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HOW BIG IS THE IMAGE OF THE GALOIS REPRESENTATIONS ATTACHED TO CM ELLIPTIC CURVES?

FRANCESCO CAMPAGNA AND RICCARDO PENGO A . Using an analogue of Serre's open image theorem for elliptic curves with complex multiplication, one can associate to each CM elliptic curve de ned over a number eld a natural number I ( / ) which describes how big the image of the Galois representation associated to is. We show how one can compute I ( / ), using a closed formula that we obtain from the classical theory of complex multiplication.

I

Fix an algebraic closure Q of the eld of rational numbers Q. Let be an elliptic curve de ned over a number eld ⊆ Q, and let:

:

→ Aut Z ( tors ) (1 
) be the representation of the absolute Galois group := Gal( / ) associated to its action on the torsion points tors := ( ) tors of the elliptic curve .

If does not have complex multiplication (CM), i.e. End ( ) Z, Serre's open image theorem [19, Théorème 3] implies that the index I ( / ) := |Aut Z ( tors ) : ( )| is nite. One is naturally led to investigate the dependence of I ( / ) on and . For instance, one can ask whether there exists an explicit, closed formula for I ( / ), whose terms can be e ectively computed starting from a Weierstraß equation of . At the time of writing, and to the best of the authors' knowledge, no such formula is available in the literature. The previous question can then be weakened, by asking whether there exists an upper bound for I ( / ), which can be e ectively computed in terms of . An a rmative answer to this second question has been provided by Lombardo in [START_REF] Lombardo | Bounds for Serre's open image theorem for elliptic curves over number elds[END_REF]. In fact, it has even been conjectured that there should exist such an upper bound which does not depend on , but only on the eld of de nition . This conjecture is explicitly mentioned for = Q in the introduction to the recent work of Rouse, Sutherland and Zureick-Brown [START_REF] Rouse | ℓ-adic images of Galois for elliptic curves over Q[END_REF], and is known to hold true under the assumption of Serre's uniformity conjecture, by previous work of Zywina (see [26,Theorem 1.4]).

On the other hand, if has complex multiplication by an order O in an imaginary quadratic eld , i.e. End ( ) O, the index of the image of inside Aut Z ( tors ) is in nite. Nevertheless, as we recall in Section 2, one can formulate an analogue of Serre's open image theorem for , by replacing Aut Z ( tors ) with a smaller subgroup G( / ) ⊆ Aut Z ( tors ), explicitly de ned in [START_REF] Cohen | A course in computational algebraic number theory[END_REF], which is closed and of in nite index inside Aut Z ( tors ). As a consequence, the index I ( / ) := |G( / ) : ( )| is nite, and, as above, one can ask whether it can be expressed by means of an explicit and closed formula. The main goal of this paper is to show how to use the classical theory of complex multiplication to give the following a rmative answer to this question. Theorem 1.1. Let O be an order in an imaginary quadratic eld ⊆ Q. Let be an elliptic curve that has complex multiplication by O and is de ned over a number eld ⊆ Q. Denote by ab ⊆ Q the maximal abelian extension of contained in Q, and by ⊆ Q and ab ⊆ Q the composita of with and ab respectively. Then:

I ( / ) = [( ) ∩ ab : O ] • |O × | [ ( tors ) : ab ] (2) 
where O ⊆ ab is the ring class eld of relative to the order O (see [9, § 9]), and ( tors ) ⊆ Q is the eld obtained by adjoining to all the coordinates of all the points lying in tors .

Note that the right-hand side of (2) makes sense because the extension ⊆ O is abelian, and, whenever End ( ) O, one knows that ab ⊆ ( tors ) [5, § 4.1 and Remark 3.8], and O = ( ( )) ⊆ [9, Theorem 11.1], where ( ) ∈ denotes the -invariant of the elliptic curve . Moreover, the classical theory of complex multiplication implies that the degree of the extension ab ⊆ ( tors ) is nite and divides |O × |. We explain this in more detail in Section 3, which is mainly devoted to the proof of Theorem 1.1.

As an immediate consequence of Theorem 1.1, one has the divisibility:

I ( / ) [( ) ∩ ab : O ] • |O × | (3) 
which shows that I ( / ) can be bounded solely in terms of , for every CM elliptic curve / . This improves the upper bounds for I ( / ) previously proved by Lombardo [START_REF] Lombardo | Galois representations attached to abelian varieties of CM type[END_REF]Theorem 6.6] and Bourdon and Clark [3, Corollary 1.5]. Moreover, Theorem 1.1 applied to any elliptic curve /Q which has complex multiplication by an imaginary quadratic order O shows that

I ( /Q) = |O × |. In the case O = Z[ ],
this strengthens the conclusion of [START_REF] Lozano-Robledo | Galois representations attached to elliptic curves with complex multiplication[END_REF]Theorem 1.3].

