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Abstract 1 

The complex pathogenesis of inflammatory bowel disease (IBD) explains the several hurdles 2 

for finding an efficient approach to cure it. Nowadays, therapeutic protocols aim to reduce 3 

inflammation during the hot phase or maintain remission during the cold phase. Nonetheless, 4 

these drugs suffer from severe side effects or poor efficacy due to low bioavailability in the 5 

inflamed region of the intestinal tract. New protocols based on antibodies that target 6 

proinflammatory cytokines are clinically relevant. However, besides being expensive, their 7 

use is associated with a primary nonresponse or a loss of response following a long 8 

administration period. Accordingly, many researchers exploited the physiological changes of 9 

the mucosal barrier for designing nanoparticulate drug delivery systems to target inflamed 10 

tissues. Others exploited biocompatibility and relative affordability of polysaccharides to test 11 

their intrinsic anti-inflammatory and healing properties in IBD models. This critical review 12 

updates state of the art on advances in IBD treatment. Data on using polysaccharide 13 

nanoparticulate drug delivery systems for IBD treatment are reviewed and discussed. 14 

Keywords: Inflammatory bowel disease; Nanoparticles; Drug delivery systems; 15 

Polysaccharides.   16 
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Introduction 1 

Inflammatory bowel disease (IBD) is a broad term used to describe a chronic 2 

inflammatory state that occurs mainly in the colon, although the other portions of the 3 

intestinal tract were also concerned. IBD mainly encompasses two inflammatory conditions, 4 

either ulcerative colitis (UC) or Crohn’s disease (CD). From an anatomical point of view, UC 5 

patients mainly suffer from an inflammation of the rectal and sigmoid colon.
1, 2

 In contrast, 6 

the ileo-caecal area remains the most affected region in CD,
3, 4

 although many cases have also 7 

been reported in the small intestine.
5
 Another aspect that characterizes CD is the skip lesions, 8 

where the affected region alternates between inflamed and non-inflamed segments.
6
 From a 9 

histological point of view, UC is a superficial inflammation, whereases CD is transmural, 10 

affecting all the layers of the colon, which makes the complications more severe.
7, 8

  11 

Despite the tremendous efforts made to comprehend the pathophysiological state 12 

triggering the occurrence of IBD, the exact etiology remains unclear. Up to date, several 13 

parameters are incriminated as potential causative factors. They can be classified as being 14 

either endogenous or exogenous. Endogenous factors are mainly represented by genetic 15 

predisposition or immunoregulatory disorders. However, several studies suggested that 16 

microbiome dysregulation could also have a considerable impact on the development of 17 

IBD.
9, 10

 Exogenous factors, on the other hand, are linked to exposure to external stress.
11

 The 18 

stress can be environmental (e.g., alcohol, chemicals, drugs, industrial diet style), 19 

psychological (e.g., depression, anxiety), or even microbial through the intestine invasion by 20 

pathogenic bacteria.  21 

With more than 6.8 million people suffering from the complications of IBD at a global 22 

scale,
12

 a curative treatment of this pathology is still missing, and current treatment protocol 23 

aims at relieving acute attacks (e.g., the combination of 5-aminosalicylic acid (5-ASA) and 24 

corticosteroids, TNF-α antibodies) or preventing relapse episodes (e.g., 5-ASA therapy for 25 

UC and corticosteroids for CD). However, the active pharmaceutical ingredients (API) 26 

delivery still rests on conventional drug delivery systems (DDS) such as tablets, capsules, 27 

enemas, or solutions. These formulations have shown several limitations as the yield of the 28 

API in the colonic region is low.
13, 14

 Consequently, working on alternative therapeutic 29 

approaches remains necessary to offer a better treatment protocol and reduce patient 30 

discomfort while diminishing the multiple administrations of medications or the recurrence to 31 

less hospitalization.  32 
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Over the last decade, many researchers have taken advantage of the rapid technological 1 

advances in nanomedicine by designing novel DDS. The DDS aim at enhancing the drug 2 

concentration in the targeted region through the control of API release or cell-specific 3 

targeting strategies.
15

 However, many of these new approaches have failed to circumvent the 4 

several hurdles of the gastro-intestinal (GI) tract microenvironment in IBD-suffering patients. 5 

In this context, nanoparticles composed of polysaccharides showed promising results to 6 

alleviate IBD. They combine the advantages of nanoparticulate systems with intrinsic 7 

biological activities of polysaccharides. On one side, the nanoparticles offer different 8 

functionalities such as mucoadhesion, mucopenetration, passive targeting of inflamed tissues 9 

in the GI tract, and capture by the immune cells (For review articles on nanoparticles used for 10 

IBD, see references
16-22

). On the other hand, polysaccharides exhibit intrinsic biological 11 

activity such as anti-inflammatory, healing, immunomodulation, and regulation of the 12 

intestinal microbiota (For a review article on polysaccharide-based DDS for IBD, see 13 

reference
23

.  14 

In this review, we will first discuss the up-to-date knowledge on pathophysiology of IBD 15 

and its implication in the design of oral DDS. Physiological changes of the gastro-intestinal 16 

tract during active IBD and their implications for designing oral DDS strategies will be 17 

underscored. After that, we will analyze the undergoing research strategies using 18 

nanoparticles and polysaccharides for IBD. Finally, challenges and perspectives in the oral 19 

delivery of nanoparticles and polysaccharides for IBD treatment will be discussed.  20 

1. Overview of the anatomy and physiology of the colon 21 

The colon, or large intestine, constitutes the final part of the GI tract. The colon is 22 

approximately 150 cm in length and is divided into six main segments.
24

 The first segment is 23 

the coecum, where the colon connects to the small intestine. Then comes the ascending colon, 24 

the transverse colon, the descending colon, the sigmoid colon, and finally the rectum. The 25 

appendix is another part of the colon connected to the coecum. Studies identified it as a 26 

component of the immune system.
25

 From a histological point of view, the colon comprises 27 

four layers. The outermost layer that overlooks the intestinal lumen is the mucosa, then 28 

comes the sub-mucosa, the muscularis, and finally the serosa.
26

 Above the colon tissue lays a 29 

thick mucus layer involved in food digestion, immunity, and protects the GI tract from 30 

virulent microbes for example. On the top of the mucus layer lay millions of bacteria which 31 

constitute the gut microbiota.
27

  32 
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Colon histology revealed that its epithelium is arranged in crypts, where different cells are 1 

unequally distributed.
28

 In the basement of the crypts lays the stem cells that differentiate 2 

while migrating up in the crypts to mainly four different types of functional cells (Figure 1).
29

