic 

expression at the control points. For example, there are much less mutants for p_date_time, because most of the 

methods of this class delegate their computation to methods of classes p_time and p_date. 

 

 p_date p_date_time p_time 

# of generated mutants 673 199 275 

mutation score (%) 53 58 58 

Table 2 - Mutation scores for initial tests set  



These initial tests set correspond to the test seed that can be used for automatic improvement through genetic 

algorithms. The algorithm was run to improve the three tests set. In each case, the initial tests set included three test 

cases that concentrated on different behaviors of its associated class. Those test cases were used as gene to initialize 

the population to be improved. The population consisted of 15 individuals, each one containing 5 genes. The 

mutation rate was 10%. 

Figure 7 presents the curves of the mutation score as a function of the number of generated predators (one point 

represents a generation step). 
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Figure 7 - Genetic algorithm application for unit test data optimization 

4.2. System test data optimization: testing a .NET component 

For system testing, the test data optimization technique has been applied on a .Net component that parses C# 

source files. There are 32 classes in this system that is implemented in C#. This parser takes a set of C# source files 

as an input and builds the corresponding syntax tree. 

To experiment genetic algorithms on this system, 500 mutant systems were generated, using only the NOR 

operator. Nevertheless the obtained results are still interesting since the test cases generated against such mutants 

cover all statements in the system. The initial population for the genetic algorithm application consisted of 12 

individuals of size 4, and its initial mutation score was 56%. The results are given Figure 8. 
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Genetic algorithm with a 10% mutation rate
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Figure 8 - Genetic algorithm  application for test optimization for a C# parser 

4.3. Results and comments  

This section summarizes several conclusions about the application of a genetic algorithm to improve the quality of 

test cases (Figure 7 and Figure 8). The results of the application of GA are commented in terms of fault detection 

capacity, of growth of the mutation score, of execution time, and model calibration. 

In terms of fault detection: Several errors were found and corrected. Alive mutants were also studied. Some 

mutants were obviously not equivalent, but still alive, and they actually corresponded to errors that had been injected 

in dead code.    

In terms of mutation score. Even if the genetic algorithm automatically improved the mutation score of initial test 

cases set, this improvement was not satisfactory: either because of the small improvement in the case of unit test 

cases, or, in general, because of the slow convergence and the unusual proportions of crossover and mutation 

operators. To go from one generation to another, genetic algorithms select the best individuals. These individuals are 

then reproduced, crossed, and some of them are mutated. This gives a new population. Information may be present 

only in genes of individuals that have not been selected for reproduction. In the same, way mutating a gene may 

delete information. A critical information loss appears when passing from one generation to the other. In that case, 

the best individual of the new population may be worst than the best one of the previous generation. This 

phenomenon implies a slow convergence. Memorizing the individuals before reproduction would solve this problem. 

In terms of model tuning. The first parameter that is analyzed here is the size of an individual. Genetic algorithms 

look for an optimal individual, not an optimal population. Thus, an individual has to be a set of test in the particular 

case of test optimization. It is very difficult to predict how many test cases will be necessary to kill every mutant for a 



particular program. So, the size has to be set to high values at the beginning, and then tuned, so that the final 

individual has a good mutation score but is not too big. Big sets are not interesting because then running all the test 

cases is too much time-consuming. The tuning has to be done for every particular CUT. Even if this tuning is 

mandatory when applying genetic algorithms for a particular problem, it seems particularly constraining in the case 

treated here since the objective is to improve test cases and not an individual. The goal, is to have good test cases 

with no strong constraint on the number of tests. Thus, a better adapted model, would not constrain the size of the set 

when improving the test cases. 

The second parameter is the mutation rate. The mutation rate had to be excessively increased compared to usual 

application of genetic algorithms. Figure 8 shows results with two different mutation rates: 2% and 10%. The lowest 

rate gives no result, the mutation score reaches at most 80%, whereas the 10% rate makes the mutation score grow up 

to almost 90%. Actually, it appears that the mutation operator is the one that creates information. In both cases (unit 

or system) this operator changes the test data. So after mutation, the test case might cover other parts of the CUT. For 

test optimization, this represents an information saving. The mutation rate was thus 10% for the experiments 

described above.  