The foregoing discussion shows that I ( / ) is very well understood in the CM case. However, it may not appear immediately clear how to apply (2) to compute I ( / ) in concrete examples. We explain how to do so in Section 4. In fact, after rewriting (2) appropriately (see Proposition 4.1), we obtain an algorithm that takes as inputs a number eld and a CM elliptic curve / , and outputs I ( / ). More precisely, we rephrase Equation ( 2) in terms of a nite extension ⊇ such that ( tors ) = ab . We prove in Proposition 4.2 that one can always take = ( [ ]) to be the -division eld generated by the coordinates of the points ∈ [ ] belonging to the -torsion subgroup:

[ ] := ∈ ker ( ) [ ] ---→ ( )
where ⊆ O is any ideal such that |Z/( ∩ Z)| > max(2, |O × |/2), and [•] : O -→ ∼ End ( ) is the normalised isomorphism described in Lemma 2.1. In practice, if ( ) ≠ 0 one usually takes = ( [START_REF] Bourdon | Torsion points and Galois representations on CM elliptic curves[END_REF]) in order to ease the computational burden. We devote Section 5 to the application of this algorithm to some explicit examples of elliptic curves that have complex multiplication by imaginary quadratic orders O of class number two.

A S ' CM

Let be an elliptic curve de ned over a number eld ⊆ Q. Suppose now that End ( ) Z. Then the endomorphism ring End ( ) can be canonically identi ed with an order inside an imaginary quadratic eld, as the following classical lemma shows. Lemma 2.1. Let be a number eld, and / be an elliptic curve such that End ( ) Z, where denotes a xed algebraic closure of . Then, there exists an imaginary quadratic eld and an order O ⊆ such that End ( ) O. Moreover, for each embedding : ↩→ , there exists a unique isomorphism: 

[•] , : O -→ ∼ End ( ) such that [ ] * , ( ) = ( ) •
( ) ⊆ Aut O ( tors ) =: G( / ) (4) 
where G( / ) is an abelian group canonically isomorphic to O × , the unit group of the pro nite completion

O := lim ← -- (O/ O).
In particular, the extension ⊆ ( tors ) is abelian. Note also that Aut O ( tors ) is closed inside Aut Z ( tors ), since we have:

Aut O ( tors ) = ∈N res -1 (Aut O ( [ ]))
where res : Aut Z ( tors ) → Aut Z ( [ ]) denotes the natural restriction map. On the other hand, Aut O ( tors ) is not open inside Aut Z ( tors ) GL 2 ( Z), because the latter does not contain any abelian subgroup of nite index. However, the subgroup ( ) is open in Aut O ( tors ), as shown in [19, § 4.5] using the classical theorems of complex multiplication. Since Aut O ( tors ) O × is a pro nite group, this in particular implies that the index of ( ) inside Aut O ( tors ) is nite. We can regard this result as an analogue of Serre's open image theorem for those CM elliptic curves whose eld of de nition contains the eld .

Assume now that the elliptic curve / satis es End ( ) Z and End ( ) O, for some order O inside an imaginary quadratic eld . Again by [20, Chapter II, Proposition 30], under these assumptions we must have . Since not all the geometric endomorphisms of are de ned over the base eld, in this case the Galois group does not respect the O-module structure on tors . More precisely, since we xed an embedding O ⊆ ⊆ Q = , there exists a unique isomorphism [•] : O -→ ∼ End ( ) such that for every ∈ O and every invariant di erential on the elliptic curve , the equality [ ] * ( ) = holds. then an automorphism ∈ acts on [ ] ( ) as:

( [ ] ( )) = [ ( )] ( ( )) (5) 
as follows from [22, Chapter II, Theorem 2.2]. We then see that for every ∈ and each xed ∈ restricting to the unique non-trivial element in Gal( / ), exactly one among and acts O-linearly on tors . We deduce that:

( ) ⊆ Aut O ( tors ), ( ) := G( / ) (6) 
and one can easily show that the group G( / ) does not actually depend on , thus justifying the notation. Indeed, if both , ∈ restrict to the unique non-trivial element of Gal( / ), one has that ∈ Gal( / ), hence ( ) ∈ Aut O ( tors ), which shows that Aut O ( tors ), ( ) = Aut O ( tors ), ( ) as wanted. Moreover, ( ) normalises Aut O ( tors ), as follows from ( 5) and the fact that ( ) 2 ∈ Aut O ( tors ). Hence, we see

that Aut O ( tors ) is a normal subgroup of G( / ) with index |G( / ) : Aut O ( tors )| = 2. As a consequence, G( / ) is closed inside Aut Z ( tors )
, and so it is a pro nite group. On the other hand, G( / ) is not open inside Aut Z ( tors ), because it contains the abelian group Aut O ( tors ) as a nite-index subgroup. Thus, ( ) cannot be open inside Aut Z ( tors ). Nevertheless, ( ) is open inside the closed subgroup G( / ), as the following lemma shows. ) is an open subgroup of ( ) and we conclude that the latter is open in G( / ). In particular, ( ) is a closed subgroup of nite index inside G( / ).