 3 

Enterocytes represent the most abundant cells in the colon epithelium (Figure 1). They are 4 

responsible for nutrient absorption. Goblet cells are responsible for mucus secretion. 5 

Enteroendocrine cells are involved in the secretion of GI hormones. Paneth cells oversee the 6 

secretion of antimicrobial peptides in the colon’s lumen. Antimicrobial peptides protect the 7 

colon microenvironment from bacteria, viruses, fungi, and even cancerous cells. 8 

Antimicrobial peptides play a role in immunomodulation and actively participate in the 9 

immune system.
30

 Microfold cells (M cells) are other types of cells. They are mainly 10 

distributed in the small intestine but can be found in the colon in the gut-associated lymphoid 11 

tissue (GALT) of the Peyer's patches.  12 

 13 

Figure 1: Scheme summarizing the anatomy and physiology in the intestine during a homeostasic state.   14 
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2. Pathophysiology and complications of IBD 1 

The pathophysiology of both UC and CD is not clearly elucidated. At the same time, 2 

many gaps toward the comprehension of these diseases have been filled in the last years. 3 

These fundamental findings opened new avenues for accelerating the race toward developing 4 

new therapeutic protocols. One of the most studied areas in IBD relies on the factors 5 

predisposing its development. These triggers could be either genetic or environmental, as it is 6 

described in Table 1. Following an exposition to one of the previously described genetic or 7 

environmental triggers, the microbial peptides that are typically secreted in the intestinal 8 

lumen translocate in the lamina propria, either through dysfunction of M cells or because of 9 

an impaired barrier function (Figure 2). The barriers’ function impairment also allows the 10 

translocation of luminal bacteria into the lamina propria.
31, 32

 The translocated bacteria 11 

activate the professional immune cells (e.g., dendritic cells, macrophages) that engulf the 12 

pathogens and present their epitopes to CD4 T-cells. Once activated, both CD4 T-cells and 13 

professional immune cells start releasing proinflammatory cytokines that trigger the local and 14 

systemic complications of IBD (Figure 2). Each cytokine is involved in the inflammatory 15 

response by modulating one or more specific functions. Table 2 briefly summarizes the 16 

mechanism of action of the main cytokines implicated in IBD.  17 

IBD can trigger both local and systemic complications. Local complications are a 18 

consequence of the epithelial cells swelling and may differ according to the type of 19 

pathology. UC and CD share some similar local complications such as blood or mucus in the 20 

stool,
33

 perforation of the bowel,
34

 predisposition to colon cancer,
35

 and loss of body weight
36

 21 

due to the disruption of reabsorption of water and nutrients by the intestine. However, there 22 

are some other complications that are typical for each pathology. During a CD episode, the 23 

patient may also encounter an abscess formation,
37

 fistula,
38

 a lymph adenopathy,
39

 and 24 

bowel wall obstruction.
40

 During a UC episode, one can observe a toxic megacolon
41

 as well 25 

as a loss of haustra form.
42

 The high proinflammatory cytokines level in the blood during the 26 

active phase of IBD is responsible for the various systemic complications such as 27 

conjunctivitis,
43

 mouth ulcer,
44

 the presence of an abscess in the liver,
45

 portal vein 28 

thrombosis,
46

 large joint arthritis,
47

 and pyoderma gangrenosum.
48

  29 
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 1 

Figure 2: Pathophysiological process and cytokines productions during an IBD.   2 
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Table 1: Review of the genetic and environmental factors implicated in IBD.  1 

Factors Expression   Pathophysiology Ref 

 

 

 

 

 

Genetic factors 

Autophagic 

dysfunction 

Many autophagy gene variants were linked to IBD, among 

which ATG16L1 (promotes autophagosome formation and 

participates in suppressing Paneth cells) and IRGM (responsible 

for phagosome maturation).  

49
  

Cytokine 

imbalance 

Cytokines are essential in the modulation of the intestinal 

immune system. During an IBD episode, there is an imbalance 

between pro and anti-inflammatory cytokines, which favor the 

progress of the proinflammatory process.  

50, 51
  

Bacterial 

imbalance 

During an IBD episode, bacterial dysbiosis occurs mainly in 

mucosal samples. In that regard, an increase in the abundance of 

certain types of bacteria (e.g., Enterobacteriaceae., 

Pasteurellacaea, and Veillonellaceae) was noticed, 

accompanied by a decrease of other types (e.g., 

Erysipelotrichales, Bacteroidales, and Clostridiales).  

52
 

 

 

 

 

 

 

 

 

 

 

 

 

Environmental 

factors 

 

Diet The dietary habits influence the gut fatty acids equilibrium, 

modifying many parameters such as the pro and anti-

inflammatory cytokines balance, the gut microbiota, and the 

intestinal permeability. For example, a study highlighted that a 

Mediterranean diet is less likely to induce colitis than a western 

diet. 

53, 54
 

 

Stress The role of the brain-gut axis in the induction of colitis was 

more recently studied than other factors. During a stress 

episode, hypothalamic secretion of corticotrophin-releasing 

factor (CRF) influences the secretion of cortisol by the adrenal 

cortex. High cortisol levels are involved in IBD by disrupting 

the gut microbiota, damaging intestinal barrier function.  

11, 55
 

Non-steroids 

anti-

inflammatory 

 

Prostaglandins play a crucial role in the mucosal and immune 

defenses in the colon. During the therapy, there is selective 

inhibition of COX1 and COX2 receptors. These two receptors 

are implicated in prostaglandin production. Low levels of 

prostaglandins are correlated to the development or the 

exacerbation of colitis.  

56, 57
  

 

Smoking Cigarette smoke plays an important role in colorectal neoplasia 

development in IBD patients. Furthermore, smoking 

significantly increases the risk of developing and worsens CD. 

58-60
 

Antibiotic  Antibiotics favor the development of IBD through several 

mechanisms. They can alter the gut microbiome balance, 

favoring the intestinal proinflammatory phenotype. Studies 

reported that developing IBD is antibiotic dose-dependent, with 

a higher prevalence while using board-spectrum antibiotics. 

From another standpoint, certain antibiotics such as 

ciprofloxacin or rifaximin also favor remission from an IBD by 

targeting specific bacteria linked with the progression of the 

inflammation. 

61, 62
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Table 2: Main cytokines involved during an IBD episode. 1 

Cytokine Mechanism of action 

 

 

TNF-α 

TNF-α is a significant cytokine produced mainly by CD14
+
 macrophages. TNF-α plays 

a significant role in the pathogenesis of both UC and CD. Binding to NTF-a receptors 

(TNFR1 and TNFR2) activated the nuclear factor-κB (NF-κB) family, which plays a 

significant role in the regulation of genes involved in inflammation.
63, 64

  

 

 

IL-6 

IL-6 is secreted mainly by macrophages but can also be produced by CD4
+
 T cells.