The last parameter is the crossover operator. The limitation of this operator is not so much the tuning, but the lack 

of efficiency in the cas e of OO testing. Indeed, the way genes are modeled as test cases implies that each gene can be 

run on the CUT separately. The genes are thus independent from each other. So the order in which they are run as no 

importance. This makes the crossover operator useless, since its only function is to create information by reordering 

genes inside an individual. 

In terms of execution time:  480 000 mutant systems had to be executed to reach a mutation score of 85 %. With a 

bi-processor 1.33 GHz, with 2 mutant executions in parallel, a mutant system needs 0.4 s. to be executed: the global 

execution time for the GA on a single computer is 26 hours. This is not efficient, even if mutant executions could be 

launched in parallel on several machines.  

As a conclusion about these experiments crossover appears as not perfectly adapted to the test cases optimization 

problem. A more adapted model should provide memory and remove the notion of individual to concentrate on the 

genes (test cases). This would avoid tuning when applying the model on different CUTs. Nevertheless, things must be 

kept from this experience: the gene modeling which is clearly defined and corresponds exactly to what has to be 

optimized; the mutation operator that seems to be a good way of creating new information in the context of OO test 



generation. The mutation score as the fitness function that guides the algorithm towards a good solution. Next section 

proposes a new model and process, adapted from the genetic algorithms and based on these conclusions. It is called 

the bacteriological approach, and is based on the bacteriological adaptation phenomenon. 

5. An adaptive approach: Bacteriological algorithms  

Experiments described in section 4 have shown some drawbacks of genetic algorithms for test cases optimization. 

This section presents an adaptation of the genetic approach for OO test generation. The adaptation consists in keeping 

track of the best individuals from one generation to the other. It is then possible to delete the mutants those 

individuals can kill from the set of alive mutants. The time necessary to compute one generation decreases at each 

step of the genetic loop with the size of the alive mutants set. 

Even if the adaptation of the genetic model seems based on very small changes, it actually completely changes the 

idea of genetic algorithm which is to go through the set of solutions looking for the optimal individual. Here, the set 

of solutions changes from one generation to the other since the goal of the search (killing every alive mutant) changes 

at each generation. Moreover, the new model does not generate the optimal individual, but a set of individuals (the 

ones that have been memorized during the whole process). The new approach is thus fairly far from the genetic 

model. Keeping the analogy with biological processes, this new model is close to the “bacteriologic adaptation” [16]. 

5.1. The bacteriological mode l 

a) The global process 

The bacteriological approach is more an adaptive approach than an optimization approach as genetic algorithms. It 

aims at mutating the initial population to adapt it to a particular environment. The adaptation is only based on small 

changes on the individuals. The individuals in the population are called bacteria and correspond to atomic units. 

Unlike the genetic model the bacteria can not be divided. The crossover operation can not be used anymore. Bacteria 

can only be reproduced and altered to improve the population. 

As the genetic model, a fitness function is necessary to choose bacteria for reproduction. With this function a 

global iterative process to adapt an initial population is drawn Figure 9. Starting from this population, the fitness 

function allows the algorithm to select the best bacteria. Then these bacteria are saved and reproduced to generate a 

new population. Several bacteria in this population are mutated, then the best ones are selected again to produce 



another generation. This process stops after a number of generation or when the memorized population has reached a 

optimum fitness value. 

•choose an initial set of bacteria

•compute the fitness value for each bacterium
•memorization of the best bacteria
•reproduction
•mutation on one or several bacteria

•several stopping criteria : x number of generations, a 
given fitness value reached … 

Bacteriological 
loop

•choose an initial set of bacteria

•compute the fitness value for each bacterium
•memorization of the best bacteria
•reproduction
•mutation on one or several bacteria

•several stopping criteria : x number of generations, a 
given fitness value reached … 

Bacteriological 
loop

 

Figure 9 - The bacteriological process 

b)  The model for test optimization 

A bacterium is modeled as a test case. 

The mutation operator is still present in the new model. Since the structure chosen for bacteria is the same as the 

one chosen for genes in sections 3.2.b) and 3.2.c), the mu tation operators are also the same. On the other hand, since 

this approach only manipulates bacteria which correspond to genes in the previous approach, the reproduction and 

crossover operators have disappeared. The removal of the crossover operation is one major difference with the 

genetic model.   

This approach, as the previous one, needs a fitness function  to select bacteria that are memorized from one 

generation to the other. Since the bacteria model is the same as the gene model, the fitness function can be kept. 