To prove the equality of indices, we use the fact that ⊆ ( tors ), by [START_REF] Bourdon | Torsion points on CM elliptic curves over real number elds[END_REF]Lemma 3.15]. Since induces an injective Galois representation Gal( ( tors )/ ) ↩→ G( / ), we have | ( ) : ( )| = 2. Now, the computation:

|G( / ) : ( )| = 1 2 |G( / ) : ( )| = |Aut O ( tors ) : ( )|
allows us to conclude.

We summarise our discussion so far. Given a number eld and an elliptic curve / with complex multiplication by an order O in an imaginary quadratic eld , we de ne, following ( 4) and ( 6):

G( / ) := Aut O ( tors ) if ⊆ , Aut O ( tors ), ( ) if (7) 
where, if , we let ∈ be any automorphism that restricts to the unique non-trivial element of Gal( / ). Then, in the previous discussion, we have shown that G( / ) is a pro nite group, which contains ( ) as an open subgroup. Moreover, if we de ne the CM index I ( / ) to be:

I ( / ) := |G( / ) : ( )| (8) 
then by Lemma 2.2 we have that I ( / ) = I ( / ) is nite.

A

The aim of this section is to provide a proof of Theorem 1.1. We place ourselves in the setting of the theorem, by xing an order O inside an imaginary quadratic eld ⊆ Q and an elliptic curve which has complex multiplication by O and is de ned over a number eld ⊆ Q. We explained in Lemma 2.2 that I ( / ) = I ( / ), hence we will assume without loss of generality that ⊆ . This in particular implies that O ⊆ , where, as in Theorem 1.1, O denotes the ring class eld of relative to the order O.

The formula (2) appearing in Theorem 1.1 is a byproduct of the rst main theorem of complex multiplication (see [START_REF] Lang | Elliptic functions[END_REF]Chapter 10,Theorem 8]). The latter asserts the existence of a unique continuous group homomorphism : A × → × such that, for every ∈ A × and every complex uniformisation : C (C) with Λ := ker( ) ⊆ , the following diagram:

/Λ /Λ tors tors ( ( ) N / ( -1 ))• [ , ]
commutes. Here N / : A × → A × denotes the idelic norm map, [•, ] : A × Gal( ab / ) denotes the global Artin map, and the upper horizontal arrow is given by the idelic multiplication map (see [11, Page 100]). In particular, the action of the idèle ( ) N / ( -1 ) ∈ A × on the set of lattices contained in , described in [11, Chapter 8, Theorem 10], xes Λ. Since Λ is an invertible fractional ideal of O, this implies that ( ) N / ( -1 ) xes also O. Thus, the nite idèle ( ( ) N / ( -1 )) n lies in the subgroup O × ⊆ A × . Hence, the association ↦ → ( ( ) N / ( -1 )) n de nes a continuous group homomorphism : A × → O × , which makes the following diagram:

A × O × Gal( ( tors )/ ) Aut O ( tors ) [•, ] ( tors ) ∼ (9) 
commute. We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. De ne to be the surjective group homomorphism:

: Aut O ( tors ) O × Gal( ab / O ) O where O : O × Gal( ab / O ) is the composition of the natural embedding O × ↩→ A × with the map A × ab given by ↦ → [ -1 , ].
It is easy to show that ts in a short exact sequence:

1 → Aut ( ) → Aut O ( tors ) --→ Gal( ab / O ) → 1 (10) because ker( O ) = ker([•, ]) ∩ O × = × ∩ O × = O × .
Then, we can form the following square:

Gal( ( tors )/ ) Aut O ( tors ) Gal( ab / ∩ ab ) Gal( ab / O ) (11) 
where the map on the left is de ned by the composition:

Gal( ( tors )/ ) Gal( ab / ) -→ ∼ Gal( ab / ∩ ab )
of a restriction map and a natural isomorphism coming from Galois theory. We claim that (11) commutes. Indeed, extending [START_REF] Lang | Elliptic functions[END_REF] by diagram [START_REF] Cox | Primes of the form 2 + 2[END_REF] gives the following square:

A × O × Gal( ab / ∩ ab ) Gal( ab / O ) [•, ] ab O ( 12 
)
which commutes because, for every ∈ A × , one has: Gal( ( tors )/ ab ) Gal( ( tors )/ ) Gal( ab / ∩ ab )

O ( ( )) = [( ( ) • N / ( -1 )) -1 , ] = [N / ( ), ] = ([ , ] ab ) using the fact that × • ( ⊗ Q R) × ⊆ ker([•, ]),
1 1 Aut ( ) Aut O ( tors ) Gal( ab / O ) 1 (11) (13) 
whose rows are exact. This shows in particular that the degree of the extension ab ⊆ ( tors ) is nite and divides |Aut ( )| = |O × |. Finally, the snake lemma gives:

I ( / ) = |coker( )| = |coker( )| • |coker( )| = [ ∩ ab : O ] • |O × | [ ( tors ) :
ab ] which allows us to conclude.