65, 66
  

Intestinal inflammation is induced following the interaction of IL-6 with membrane 

glycoprotein (gp130) on the surface of CD4 T-cells.
67, 68

 IL-6 also plays a homeostatic 

role as it promotes the proliferation of intestinal epithelial cells.
69

  

 

 

IL-1 

During the active phase of IBD, lamina propria dendritic cells and macrophages, in 

addition to endothelial cells, increase the production of IL-1 cytokines. There are three 

subtypes of IL-1 cytokines, two agonistic proteins (IL-1α, IL-1β), which favor 

inflammation, and one antagonistic protein (IL1-Ra) that reduces the inflammatory 

response.
70

 Although their mechanism of action is not clearly elucidated; it was shown 

in several studies that this higher production of IL-1 cytokines during IBD induces an 

imbalance between IL-1 agonists and their natural antagonist,
71-73

 which favors the 

progress of the inflammation in the colon.  

 

 

IL-12 

IL-12 cytokine family is mainly produced by dendritic cells and macrophages.  

IL-12 participates in the progress of inflammation after binding to its receptors (IL-

12R-β2). IL-12R-β2 are overexpressed during inflammation by the T cells in the 

mucosa and the lamina propria. Accordingly, their stimulation favors a Th1 immune 

response, thus promoting mucosal degradation and lamina propria expansion. In 

addition to Th1 activation, IL-12 stimulates innate lymphoid cells (ILCs) to produce 

IFN-γ, as recent studies demonstrated that inhibiting IL-12 results in a lower 

production of IFN-γ during a CD episode.
74

  

IL-23 binds its receptor (a combination of IL-12R β1 and IL-23R
75

) and induces the 

formation of Th17 cells out of their naïve CD4+ T counterparts.
76

 Th17 cells have both 

biochemical role by the further induction of proinflammatory cytokines (IL-17, TNF-α, 

and IL-6),
77

 and an immunological role by promoting the activation of CD8+ T,
78

 

natural killer (NK)
79

 and ILCs
80

  

 

 

IFN-γ 

IFN-γ is mainly produced by TH1-cells of the lamina propria,
81, 82

 but also by NK cells. 

Its level increased during IBD.
83, 84

 Also, it stimulates macrophages to produce 

proinflammatory cytokines.
85

 It was recently reported that IFN-γ worsen the 

pathogenesis of IBD by breaking down the vascular barrier while targeting adherents 

junction protein VE-cadherin.
86

  

 

 

IL-4 

IL-4 is a cytokine primarily produced by TH2 cells. Although lack of understanding of 

the activity of IL-4, it is known that IL-4 plays a role in promoting B-cells and T-cells. 

IL-4 also has a well-documented immunosuppressive effect in the intestine.
50

 Other 

studies depicted the role of IL-4 in the inhibition of vascular endothelial growth factor 

during IBD.
87

  

 

 

IL-13 

IL-13 is another TH2-related cytokine. During UC, IL-13 is implicated in the 

aggravation of the pathology as it impairs the epithelial barrier function while affecting 

the tight junctions and inducing epithelial apoptosis.
88

 It is also reported in another 

study that tissue fibrosis occurrence is correlated to the binding of IL-13 with a novel 
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cell surface receptor IL-13α.
89

  

 

IL-17 

IL-17 is a proinflammatory cytokine exclusively produced by T-lymphocytes 

(CD45RO+ cells).
90

 During an inflammatory process, IL-17 further stimulates the 

secretion of characteristic proinflammatory cytokines such as IL-1β and TNF-α.
91

  

 

TGF-β 

TGF-β is secreted by lymphoid and non-lymphoid cells
92, 93

 (e.g., macrophages, 

fibroblast, epithelial cells). It is synthesized in an inactive form which is activated after 

binding latency-associated peptides. TGF-β plays a crucial regulatory role in the 

immune system while controlling the production of several immune systems. On the 

one hand, they promote the proliferation of regulatory T cells (Treg),
94

 favoring the 

production of anti-inflammatory cytokines (e.g., IL-10). On the other hand, they 

participate in the neutralization of pathogens by promoting the generation and 

maturation of IgA producing B-cells
95

 and boosting the activity of dendritic cells and 

macrophages.
96, 97

  

 

IL-10 

 

IL-10 is an anti-inflammatory cytokine. It is produced primarily by monocytes. It 

monitors IBD by the inhibition of proinflammatory cytokines production by TH1 cells. 

Other studies reported that, following a bacterial invasion, IL-10 expresses an 

inhibitory effect on the secretion of proinflammatory cytokines by Toll-like receptor-

triggered myeloid lineage cells.
98, 99

  

  1 
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Table 3: Current therapeutic protocols for the monitoring of UC and CD.  1 

 UC CD Ref 

 

 

 

 

Active 

phase 

 

During an extensive UC:  

- Oral 5-ASA  

- Oral corticosteroids 

 

During a severe UC:  

- Rehydration 

- intravenous corticosteroids 

- intravenous antibiotics 

- TNF-α antagonist (anti- TNF-α) 

- Surgery  

Adjusting diet:  

- A fibber rich meal  

- Avoiding excess proteins 

 

During a severe CD:  

- Corticosteroids 

- Immunosuppression 

- Surgery (less favorable due to the 

non-continuous character of CD) 

- TNF-α antagonist for chronic 

patients  

 

100
 

 

Cold 

phase 

 

Maintenance protocol consists of: 

- Oral 5-ASA therapy 

Maintenance protocol aims at 

reducing the immune response: 

- Thiopurine  

- Methotrexate 

  2 
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3. General overview of conventional therapeutic agents for IBD 1 

and their shortcomings  2 

The management of IBD aims to treat the acute attacks during the inflammatory process 3 

or prevent it from recurring during the cold phase of the disease. Depending on the type of 4 

IBD, the therapeutic protocol is different, as illustrated in table 3. For several years, the 5 

standard treatment consisted of administering steroids anti-inflammatory, immunomodulators 6 

such as thiopurines and methotrexate, cyclosporine, aminosalicylates (e.g., 5-ASA), and 7 

surgery by removing the damaged section of the intestine.  8 

5-ASA exerts its effect through antioxidant activity and modulation of inflammatory 9 

mediators. Unfortunately, the use of 5-ASA is linked to diverse side effects (e.g., fever, 10 

nausea, diarrhea, cramping, headaches, rashes, and in some cases, hair loss, nephritis, 11 

pancreatitis, and pancytopenia). 5-ASA is rapidly absorbed from the small intestine leading to 12 

low local availability in the colon. It is thus necessary to formulate 5-ASA in adequate DDS 13 

to increase local bioavailability, lower applicable 5-ASA doses, and decrease side effects.  14 