Bacteria are thus selected according to their mutation score. 

The other difference is the emergence of the memorization. The bacteriological manipulates a memory that is the 

set of the best bacteria that have been saved in previous generations. In the genetic approach, the algorithm computed 

the mutation score of individuals on every mutants at each generation. Conversely the bacteriological approach aims 

at avoiding this expensive mutation score computation by saving bacteria from generation to the other. The mutation 

score is computed only on mutants that have not been killed in previous generations. This approach thus keeps track 

of mutants that have been killed and the ones still alive.   

5.2. New results  

a) Experiments 
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Figure 10 - Results of a bacteriological approach for unit test data optimization 
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Figure 11 - Results of a bacteriological approach for system test data optimization 

Figure 10 and Figure 11 show results of the bacteriological approach for the two case studies presented in section 

4. For this type of experiment, only two parameters need to be tuned: the number of bacteria saved to pass from one 

generation to the other, and the minimal size of the bacteria. Since the initial bacteria pool was small in both cases 

(between 3 and 10 bacteria), the experiments were conducted by saving only the best bacterium for a given 

generation. 

The size of a bacterium is defined in a different way depending on the type of tests case. 

Size of a unit test case. Let B=[I,S] be a unit test case, where S is a set of method calls on instances of 

the CUT. The size of this bacterium is the size of S.  

Size of a system test case. Let B=[N1,…,Nx] be a test case for a parser, containing language constructs 

(nodes of the syntax tree). The number x of nodes is the size of this bacterium. 

An extensive experimental work about the tuning of this parameter is presented in [17]. 



b) Discussion 

This approach converges faster than the previous one. Table 3 summarizes results of both approaches for the C# 

parser. This table gives the number of generations needed to reach the score given in the second column. The 

bacteriological algorithm converges much faster than the genetic one: 30 generations instead of 200. However, since 

the computation to go from one generation to the other is not the same in both approaches, more comparable figures 

are given in the last column of the table. It gives the number of time a mutant system has been executed.  This is a 

better estimation than the number of generation for the complexity since executing a mutant is as much time-

consuming in both approaches . With a bi-processor 1.33 GHz, with 2 mutant executions in parallel, a mutant system 

needs 0.4 s. to be executed: the global execution time for the GA on a single computer is 26 hours and 2h34 with BA.  

Since the process is completely automated, it seems reasonable to have some hours to wait for test cases 

optimizations (compared to the human effort that would be necessary to reach the same mutation score).   

Table 3 - Comparison between genetic and bacteriological algorithms for the C# parser 

Algorithm # generation mutation score (%) # mutants executed 

Genetic 200 85 480000 

Bacteriologic 30 96 46375 

 

Other interesting results come out of these new experiments. First the memory avoids troughs in the convergence 

curve and thus speeds up the convergence. A second point is the saving about the tuning effort thanks to the removal 

of several parameters (size of an individual, selection of individuals for reproduction). This makes the bacteriological 

approach more reusable for test generation/optimization problems. Removing parameters also makes the model more 

controllable since there is less random in the algorithm’s evolution. The approach is thus more stable than the genetic 

one.    

Two remarks can be made about this model. First, the final set of all the memorized bacteria may not be minimum, 

for example at the end of the process 9 bacteria were memorized for the C# parser. Second, since the algorithm only 

saves the best bacterium from generation to the other, it may miss some information that is present only in weaker 

bacteria. The minimization can be done in a separate phase after the algorithm has been ran. This step consists in 

building a boolean matrix which rows are the test cases and the columns the mutants. A 1 in the matrix means that the 



test case kills the mutant, and a 0 means that it does not. This matrix is called the coverage matrix of the mutants by 

the test cases. This matrix can be minimized to remove redundant information: for example, if the set of mutants 

killed by a test case is included in the set of another test case, then remove the first test case. This minimization 

minimizes the result set of test cases. 

Now looking at the loss of information due to the memorization of the only best bacteria, a solution could consist 

in taking a bacterium in the memory set and reinserting it in the new population. For example, one could decide to do 

this when the mutation score does not improve any more. 

The new results show that the adaptations that had been detected as necessary at the end of section 4.3 were 

actually good heuristics. These observations leaded towards a new model, called the bacteriological model, based 

more on an adaptive approach than on the optimization approach. This model seems more stable and reusable.  