An immediate consequence of Theorem 1.1 is the following improvement of the bounds provided by [START_REF] Lombardo | Galois representations attached to abelian varieties of CM type[END_REF]Theorem 6.6] and [3, Corollary 1.5].

Corollary 3.1. Let O be an order inside an imaginary quadratic eld . For every number eld ⊆ Q, and every elliptic curve / with complex multiplication by O, the index

I ( / ) divides [( ) ∩ ab : O ] • |O × |.
Moreover, Theorem 1.1 can be rephrased in a simpler fashion, if one assumes that |O × | = 2, which holds for every order O of discriminant Δ O < -4.

Corollary 3.2. Let O be an order inside an imaginary quadratic eld , and suppose that Δ O < -4. Let be an elliptic curve with complex multiplication by O, de ned over a number eld ⊆ Q. Then, the following equality:

I ( / ) [( ) ∩ ab : O ] = 2, if ( tors ) = ab 1, otherwise (14) 
holds.

The dichotomy provided by [START_REF] Lozano-Robledo | Galois representations attached to elliptic curves with complex multiplication[END_REF] Remark 3.3. Specializing Theorem 1.1 to = Q( ( )) we see that I ( / ) ∈ {1, |O × |}. However, this does not allow to describe explicitly the image ( ) as a subgroup of Aut Z ( tors ) GL 2 ( Z), since the latter can vary amongst in nitely many possible subgroups, as it happens already for = Q (see [START_REF] Campagna | Entanglement in the family of division elds of elliptic curves with complex multiplication[END_REF]Theorem 6.3]). On the other hand, the image of ( ) under the natural projections GL 2 ( Z) GL 2 (Z ℓ ) for ℓ ∈ N a prime, belongs, up to conjugation, to a nite list of subgroups which has been explicitly determined by Lozano-Robledo [START_REF] Lozano-Robledo | Galois representations attached to elliptic curves with complex multiplication[END_REF].

To conclude this section, we observe that Theorem 1.1 implies that the index I ( / ) is invariant under appropriate twisting of the elliptic curve , as speci ed by the following corollary. Corollary 3.4. Let O be an order inside an imaginary quadratic eld , and set := |O × |. Let / be an elliptic curve de ned over a number eld ⊆ Q such that End ( ) O. Suppose that is the twist of another elliptic curve / by √ , for some ∈ × such that := ( √ ) ⊆ ab . Then I ( / ) = I ( / ).

Proof. First of all, note that the extension ⊆ is well de ned, because we have the inclusion ⊆ , by the hypothesis End ( ) O. Thus, the group of -th roots of unity O × is also contained in . Then, one has:

( ) = ( ) • ( ) (15) 
for every ∈ , where : → G( / ) O × and : → G( / ) O × are the Galois representations associated to and . Moreover, :

→ O × ⊆ O × is the Kummer character attached to the extension ⊆ , de ned by the equality ( √ ) = ( ) • √ for every ∈ . Now, for every ∈ Gal(Q/ ( tors )), we have that ( ) = ( ) = 1, hence [START_REF] Neukirch | Algebraic Number Theory[END_REF] implies that ( ) = 1. Thus, the inclusion ( tors ) ⊆ ( tors ) holds. On the other hand, if ∈ Gal(Q/ ( tors )), the hypothesis ⊆ ab and the inclusion ab ⊆ ( tors ) imply that xes , and thus that ( ) = ( ) = 1. Therefore, [START_REF] Neukirch | Algebraic Number Theory[END_REF] gives that ( ) = 1. Hence, the opposite inclusion ( tors ) ⊆ ( tors ) holds. Thus, we have that ( tors ) = ( tors ) = ( tors ), where the last equality follows from the hypothesis ⊆ ab and the inclusion ab ⊆ ( tors ). Finally, using Theorem 1.1, one gets that I ( / ) = I ( / ), as we wanted to prove.

H

In this section we show how one can concretely compute the index I ( / ) for any given CM elliptic curve de ned over a number eld . Thanks to Lemma 2.2, we can and will assume throughout this section, without loss of generality, that the number eld contains the CM eld .

The starting point of our discussion is the formula (2) provided by Theorem 1.1. Let us observe that (2), albeit completely explicit, involves the degree of the nite extension ab ⊆ ( tors ) which a priori can not be implemented in a computer, because ab is an in nite algebraic extension of Q. Nevertheless, the following result shows how one can rewrite (2) as an equality involving only nite abelian groups and number elds. Proposition 4.1. Let O be an order inside an imaginary quadratic eld ⊆ Q. Fix a number eld ⊆ Q and an elliptic curve / such that End ( ) O. Then, we have:

I ( / ) = |O × | • [ ∩ ab : ] |Pic(O)| • [ : ] (16) 
for every nite extension ⊆ such that ( tors ) = ab is the compositum of and ab inside Q.