Corticosteroids are another standard drug class used in IBD patients. Although 15 

corticosteroids provide a robust anti-inflammatory response, their use is commonly related to 16 

strong side effects that arise only a few weeks following the start of a topical or systemic 17 

treatment.
101-104

 Those side effects (e.g., Cushing’s syndrome, infection, adrenal suppression, 18 

sleep disorders, osteoporosis, and renal function impairment) limit their application in long-19 

term therapy. Recent endeavors suggest that using nanoparticles to deliver corticosteroids 20 

during an IBD allows keeping their steroid anti-inflammatory response while minimizing the 21 

systemic side effects by targeted delivery of the API into the inflamed colon. From another 22 

perspective, certain corticosteroids (e.g., budesonide) have a low mucus penetrating 23 

capability, justifying the use of nanoparticles to enhance their penetrability.
105

 24 

Immunosuppressants can target specific proteins in the body that induce inflammation. 25 

Monoclonal antibodies targeting specific cytokines were used to monitor IBD. Indeed, anti-26 

TNF-α (e.g., infliximab, adalimumab, golimumab) constitute the mainstream of biological 27 

treatment during the active phase of IBD and as maintenance therapy.
106

 Also, anti-IL-12 28 

(e.g., ustekinumab) is used only in the case of CD.
107

 One major drawback of biologics 29 

protocol is the primary nonresponse or a loss of response during treatments. The best example 30 

would be anti-TNF-α based therapy, where 30% of the patients present a primary 31 

nonresponse,
108

 while 30 to 50% lost the response over time.
109

 Up to date, many biological-32 



 

 14 

based therapeutics are available in the market (e.g., certolizumab, infliximab, adalimumab, 1 

natalizumab, vedolizumab). Nonetheless, the administration of biologics is commonly applied 2 

by the parenteral routes (e.g., subcutaneous, intramuscular, or intravenous), and their long-3 

lasting use is associated with numerous side effects such as immunosuppression,
110-113

 4 

infection,
114

 cancer,
115

 and the formation of antibodies against biologics, reducing their 5 

efficacy. Consequently, a novel drug delivery strategy relying on nanoparticles has been more 6 

and more investigated in the last year to administrate the API orally, besides reducing their 7 

dose through a more targeted delivery to the inflamed regions.
116-118

  8 

Using nanoparticles for the oral delivery of immunosuppressants to IBD patients is a 9 

promising approach to reduce their side effects. Indeed, monitoring the aberrant balance of the 10 

immune system during UC or CD relies on controlling various immune cells, enzymes, and 11 

cytokines through the administration of immunosuppressants (e.g., methotrexate, cyclosporine 12 

A, tacrolimus). However, their poor solubility often limits their performance,
119-121

 urging to 13 

increase the administered dose. Also, misusing these therapeutic agents and systemic 14 

administration led to off-target severe side effects (e.g., immunodeficiency, allergies, a loss of 15 

activity following a long systemic circulation). Nanoparticle development offers the 16 

possibility of selectively targeting the colon's inflamed region and a controlled release of the 17 

immunosuppressant.
122

 They also play a role in protecting the drugs from degradation during 18 

their journey in the GI tract.
123, 124

 Table 4 summarizes the significant works in designing 19 

nanoparticle-based IBD therapy.    20 
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4. Implication of pathophysiological changes of the GI tract 1 

during active IBD for oral drug delivery strategies  2 

Active IBD could induce several changes in the GI tract barriers that should be fully 3 

understood and considered for developing efficient DDS and identifying therapeutic 4 

targets.
125-127

 Those changes concern the pH, degradative enzymes,
127

 mucus barrier function, 5 

microbiota composition
20, 128

 and the permeability of the intestinal epithelium.
129

  6 

4.1. pH changes  7 

In healthy subjects, the stomach pH ranges from 1.0 to 2.5 (fasted). It rises from 6.6 to 7.5 8 

in the small and the large intestine. More precisely, luminal pH in the proximal small bowel 9 

ranges from         and gradually rises to         in the distal ileum. In the caecum, the 10 

pH decreases to         and rises from 6.87 in the proximal colon to 7.2 in the distal colon. 11 

In UC and CD patients, the pH of the stomach was found higher than in healthy subjects.
130

 12 

This change was correlated to a decrease in the acidic secretions of the stomach. In UC and 13 

CD patients, no significant changes in the pH of the small intestine were reported compared to 14 

healthy subjects.
130-132

 Although the colonic pH of patients with IBD broadly fluctuates 15 

depending on the individuals and the disease state, patients are generally subject to acidic pH 16 

in the colon.
133, 134

 The pH in UC and CD patients ranged from 5.5 to as low as 2.3.
133, 135, 136

 17 

The decrease in the colonic pH is due to disruption of factors including intestinal volume, 18 

transit time, microbial fermentation, bile acid metabolism of fatty acids, bicarbonate, and 19 

lactate secretions.
134

 Changes in colonic pH in UC and CD patients could affect the 20 

composition of the microbiome and consequently the colonic transit. The residence time of 21 

the drugs in the colon, drug release, and absorption are thus modified. Additionally, pH 22 

changes could affect drug release from pH-sensitive formulations.  23 

The pH change along the GI tract was exploited to design DDS able to disintegrate at a 24 

specific pH range to release the API. A general strategy consists in coating the DDS with 25 

polymers that are pH-sensitive. Polymers used for colon delivery are methacrylic acid, 26 

polymethacrylic acid, polyacrylic acid, and their derivatives which respond to the high pH of 27 

the colon (    ).
19

 So far, the most common pH-sensitive systems for oral drug delivery in 28 

IBD treatment are composed of methacrylic acid co-polymers (Eudragit


). Eudragit S100 29 

(ES100), which should dissolve in the distal intestine at a pH of 7, is the most used polymer 30 

for colon drug delivery. ES100-containing DDS exhibited pH-sensitive properties by limiting 31 

the burst release at the gastric pH. Most of the drug was released at pH higher than 7.
137, 138

 32 
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The pH at which the drug is released could be adjusted to lower values by mixing ES100 to 1 

other methacrylic acid co-polymers that dissolve at low pH.
139

 Eudragit L100 is soluble at pH 2 

6, while EL30-D55 was used to manipulate the drug release within the desired pH range of 3 

        in the distal small intestine. The appropriate colon dissolution pH of delivery 4 

systems can be controlled by optimizing the ratio of EL30-D55 and ES100 for targeted drug 5 

delivery to the inflamed colon.
139

 More recently, coating nanoparticulate DDS with Eudragit 6 

FS 30D conferred a sustained release of the encapsulated drugs.
140

 Indeed, Eudragit FS 30D 7 

dissolves similarly to Eudragit S100 at pH 7 but in a more sustained and controlled mode. The 8 