More work is going on about this algorithm. In particular, the impact of the different parameters on the evolution 

of the fitness value and on the convergence speed is carefully studied. Another parameter, called memorization 

threshold, is also introduced, which defines a fitness threshold value above which a bacterium can be memorized. 

Indeed, as it is now, if a bacterium is good enough to improve the solution set, it is memorized. The idea with the 

memorization threshold is to wait until the bacterium’s fitness reaches the threshold before memorizing it. In that 

way, better bacteria are memorized, and the final solution set contains fewer bacteria for the same fitness.  

6. Related work 

When the studies presented in this paper have been performed, no published work existed on mutation operators 

specific to OO programs and generic enough to be applied on several languages. Since then, in [18], the authors 

proposed specific operators to validate inter-class test cases. This work introduces original operators and also 

synthesises operators proposed in other work [19]. The authors of [20] also propose OO-specific mutation operators 

dedicated to the Java language.  

Though it was not the primary goal of this work, one issue had to be solved during this study: how can mutation 

testing be used on a larger scale than unit testing? The chosen solution is a very pragmatic one, and is not a general 

work on the subject. Several other works have tackled the issue of mutation for other purposes than unit testing, for 

example interface mutation. Interface mutation has been studied to validate the efficiency of test cases for integration 

of component-based systems. Most component models present the component as a black-box with a public (white-



box) interface. In [21] Ghosh and Mathur propose a set mutation operators that can be applied for methods proposed 

in a component’s interface. The operators of [21] are dedicated to CORBA components, and this paper proposes a 

comparison, in terms of fault revealing power, between interface mutation and control-flow criteria. In [22], interface 

mutation is used to validate integration testing for EJB components. 

Several works have studied genetic algorithms to automatically generate software test data. All these work actually 

map the problem of test data generation to the problem of function minimization and study genetic algorithms to 

solve this minimization problem. The function that has to be minimized depends on the testing criterion that is 

chosen. 

In [23], Michael et al. present their testing tool GADGET (Genetic Algorithm Data GEneration Tool). They detail 

the modelling of the problem to fit the genetic approach and then give experimental results for several programs. For 

the experiments, the authors use two different genetic algorithms and compare the obtained results random generation 

and an algorithm based on gradient descent to solve the function minimization problem. In each case, the testing 

criterion is based on branch coverage. Random generation is efficient only for small programs. For bigger programs, 

other techniques give better results, and are worthwhile even if more effort is needed to model and tune the models. 

In any case, the classical genetic algorithm gives the best results. 

In [24] Pargas et al. use a fitness function based on the coverage of the dependency control graph. They also built a 

prototype tool, called TGen, to experiment their approach. This tool generates a test data for each test objective 

defined on the DCG. The genetic algorithm gives better results for every six programs that are tested. 

In [25] the authors present a tool that generates test data which cover a given statement, path, or def-use pair. This 

work compares genetic algorithms and random process for the test data generation. 

The major difference between these work and the studies presented in this paper, is that they are interested in 

generating scalar data, whereas method calls on an object are generated in this paper. Actually, genetic algorithms are 

much more appropriate to generate scalar data: in that case, individuals can be modelled as a byte string, and classical 

genetic operators are much more efficient in that case. Whereas, a set of test cases is needed in the context of OO 

testing, each test case being a complex entity (a method or a set of commands) and not just a byte. As it has been 

explained in [26] and in more details in this paper, the genetic model is less efficient for OO testing, and it has to be 

adapted. 



7. Conclusion 

The work presented in this paper tackled the particular issue of automating the improvement of the mutation score 

of an initial test cases set. Two different models for test optimization have been studied. First, the problem has been 

modeled to apply a genetic algorithm to improve an initial set. Two different case studies have been executed with 

this first model. The results of these experiments were deceiving because the test cases quality increased very slowly 

and did not reach very high values. The second, and novel, model, called bacteriological model, simulates the 

bacteriological adaptation phenomenon. Conversely to genetic algorithms, this approach generates test cases instead 

of a set of test cases, and memorizes efficient test cases from one generation to the other. New experiments were 

computed on the same case studies to study the improvement of test cases quality. Results have shown that this 

bacteriological model is promising both for the mutation score and computational expense (the average execution 

time is divided by 10). 
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Appendix A : example for C# 