Proof. Combining Theorem 1.1 with the equality: Moreover, once S.2 has been carried out, and the extension ⊆ is known, one can deal with the last step S.3 in (at least) two di erent ways:

• one can use the isomorphism:

Gal( ∩ ab / ) Gal( / ) ab ( 17 
)
where ⊆ ⊆ denotes the maximal sub-extension of ⊆ which is Galois over and the notation ab stands for the abelianization of a nite group (i.e. its maximal abelian quotient). In order to compute the right hand side of [START_REF] Rouse | ℓ-adic images of Galois for elliptic curves over Q[END_REF], note that, if := Gal( / ) denotes the Galois group of the Galois closure of the extension ⊆ , and ⊆ denotes the normal closure of the subgroup := Gal( / ) inside , then we have Gal( / ) / . Since both and can be computed as subgroups of the symmetric group on = [ : ] letters (see [7, § 6.3]), the abelian group ( / ) ab can also be explicitly computed, for instance using the functions N C and M A in GAP [START_REF]GAP -Groups[END_REF];

• one can compute [ ∩ ab : ] as the index of the norm group T ( / ) ⊆ Cl ( ), where := / is the relative discriminant of ⊆ , and Cl ( ) denotes the ray class group of modulo (see [START_REF] Neukirch | Algebraic Number Theory[END_REF]Chapter VI,[START_REF] Cohen | A course in computational algebraic number theory[END_REF]). This norm group T ( / ) can be computed using an adaptation of [START_REF] Cohen | Advanced topics in computational number theory[END_REF]Algorithm 4.4.5] to the non-Galois case. More precisely:

in the fourth step of the aforementioned algorithm, one can proceed even if the polynomials do not have the same degree, by taking as the greatest common divisor of their degrees. Indeed, T ( / ) is by de nition generated by the classes of ( / ) , where := ∩ O and varies amongst the prime ideals of O coprime with • O , and the inertia degrees ( / ) correspond exactly to the degrees of the polynomials mentioned above; -in the second step of the same algorithm, one should always output the matrix even if det( ) ≠

[ : ]. In fact, det( ) will be precisely the index of the norm group inside Cl ( ), i.e. the equality [ ∩ ab : ] = det( ) holds. Note that this modi cation does indeed work (assuming the validity of the Generalised Riemann Hypothesis), because T ( / ) = T ( ∩ ab / ) by [1, Chapter XIV, Theorem 7]. Thus, in order to have a complete procedure for the computation of the CM index I ( / ), we only need to prove that one can always nd a nite extension ⊆ such that ( tors ) = ab as in S.2 . The next proposition shows that one can take to be essentially any division eld. Proof. The inclusion ab ⊆ ( tors ) is clear, and the other containment can be proved as in [5, Proposition 5.7]. More precisely, x an embedding Q ↩→ C and a complex uniformisation : C (C), such that ker( ) = Λ for some lattice Λ ⊆ . Then [START_REF] Shimura | Introduction to the arithmetic theory of automorphic functions[END_REF]Theorem 5.4] shows that, for every eld automorphism : C → C which xes ab , there exists a complex uniformisation : C (C) such that ( ( )) = ( ) for every ∈ . This implies in particular that there exists ∈ O × such that ( ) = [ ] ( ) for every ∈ tors . If now xes also the division eld = ( [ ]), one must have = 1 by our assumptions on . We conclude that xes the entire ( tors ), which in turn implies that ( tors ) ⊆ ab as we wanted to show.

Using Proposition 4.2, we see that S.1 , S.2 and S.3 indeed describe a procedure to compute the index I ( / ) for any CM elliptic curve de ned over any number eld . In practice, in S.2 it is convenient to choose a "small" division eld = ( [ ]), for instance by using = 3O (when ( ) ≠ 0), which gives [ : ] ≤ 8. However, if one already knows an elliptic curve / such that ( ) = ( ) and ( tors ) = ab , then the subsequent Proposition 4.3, whose proof is analogous to that of Corollary 3.4, shows that one can take to be a Kummer extension of with degree [ : ] ≤ |O × | ≤ 6. Since computations involving division elds of elliptic curves are typically hard, taking such an is certainly more advantageous in this situation.

Proposition 4.3. Let O be an order inside an imaginary quadratic eld , and set := |O × |. Let / be an elliptic curve de ned over a number eld ⊆ Q such that End ( ) O. Suppose that there exists another elliptic curve / such that ( tors ) = ab , and that is the twist of by √ , for some ∈ × . Then ( tors ) = ab , where = ( √ ).

Proof. If ∈ Gal(Q/ ( tors )), we see from the twisting formula (15) that ( ) = ( ) = ( ) = 1, hence ( tors ) ⊆ ( tors ). Vice versa, if ∈ Gal(Q/ ( tors )) then ( ) = 1 and ( ) = ( -1 ) ∈ O × . However, [START_REF] Lombardo | Galois representations attached to abelian varieties of CM type[END_REF] shows that ( ) ∩ O × = {1}, because ( tors ) = ab by assumption. Hence ( ) = ( ) = 1, which allows us to conclude that ( tors ) = ( tors ) = ab , as we wanted to show.