Eudragit-coated strategy of nanoparticulate DDS was applied for many types of 9 

nanostructures,
19

 including polymer,
141

 lipidic,
142

 polysaccharide-based,
143

 or inorganic 10 

nanoparticles.
138

  11 

Other types of pH-sensitive materials were used for designing nanoparticles that can target 12 

and remain in the inflamed colonic tissue through multiple mechanisms. Hybrid nanoparticles 13 

composed of pH and enzyme-sensitive polymers were designed by combining ES100 and 14 

azopolyurethane polymers.
144, 145

 However, as mentioned above, the colonic pH in patients 15 

with IBD could be more acidic than in healthy subjects. Consequently, the DDS coated with 16 

Eudragit that dissolves at pH higher than 6 might not release the drug in vivo. Indeed, in most 17 

investigations on Eudragit-based nanoparticles, the drug release was evaluated in vitro in 18 

simulated colonic media without mimicking IBD disorders. In the next section, we will 19 

discuss the interest of polysaccharides for designing pH-sensitive DDS that could be an 20 

alternative to synthetic polymers.  21 

4.2. Mucus  22 

In healthy subjects, mucus is a viscoelastic hydrogel composed of water (         ), 23 

mucins (       ), lipids (        primarily associated with hydrophobic domains of 24 

mucin glycoproteins), mineral salts (     ), and proteins (immunoglobulins A and M, 25 

lysozyme) that contribute to the mucus elasticity.
146, 147

 The degree of mucus hydration is a 26 

significant determinant of mucus viscoelasticity. Mucin fibers (typically          , 27 

        in diameter)
148

 are crosslinked and entangled macromolecules secreted by both 28 

goblet cells and the seromucinous glands of the lamina propria at the apical epithelium.
149

 29 

Mucins are proteins glycosylated by O-linked N-acetyl galactosamine and N-linked sulfate-30 

bearing glycans.
150

 Dense glycan coverage of mucins represents up to 80% of the dry weight 31 

of mucus. For 100 amino acid residues, carbohydrate chains represent      ,
151

 and 32 

contribute up to 80% of the dry weight of mucus (For review articles on mucus, see 33 
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references
152-154

). The glycocalyx that protects cell surfaces comprises cell-associated mucins 1 

and mucus gels formed by secreted gel-forming mucins.
153

  2 

Significant changes in mucus composition, thickness, physical properties, and function 3 

were reported in IBD. CD is characterized by goblet cell hypertrophy, while patients with UC 4 

are characterized by a reduction and depletion of goblet cells. In this latter case, mucus 5 

production is significantly decreased, and the thickness of mucus layers was reduced in the 6 

colon and the rectum.
155, 156

 In UC, the substantial increase in mucus production leads to a 7 

thicker mucus layer in the inflamed areas. Consequently, a higher amount of nanoparticle 8 

adherence was reported for inflamed areas compared to healthy mucosa. Due to their small 9 

size, nanoparticles were better retained in the intestinal tract than large particles. Smaller 10 

nanoparticles are known to exhibit better mucoadhesion and mucopenetration compared to 11 

larger particles.
157, 158

 Lamprecht et al.,
159

 demonstrated an inverse relationship between 12 

particle size and binding to the inflamed intestinal mucosa. They revealed that particles 13 

smaller than 100 nm exhibited the highest binding affinity to inflamed colonic tissue. The 14 

reduction of the DDS size to the nanometer scale improved colonic residence time in inflamed 15 

regions of the intestine and provided benefits for IBD treatment. Particles with a size larger 16 

than 200 m are subjected to diarrhea symptoms, resulting in a decreased GI transit time and, 17 

therefore, decreased efficiency.
160, 161

  18 

PEGylation strategy improves mucopenetration properties of nanoparticles. Being 19 

hydrophilic and uncharged, the presence of poly(ethylene glycol) (PEG) confers to 20 

nanoparticulate DDS mucus penetrating properties.
157, 162-164

 The behaviors of PEG nano-21 

delivery systems toward mucus are dependent on the molecular weight. Low PEG molecular 22 

weight (2-5 kDa) provided a non-mucoadhesive coating on nanoparticles. Whereas coatings 23 

using 10 kDa PEG resulted in strong particle mucoadhesion.
163, 164

 The surface charge of 24 

PEGylated nanoparticles showed a significant impact on their accumulation in the inflamed 25 

colon of a dextran sulfate sodium (DSS)-induced mice model of acute UC.
165

 Nanoparticles 26 

had a 100-nm diameter and were composed of poly(ethylene glycol)5k-b-poly(lactic-co-27 

glycolic acid)10k (PEG5k-b-PLGA10k). They were loaded with TNF- siRNA.
165

 In this study, 28 

cationic PEGylated PLGA nanoparticles showed a higher accumulation in the colon and a 29 

better silencing capacity than nanoparticles with a neutral charge.  30 

In patients with active UC, the carbohydrate content of the epithelial glycan, including 31 

mucus glycoproteins, is altered compared with healthy controls (For reviews on epithelial 32 

glycans in IBD, see references
166-168

). Epithelial glycans are a major component of the 33 
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intestinal mucosa. Glycans typically form glycoconjugates (e.g., glycoproteins and 1 

glycolipids) by attaching to other molecules (e.g., cytosolic lipids or membrane-associated 2 

lipids and proteins). Thanks to their position at the interface between the epithelial cells and 3 

the outer mucus layer, glycans serve as attachment sites for nutrients and ligand-binding 4 

proteins (e.g., antibodies, lectins). They also play an essential role in the interaction between 5 

intestinal epithelia and the commensal flora in the mucus. The major class of glycan in the gut 6 

(80 wt% of MUC2) is composed of mucin-type O-glycans.  7 

In patients with active disease, intestinal epithelial glycosylation is disrupted.
167-169