Figure 12 gives an example of bacterium (or gene) written in C#. This is an example of C# source file that can be 

passed as an input to the C# parser. This file contains 20 nodes from the syntax tree (C# constructs). The figure also 

illustrates the mutation operator. The bold foreach node in the left source file has been chosen for mutation. A new 

source file has been created (right hand-side) in which the node has been replaced by a while node (bold in the right 

source file). 

using System;
namespace Id_1 {

using System;
protected class Id_2 {

[AnAttribute1; AnAttribute2]
public string aField;

public ~Id_2() {} //~Id_2

[AnAttribute1; AnAttribute2]
public Id_2() {} //Id_2

[AnAttribute]
public virtual returnType aMethod (Type1 param1, Type2 param2) ;

[AnAttribute]
static Type aProperty {

get {}
set {

aVariable = aValue + 3;
for (int i=0 ; !Id_6||Id_8!=Id_3 ; i++)
{foreach (nodes n in the_tree)

{anObject.aMethod (param3, param4 );}}
}

}
public returnType1 aMethod2 (Type3 param5) {} //aMethod2

} //Id_2
}

using System;
namespace Id_1 {

using System;
protected class Id_2 {

[AnAttribute1; AnAttribute2]
public string aField;

public ~Id_2() {} //~Id_2

[AnAttribute1; AnAttribute2]
public Id_2() {} //Id_2

[AnAttribute]
public virtual returnType aMethod (Type1 param1, Type2 param2) ;

[AnAttribute]
static Type aProperty {

get {}
set {

aVariable = aValue + 3;
for ( int i=0 ; !Id_6||Id_8!=Id_3 ; i++)
{ while(cond1){

aVariable1++;}}
}

}
public returnType1 aMethod2 (Type3 param5) {} //aMethod2

} //Id_2
}  

Figure 12 - example of a bacterium (or a gene) for C# parser 

Appendix B: example for Eiffel 



class
UNIT_TEST_EXAMPLE

inherit
EUNIT_TESTCASE

feature -- Support
date:P_DATE;

set_up is
do

!!date.make (10)
end

feature -- Tests
test_comparison is

local date1:P_DATE;
do  

!!date1;
date.set(1999,7,5);
date1.set(1998,7,5);

assert(date1 < date);
end 

end – UNIT_TEST_EXAMPLE

class
UNIT_TEST_EXAMPLE

inherit
EUNIT_TESTCASE

feature -- Support
date:P_DATE;

set_up is
do

!!date.make (10)
end

feature -- Tests
test_comparison is

local date1:P_DATE;
do  

!!date1;
date.set(1998,7,5);
date1.set(1998,7,5);

assert(date1 < date);
end 

end – UNIT_TEST_EXAMPLE

class
UNIT_TEST_EXAMPLE

inherit
EUNIT_TESTCASE

feature -- Support
date:P_DATE;

set_up is
do

!!date.make (10)
end

feature -- Tests
test_comparison is

local date1:P_DATE;
do  

!!date1;
date.set(1999,7,5);
date1.set(1998,7,5);

assert(date1 < date);
end 

end – UNIT_TEST_EXAMPLE

class
UNIT_TEST_EXAMPLE

inherit
EUNIT_TESTCASE

feature -- Support
date:P_DATE;

set_up is
do

!!date.make (10)
end

feature -- Tests
test_comparison is

local date1:P_DATE;
do  

!!date1;
date.set(1998,7,5);
date1.set(1998,7,5);

assert(date1 < date);
end 

end – UNIT_TEST_EXAMPLE
 

Figure 13 - Example of a bacterium (or a gene) for the p_date class 

Figure 13 displays a test case example for the p_date class (cf. Figure 6). Here the test case is written in the 

EiffelUnit format (http://w3.one.net/~jweirich/software/eiffelunit/), which is a unit testing framework for Eiffel 

classes and is part of the XUnit framework family. The test case is encapsulated in a class, and the two parts of the 

gene (initialization and method calls, cf section 3.2.b)) are written in two separate methods. The initialization part is 

done by the set_up method, and method calls are in the test_comparison method. The framework always calls 

the set_up method before executing the test method. 

The figure also displays an example of mutation operator application. Here the method call date.set in the test 

case in the left has been chosen for mutation. A new gene has been created on the right of the figure, and the 

parameters of the date.set method have been changed from (1999,7,5) to (1998,7,5). 

 

 

 