Remark 4.4. Note that the condition ( tors ) = ab is invariant under base change along a nite extension ⊆ . In particular, if Pic(O) = {1}, one can take as any base change to of an elliptic curve / which has complex multiplication by O. On the other hand, if Pic(O) ≠ {1}, constructing such an elliptic curve is a non-trivial matter, as we will see in the next section.

E

We now want to provide some examples of index computations for CM elliptic curves de ned over the corresponding eld of moduli Q( ( )). A way of constructing such curves is to consider an elliptic curve E de ned over the function eld Q( ), with -invariant (E) = and discriminant Δ E ∈ Q( ), and then specialise the parameter to = 0 for some CM -invariant 0 ∈ Q such that Δ E ( 0 ) ≠ 0. When we want to emphasize that the specialization at 0 of the elliptic curve E has complex multiplication by some order O, we say that 0 ∈ Q is relative to the order O. With a view towards doing explicit calculations in the mostly popular computer algebra systems in computational number theory, we consider and compare the following choices of E:

(1) the curve: E SAGE : 2 = 3 + (-3 2 + 5184 ) -2 3 + 6912 2 -5971968 implemented in SageMath [START_REF]SageMath, the Sage Mathematics Software System (Version 9[END_REF] under the command E C _ _ ( ,F ). We warn the reader that, without setting the second optional parameter equal to F , the command E C _ _ , applied to a rational number 0 ∈ Q, returns an elliptic curve /Q which hasinvariant ( ) = 0 , and minimal conductor among all its twists. This curve, in general, can be di erent from the specialization of E SAGE at = 0 ;

(2) the curve:

E PARI : 2 = 3 + (-3 2 + 5184 ) + 2 3 -6912 2 + 5971968 implemented in PARI/GP [START_REF][END_REF] under the command ( ); (3) the curve: [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF] under the command E C F I ( ). The above families are clearly all de ned over Q( ), and their singular specializations occur only at the values 0 ∈ {0, 1728}. Moreover, it is easily veri ed that E PARI and E SAGE are isomorphic over Q( , √ -1)

E MAGMA : 2 + = 3 - 36 -1728 - 1 -1728 implemented in MAGMA
while E SAGE and E MAGMA are isomorphic over Q , 1728- 3 . Now, for every CM -invariant 0 ∈ Q relative to an order of class number 2, we want to compute the index I ( 0 /Q( 0 )) where 0 is the ber over 0 in any of the three families described above (one can check that all these bers are non-singular). First of all, we show that for every CM invariant 0 ∈ Q the CM bers 0 in the above families have the same index I ( 0 /Q( 0 )). Fix now a CM -invariant 0 ∈ Q \ {0, 1728} relative to an order O. Let moreover ( 0 , 0 , 0 ) be the specialisations of the families (E SAGE , E PARI , E MAGMA ) to = 0 . If O = ( 0 ) denotes the ring class eld relative to the order O then by Lemma 2.2 we have I ( 0 /Q( 0 )) = I ( 0 / O ) and similarly with the other two elliptic curves, so we assume that everything is base-changed to the ring class eld. Since by the discussion above 0 and 0 are twisted over O by = -1 and O ( √ -1) ⊆ ab (being the compositum of two abelian extensions of ), Corollary 3.4 allows us to conclude that I ( 0 /Q( 0 )) = I ( 0 /Q( 0 )). Furthermore, the elliptic curve E MAGMA admits a short Weierstraß form:

2 = 3 - 27 -1728 + 54 -1728
whose discriminant is given by Δ := 6 12 • 2 /( -1728) 3 . Thus, we see that:

O ( 0 -1728) = O ( Δ 0 ) ⊆ O ( 0 [2])
for every CM -invariant 0 ∈ Q, relative to the order O. Since O ( 0 [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]) is generated over O by the Weber functions evaluated at 2-torsion points, we have that O ( 0 [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]) ⊆ ab (see [START_REF] Campagna | Entanglement in the family of division elds of elliptic curves with complex multiplication[END_REF]Theorem 4.7]). Thus O (1728 -0 )/3 is abelian over , and Corollary 3.4 shows that I ( 0 /Q( 0 )) = I ( 0 /Q( 0 )). Hence, we can conclude that the three families E PARI , E SAGE and E MAGMA , when specialised to the same CM -invariant, have the same CM index. We will use in the rest of the paper, the elliptic curves 0 obtained by specialising the family E SAGE . Note that, once the imaginary quadratic order O is xed, the index I ( 0 /Q( 0 )) does not depend on the particular -invariant 0 ∈ Q relative to O to which one specializes the family E SAGE , because all these -invariants are conjugate under the action of the absolute Galois group Gal(Q/Q) (see [START_REF] Cox | Primes of the form 2 + 2[END_REF]Proposition 13.2]).