 8 

Alterations include truncated mucin-type O-glycans and a reduction of oligosaccharide chain 9 

length and sulfatation, conferring less negative charge to mucins.
169, 170

 Reduced sulfatation 10 

was correlated to increased activity of mucin sulfatase. Structural and immunohistochemical 11 

studies revealed that patients with active IBD were characterized by a simplified O-12 

glycome.
171

 The amount of smaller glycans was increased, while more complex structures 13 

were lowered. Glycan disruption altered intestinal immunity, disrupted glycan-lectin and host-14 

microorganism interactions, and altered MUC2 synthesis
168

 and stability. Glycome 15 

simplification makes mucins more accessible to host and bacterial proteases.
172

 The loss of 16 

mucus viscoelasticity and reduction of barrier properties lead to enhanced interactions of 17 

bacteria and intestinal epithelia. Furthermore, a significant correlation was found between 18 

changes in glycosylation and the level of inflammation.
169

  19 

Understanding the disorders of epithelial glycosylation in IBD patients with active disease 20 

is fundamental for developing strategies for ‘remodeling’ the disease-associated glycan by 21 

targeting intestinal epithelial glycosylation. Those approaches include direct methods (e.g., 22 

inhibitors of glycosidases,
173

 or sulfatases
174, 175

) and indirect methods (e.g., normalizing the 23 

gut microbiota by faecal transplantation or prebiotics, or by bacterial products). Inhibiting 24 

protein-glycan interactions that contribute to recruiting pathogenic bacteria or inflammatory 25 

cells seems to be a promising strategy to alleviate inflammation in IBD patients.
168

 For 26 

example, galactose interferes with the interaction of Fusobacterium nucleatum (a Gram-27 

negative commensal bacteria) with the carbohydrate epitope galactose or N-acetyl-28 

galactosamine (Gal, GalNAc).
176, 177

 It was found that the interaction of F. nucleatum Fap-2 29 

(fibroblast activation protein 2), and Gal or GalNAc was implicated in numerous diseases, 30 

including IBD and cancer.
178

 These findings should trigger further investigations to design 31 

DDS to block Fap-2/Gal or Fap-2/GalNAc interaction. Similarly, it was demonstrated that 32 

blocking the interaction of Escherichia coli FimH lectin with epithelial glycan prevents 33 
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mucosal inflammation associated with CD.
179

 Knowing that mannose derivates are able to 1 

interact with FimH, several research works were dedicated to developing mannose derivatives 2 

to alleviate inflammation. Interestingly, the FimH blocker Sibofimloc (EB8018/TAK-018) 3 

derived from the patent WO2014100158A1 has entered the clinical trials for CD.
180

 Thanks to 4 

safety and pharmacokinetic results obtained in 2020,
180

 the clinical development program is 5 

continuing with a phase 2 trial in patients with CD.  6 

On the other hand, ulcerated tissues contain high concentrations of positively charged 7 

proteins that increase the affinity to negatively charged substances.
181

 In particular, inflamed 8 

colon contains high concentrations of transferrin and eosinophil cationic protein.
182-185

 This 9 

property was exploited in designing negatively charged DDS that preferentially adhered 10 

inflamed tissue in vivo through electrostatic interactions with positively charged proteins.
159, 11 

186, 187
 However, conflicting results were obtained in the literature on the impact of 12 

nanoparticle charge on their accumulation in the inflamed colon since the net charge of mucus 13 

remains negative due to the presence of mucins. Iqbal et al.,
165

 revealed that cationic 14 

nanoparticles exhibited remarkably higher accumulation in the inflamed colon compared to 15 

anionic nanoparticles.
165

  16 

4.3. Enzymatic secretions  17 

In CD patients, the enzymatic secretion was significantly modified in comparison with 18 

healthy subjects. Indeed, for digestive purposes, the lumen of the upper GI tract contains large 19 

amounts of pancreatic proteases, but studies have also demonstrated increased proteolytic 20 

activity into mucosal tissues (both in the upper and lower GI tract), associated with 21 

pathological conditions such as IBD. This upregulation was correlated with the degradation of 22 

tight junctions.
188

 In that context, protease inhibition was used as a therapeutic approach in 23 

IBD treatment.
188

 Additionally, increased fluid secretion can dilute the digestive enzymes 24 

implicated in intestinal transit.  25 

4.4. Epithelial barrier  26 

As detailed above, in IBD patients, the intestinal epithelium is characterized by epithelial 27 

defects, including a loss of continuous epithelium,
189

 TNF- mediated epithelial apoptosis in 28 

the colon,
190

 and damage of epithelial thigh junctions. In particular, abnormal expression of 29 

tight junction proteins (e.g., occluding, ZO-1 and claudins)
191

 is an essential characteristic in 30 

IBD. They lead to increased permeability of colonic epithelial mucosa and a loss of the barrier 31 

function of the mucosa toward microbes, toxic substances such as lipoproteins, causing 32 
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inflammatory response. A consequence of epithelial shedding and impaired paracellular 1 

epithelial barrier in IBD was exploited by different research groups to passively target API 2 

and nanoparticles to the inflamed tissue through the so-called epithelial enhanced 3 

permeability and retention (eEPR) effect. A study implied that the recurrence of budesonide-4 

loaded PLGA/Eudragit nanoparticles improved the anti-inflammatory effect of budesonide.
192

 5 

The authors suggest that these observations could be linked to the high adhesion and uptake of 6 

the nanoparticles mediated by the eEPR effect, which increased the levels of budesonides in 7 

the inflamed site.  8 

In a more recent investigation, Ahmad et al.
193

 used polycaprolactone (PCL) covalently 9 

grafted with aminocellulose and used to prepare nanoparticles loaded with anti-inflammatory 10 

drugs (e.g., glycyrrhizic acid, budesonide). Nanoparticles designed by solvent evaporation had 11 

a mean hydrodynamic diameter of ∼230 nm and positive zeta potential (24 to 29 mV). This 12 

study revealed that nanoparticles had a preferential accumulation in the inflamed colon in 13 

mice with DSS-induced colitis. Higher accumulation in the inflamed colon could be due to 14 

passive targeting by eEPR since no accumulation of nanoparticles in a healthy colon was 15 

reported.
193

 These nanoparticles improved disease activities like occult blood in the stool, 16 

length of the colon, and fecal properties. Also, the nanoparticles decreased colonic mast 17 

cellular infiltration, significantly maintained mucin protection, improved histological features 18 

of the colon, and ameliorated the markers of inflammation (e.g., induced nitric oxide (NO) 19 

synthetase (iNOS), cyclooxygenase (COX)-2, IL1-β, TNF-α, and myeloperoxidase 20 

(MPO)).
193

  21 

4.5. Modifications of immune cell surface receptors  22 

In inflamed tissues, the immune cells are subject to different modifications of the 23 

expression of cell receptors. In the inflamed state of UC, the glycoprotein CD98 is 24 

overexpressed by colonic epithelial cells and macrophages. CD44 receptor is another 25 

glycoprotein overexpressed on the activated inflammatory cells in colitis tissues. Active 26 

targeting by nanoparticulate DDS consists of the intentional orientation of the localization of 27 

nanoparticles to inflamed tissues.
194, 195

 This results from a high concentration of 28 

nanoparticles in the disease site and consequently high therapeutic efficacy of a drug, while 29 

the adverse effects on normal tissue are reduced.
195, 196

  30 

Another strategy targets receptors naturally expressed by macrophages and dendritic cells. 31 