Let us turn now to the computation of the index I ( 0 /Q( 0 )), where 0 ∈ Q is a CM -invariant relative to an order of class number 2. The procedure described in Section 4 simpli es considerably in this case. Indeed, in general, for any imaginary quadratic order O ≠ Z 1+ √ -3 2 and any elliptic curve with complex multiplication by O and de ned over the ring class eld O , one has that:

I ( / O ) = 2 [ O ( [3]) : O ( [3]) ∩ ab ] (18) 
as one can see by combining Proposition 4.1 and Proposition 4.2. Moreover, since:

[ O ( [3]) : O ( [3]) ∩ ab ] = 1, if the extension ⊆ O ( [3]
) is abelian; 2, otherwise (as follows from [START_REF]SageMath, the Sage Mathematics Software System (Version 9[END_REF], since I ( / O ) ∈ N), we see, using Lemma 2.2, that the computation of I ( 0 /Q( 0 )) reduces to understanding whether or not the 3-division eld of 0 is an abelian extension of . We implemented this computation in S M (importing also the functions and from P /G ), as shown in Algorithm 5.1. We ran this algorithm for all the -invariants relative to orders O of class number 2, whose discriminants Δ O are given by the following list: 

Δ O ∈ { -15, - 20 
Input: D = Δ O , the discriminant of O. . . . _ _ _ R.< > = P R (QQ) K.<D> = N F ( ^2-D ) F.< > = K. ( _ _ (D )) E = E C _ _ ( ,F) F .< > = N F ( _ _ ( (F. _ ()). (),{' ' : }) ) E = E. _ (F. (F )[0]) F3.< 3> = E . _ (3) F3 .< 3 > = N F ( _ _ ( (F3. _ ()). (),{' ' : }) ) F3 .< 3 > = F3 . (K. (F3 )[0]) F3 . _ _ () == T : I = . ( (' ^2 + '+ (-D )). () , (F3 . _ ())) + 1 : I = 1 
Output: I = I ( 0 /Q( 0 )), for any CM -invariant 0 relative to the order O A 5.1. S M code to compute the index I ( 0 /Q( 0 )), relative to the elliptic curve 0 obtained by specialising the family E SAGE to a CM -invariant 0 .

which can be obtained either by applying the algorithms described in [START_REF] Watkins | Class numbers of imaginary quadratic elds[END_REF] 

/Q( 0 )) = 1 unless Δ O = -15, in which case I ( 0 /Q( 0 )) = 2.
To conclude, consider the order O = Z[ √ -5] of discriminant Δ O = -20, such that I ( 0 /Q( 0 )) = 1 for every CM -invariant 0 ∈ Q relative to O. We now construct, by a suitable twist of := 0 over the Hilbert class eld := O , another elliptic curve / with complex multiplication by O, with the property that I ( / ) = 2. To do so, we specialize 0 = 282880 √ 5 + 632000, so that := 0 is given by: is obtained by substituting 3 in the right hand side of [START_REF] Serre | Propriétés galoisiennes des points d'ordre ni des courbes elliptiques[END_REF]. It can be checked that the extension ⊆ ( √ ) is not Galois, and in particular not abelian, which is compatible with the fact that I ( /Q( 0 )) = 1.

: 2 = 3 + 29736960(36023 √ 
Thus, the twisted elliptic curve := ( ) , given by the global minimal Weierstraß model:

: 2 - 1 -+ √ -5 + √ 5 2 - 1 + + √ -5 + √ 5 2 = 3 + 2 + 2 - √ 5 -1 + 2 (20) 
has index I ( / ) = 2, as follows from [START_REF]SageMath, the Sage Mathematics Software System (Version 9[END_REF]. Indeed, the rst point of [5, Proposition 5.1] implies that ( [ 3 ]) = 3 , which entails that ( [3]) coincides with the 3-ray class eld of , as can also be checked by direct computation. Note nally that ( tors ) = ab , as follows from Corollary 3.2.

Remark 5.1. The interested reader can nd at [START_REF] Campagna | Finding explicitly a CM elliptic curve with small Galois image[END_REF] a S M notebook in which we implemented the computations carried out to nd the elliptic curve appearing in [START_REF] Shimura | Abelian varieties with complex multiplication and modular functions[END_REF].
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Lemma 2 . 2 .

 22 Let / be an elliptic curve with complex multiplication by an order O in an imaginary quadratic eld , and let := denote the base-change of to the compositum . Then ( ) is open in G( / ), and the following equality: I ( / ) := |G( / ) : ( )| = |Aut O ( tors ) : ( )| =: I ( / ) holds. Proof. Since Aut O ( tors ) is closed and of nite index in G( / ), it is also open in the same group. Moreover, by [19, § 4.5, Corollaire] the inclusion ( ) ⊆ Aut O ( tors ) is open, and clearly ( ) = ( ) and Aut O ( tors ) = Aut O ( tors ). Thus we see that (

  as explained in [1, Chapter IX, Theorem 3], and the functoriality of class eld theory [15, Chapter VI, Proposition 5.2]. Thus (11) commutes, because (12) does, and the vertical maps in the commutative diagram (9) are surjective. Now, (10) and (11) induce the following commutative diagram: 1

  re ects a property of CM elliptic curves introduced by Shimura in [21, Pages 216-218], and studied in [5, § 5]. In particular, Corollary 3.2 generalises [5, Corollary 5.8], which was proved by di erent means.

[-3 2 ,

 2 ( tors ) : ab ] = [ ab : ab ] = [ : ] [ ∩ ab : ∩ ab ] = [ : ] [ ∩ ab : ] [ ∩ ab : ] allows us to conclude, because [ ∩ ab : ] = [ ∩ ab : O ] • |Pic(O)|. Using Proposition 4.1, we can now reduce the computation of I ( / ) to the following steps: S.1 compute |O × | and |Pic(O)|; S.2 nd a nite extension ⊆ such that ( tors ) = ab , and compute [ : ]; S.3 compute [ ∩ ab : ], i.e. the degree of the maximal abelian sub-extension of ⊆ . To achieve S.1 one can use for instance the algorithms described in [7, § 5.3] for the computation of |Pic(O)|, and the fact that |O × | = 2 unless O = Z[ ], for which |O × | = 4, or O = Z 1+ √ for which |O × | = 6.

Proposition 4 . 2 .

 42 Let O be an order inside an imaginary quadratic eld and let / be an elliptic curve de ned over a number eld ⊆ Q such that End ( ) O. Fix an ideal ⊆ O and let := ( [ ]) be the -division eld associated to . Then ( tors ) = ab whenever |Z/( ∩ Z)| > 2 if ( ) ≠ 0, and |Z/( ∩ Z)| > 3 otherwise.

  , -24, -32, -35, -36, -40, -48, -51, -52, -60, -64, -72, -75, -88, -91, -99, -100, -112, -115, -123, -147, -148, -187, -232, -235, -267, -403, -427}

5 - 5 , 3 -

 553 80550) -55826186240(16154216 √ 5 + 36121925)[START_REF] Serre | Propriétés galoisiennes des points d'ordre ni des courbes elliptiques[END_REF] and we follow the procedure described in the proof of[START_REF] Campagna | Entanglement in the family of division elds of elliptic curves with complex multiplication[END_REF] Theorem 5.11].More precisely, observe that= Q( √ -5, ) and 3 • O = 3 • 3 with 3 = Theorem 4.6] one has that 3 = 3 = , where 3 and 3 denote respectively the ray class elds of modulo 3 and 3 . This in particular implies, using [22, Chapter II, Theorem 5.6], that the -coordinates of the points ∈ [ 3 ] ∪ [ 3 ] lie in . Moreover, it follows from [3, Lemma 2.4] that | [ 3 ]| = | [ 3 ]| = 3, which shows that each non-trivial 3 -torsion point has the same -coordinate, and similarly for non-trivial 3 -torsion points. From the factorization: ,3 ( ) = 3•( + 594880 + 59840division polynomial ,3 ∈ [ ], one can verify that 3 := -594880 -59840 + 26048 √ -5 -266816 √ 5 is the -coordinate of all the non-trivial 3 -torsion points. Hence ( [ 3 ])

[

  26] D. Zywina. "Possible indices for the Galois image of elliptic curves over Q". arXiv:1508.07663. (2015) (cit. on p. 1).

  On the other hand, if the elliptic curve has complex multiplication, the image of is not open inside Aut Z ( tors ). However, one can formulate a CM analogue of Serre's open image theorem by replacing Aut Z ( tors ) with an appropriate closed subgroup G( / ) ⊆ Aut Z ( tors ), which we now describe.

	gives rise to the Galois representation	[ ]. The rst action appearing in (1), whereas the action on T ( ) induces another ← --
	Galois representation : isomorphism:	→ Aut Z (T ( )). As done in [19, § 4.1, Remarque (1)], one can construct an : Aut Z (T ( )) -→ ∼ Aut Z ( tors ) = Aut Z ( tors )
	such that	= • . As a consequence, one can indi erently study the Galois representation , as done in
	this paper, or its twin , as done in some of our references.
	If does not have complex multiplication, i.e. if End ( )	End ( )	Z, then the celebrated "open
	image theorem", proved by Serre in [19, Théorème 3], shows that the image of the Galois representation
	is a subgroup of nite index inside Aut Z ( tors ) completion of Z.	GL 2 ( Z), where Z := lim ← --	(Z/ Z) denotes the pro nite

Then, the absolute Galois group naturally acts both on the set tors = lim --→ [ ], and on the adelic Tate module T ( ) := lim

  the classical result [24, Theorem 1], and then applying the class number formula [9, Theorem 7.24]. The results of this computation show that I ( 0

							, and implemented in SageMath
	under the function	.	.	_	. .	_	_	_	_	, or
	by appealing to									
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