Because macrophages and dendritic cells are abundant in inflamed tissues, targeting receptors 32 
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(e.g., dectin-1, galactose agglutinin, and mannose receptor) promoted the distribution of 1 

targeted nanoparticles in the inflamed tissues.
197-201

 The ligands that can target receptors on 2 

macrophages include saccharides (e.g., mannose,
198-200

 hyaluronan, galactose
201

), dectin-1 3 

able to recognize -glucan, lectins, or monoclonal antibodies.  4 

4.6. Production of reactive oxygen species  5 

In response to inflammatory stimuli through specialized enzyme complexes called 6 

NADPH oxidase, reactive oxygen species (ROS) can be produced by epithelial cells and 7 

innate immune cells, including resident monocytes/macrophages, dendritic cells, or infiltrated 8 

neutrophils. Those cells are able to produce ROS into the mucus and intestinal lumen.
202

 The 9 

intestinal mucosa of patients with IBD is characterized by severe disorders of antioxidants and 10 

ROS overexpression by immune cells (e.g., neutrophils and macrophages), leading to 11 

oxidative damage. ROS concentration was up to 100-fold higher than in control patients.
203

 In 12 

this context, several researchers exploited this property to design ROS-scavenger DDS able to 13 

reduce oxidative stress and inflammatory response. Those strategies include colon-targeted 14 

delivery of nanoparticles containing donors of NO radicals (e.g., NO-nitrosothiols) or 15 

antioxidant molecules (e.g., bilirubin, curcumin, ginger, resveratrol). 16 

Table 4: Table summarizing the recent work on the use of nanoparticles for alleviating IBD. 



 

 22 

API Materials composing 

the nanoparticles  

Inflamma

tion 

 model 

Delivery 

route 

Observations Ref 

Corticosteroids 

(budesonide) 

PLGA/ 

Eudragit S100  

 

Trinitrob

enzosulfo

nic acid 

(TNBS) 

(mice) 

DSS 

(mice)  

Oxazolon

e (mice) 

 

Oral  Comparing budesonide-loaded 

nanoparticles to the free drug revealed:  

- A better histological, biological, and 

endoscopic data regarding 

inflammation reduction while using 
nanoparticles. 

- Nanoparticles could be tuned into 

pH-responsive nanosystems 

allowing targeted delivery, 

considering the acidic pH 

environment of the inflamed area.  

 

 
141

 

 

 

Corticosteroids 

(Budesonide) 

PLGA and  

Eudragit S100  

TNBS 

(rats) 

Oral - Budesonide-loaded nanospheres 

had a higher impact on the 

reduction of TNBS induced colitis. 

- The inflammation reduction could 

be linked to the inflamed mucosa's 

higher systemic availability and 

cellular uptake of nanospheres. 

 

192
  

Corticosteroids 

(Budesonide) 

Mannosylated 

nanostructured lipid 

carrier system  

(Mn-NLCs) 

 

Oxazolon

e (mice) 

 

Oral  The in vivo data following the 

administration of a budesonide-loaded 

Mn-NLCs and a budesonide suspension 

revealed:  

- A lower clinical, macroscopic, and 

microscopic scoring with the 

budesonide Mn-NLCs treated 

group.  

- A lower level of proinflammatory 

cytokines and myeloperoxidase. 

 

204
  

 

 

Corticosteroids 

(Prednisolone) 

ε‑ polylysine-coated 

mesoporous silica  

RAW 

264 cells 

Caco-2 

cells 

NA - A high inhibition of inflammation 

was observed at the cellular level. 

 

205
 

 

 

Corticosteroids 

(Betamethasone) 

Lectin-conjugated 

PLGA  

 

TNBS 

(mice) 

Oral - Lectin-decorated PLGA-

nanoparticles selectivity increased 

adhesion to inflamed tissue 

compared to plain nanoparticles, 

thus improving their therapeutic 

effect. 

 

206
 

 

 

5-ASA 

(Mesalasine) 

Polycaprolactone TNBS 

(mice) 

Oral - A higher therapeutic effect of 

encapsulated 5-ASA was observed 

compared to the free drug. 

 

207
 

 

5-ASA 

(Mesalasine) 

Silica TNBS 

(mice)  

Oral The use of silica nanoparticles to deliver 

mesalasine allowed to:  

- Selectively target the inflamed 

tissue to deliver the API and spare 

the healthy tissue.  

- A higher anti-inflammatory effect 

was obtained with a lower dose of 

the API.  

208
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5-ASA 

 

Silicon dioxide  

(SiO2) 

DSS 

(mice) 

 

Oral - A lower inflammation score was 

observed with the groups treated by 

the nanoparticles or with high doses 

of 5-ASA. 

- Myeloperoxidase and cytokines 

(TNF-α and IL-6) levels were also 

much lower with the 5-ASA- 
nanoparticles treated group 

suggesting a higher colon-targeting 

efficacy of 5-ASA-nanoparticles. 

 

209
 

 

 

5-ASA 

(Mesalasine) 

 

Redox particles 

 

DSS 

(mice) 

Oral - Tempol or mesalamine-loaded 

nanoparticles reduced the 

inflammation strongly compared 

with free tempol or mesalasine.  

- The nanosystems specifically 

accumulated in the colon during a 

colitis episode. 

 

210
 

 

 

Tempol 

Tempol Methoxy-

poly(ethylene glycol)-

b-poly [4-(2,2,6,6-

tetramethylpiperidine-

1-

oxyl)oxymethylstyren

e] 

(MeO-PEG-b-PMOT) 

block copolymer s 

 

DSS 

(mice) 

Oral - Following a DSS-induced 

inflammation, an increase of 

commensal bacteria (Escherichia 

coli, Staphylococcus spp.) was 

noticed.  

- The nanoparticle administration 

reduced the prevalence of these 

commensal bacteria. 

211
 

 

 

Biologics 

(Anti-TNF-α) 

Natural polyphenol 

tannic acid   

and  

poly(ethylene glycol)  

 

DSS 

(mice) 

Oral 

 

 

- The oral administration of anti-

TNF-α nanoparticles had a 

significantly higher reduction of 

inflammation than free anti-TNF-α.  

 

212
 

 

 

Biologics  

(TNF-α siRNA) 

Thioketal  DSS 

(mice) 

Oral - Using thioketal nanoparticles as a 

carrier to orally deliver siRNA 

against TNF-α into the colon 

reduces the TNF-α RNA level in 

the inflamed region, preventing the 

worsening of UC. 

 

213
 

 

 

Biologics (TNF-

α siRNA) 

Poly(ethylene glycol)-

block-PLGA  

 

- Cationic charge: 

aminated 

particles  

- Anionic charge:  

carboxylate 

particles 

- Neutral charge: 

plain particles 

DSS 

(mice) 

Oral  - Aminated nanoparticles expressed 

the highest accumulation in the 

colon, translated by increased 

inhibition of TNF-α secretion and 

mRNA levels.  

- Animals treated with aminated 

nanoparticles had similar 

histological scores to healthy mice.  

- The results suggest the significant 

influence of surface charge on 

colonic accumulation. 

 

165
 

 

 

Biologics (CD98 

siRNA) 

polyethyleneimine  

(PEI) 

DSS 

(mice) 

Oral - Significant reduction of colitis 

occurs through CD98 

downregulation in the intestinal 

214
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epithelial cells.  

 
 

Biologics (CD98 

siRNA)  

+ 

Curcumin 

PLGA  DSS 

(mice) 

Oral - PLGA nanoparticles offered a 

tuneable platform to deliver CD98 

siRNA and curcumin in the 

inflamed colon selectively.  

- This nanoparticle-based therapy 

showed promising results in the 

monitoring of IBD. 

 

215
 

 

 

Curcumin PLGA/Eudragit S100  DSS 

(mice) 

Oral While compared to groups treated with 

non-encapsulated curcumin was used, it 

was noticed:  

- Decrease of immune cells 

infiltration.  

- Reduction of TNF-α levels. 

 

216
 

 

 

Curcumin 

+  

celecoxib 

Eudragit S100  

 

TNBS 

(mice) 

Oral Eudragit nanoparticles showed the 

following events:  

- Targeted delivery to the colon. 

- Reduced body weight loss and 

diarrheic stool.  

- When delivered in a nanoparticulate 

form, much lower doses of API 

were needed to obtain the desired 

effect than a separate administration 

of drugs.  

 

217
 

 

 

Peptides  

(Lysine-proline-

valine)  

KPV 

Alginate and chitosan DSS 

(mice) 

Oral KPV-loaded nanoparticles reduced the 

anti-inflammatory response in DSS pre-

treated mice. KPV loaded into 

nanoparticles can be delivered at a 

concentration 12,000-fold-lower than a 

free solution of KPV.  

 

218
 

 

Immuno-

modulator 

(Rolipram) 

PLGA TNBS 

(mice) 

Oral - The nanoparticle formulation 

expressed a similar anti-

inflammatory effect to the drug in 

solution.  

- Five days post-treatment, the 

animals that received the 

nanoparticle formulation showed 

less relapse than those that received 

the drug solution.  

- The animals that received 

nanoparticle formulation suffered 

less from the adverse effect caused 

by rolipram.  

 

219
 

 

 

Immuno-

modulator 

(Tacrolimus) 

PLGA,  

Eudragit P-4135F (pH-

sensitive) 

DSS 

(mice) 

Oral - Oral tacrolimus-loaded 

nanoparticles attenuated colitis 

more efficiently than oral 

tacrolimus solution. 

- Lower efficiency of oral tacrolimus-

loaded nanoparticles was observed 

than the drug solution administered 

subcutaneously. 

- Encapsulating tacrolimus inside 

nanoparticles reduced its adverse 

220
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effect. 

- Both nanoparticles (PLGA and pH-

sensitive Eudragit) showed similar 

data in reducing colon 

inflammation. Nonetheless, pH-

sensitive nanoparticles were slightly 

less nephrotoxic.  

 

Immuno-

modulator 

(Cyclosporine 

A) 

CYA 

Lipids 

 

DSS 

(mice) 

Oral - While compared to an oral 

administration of a commercial 

solution of Sandimmun (Neoral
®
), 

CYA-loaded lipid nanoparticles did 

not improve the therapeutic effect.  

221
 

 

 

PLGA 

 

DSS 

(mice) 

Oral Compared to drug-free particles and 

commercial formulation Sandimmun 

(Neoral
®
), CYA-loaded PLGA 

nanoparticle exhibited:  

- An unchanged body weight.  

- The concentration of 

proinflammatory cytokine in the 

plasma was undetectable.  

The authors concluded that CYA-

loaded PLGA nanoparticles yielded a 

similar reduction of inflammation at a 

half dose of the commercial product.  
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Immuno-

modulator 

(Methotrexate) 

 

 

Grapefruit-derived 

nanovesicles (GDNs) 

DSS 

(mice) 

Oral 

 

After their selective internalization by 

macrophages, GDNs decrease the 

inflammation by:  

- Upregulation of heme oxygenase-1 

(HO-1) expression.  

- Inhibition of IL-1β and TNF-α 

production 

- Loading methotrexate in GDNs 

further enhanced their anti-

inflammatory property while 

maintaining the homeostasis of 

intestinal macrophages.  
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Immuno-

modulator 

(Azathioprine) 

 

 

 

Chitosan beads  Acetic 

acid 

(rabbit) 

Oral Azathioprine has numerous side effects, 

such as hepatotoxicity, bone marrow 

suppression, and allergic reaction. The 

oral administration of Azathioprine-

chitosan beads allowed to:  

- Reduce the systemic side effects of 

azathioprine. 

- Decrease the levels of 

myeloperoxidase and 

proinflammatory cytokines to the 

levels of healthy animals. 

- Restore the microscopic structure of 

the colon. 
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Antibiotics 

(Rifaximin) 

Chitosan 

 

In vitro NA Encapsulating the drug into chitosan 

nanoparticles expressed the following 

225
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 1 

5. Polysaccharide-based drug delivery systems for IBD 2 

Polysaccharides are naturally produced by animals, plants, microorganisms, fungus, and 3 

algae. Among the polysaccharides’ diverse intrinsic biological activities (e.g., 4 

data:  

- Improved the solubility of 

rifaximin. 

- Expressed high stability of the 

formulation. 

- The formulation offers the 

possibility of a controlled release of 

the drug in the targeted region.  

Nevertheless, in vivo investigation still 

lacks to confirm these observations.  

 

Probiotic extract Chitosan-coated 

PLGA  

TNBS 

(rats) 

Oral  - The administration of probiotic 

extract and nanoparticles 

significantly mitigated colitis.  

- The medium dose of probiotic 

extract-loaded nanoparticles 

reduced the inflammation more 

efficiently than the high dose of its 

free administered counterpart.  

 

226
 

 

 

Prohibitin 

 

Ply(lactic acid)  

(PLA) 

 

DSS 

(mice) 

Oral - Prohibitin has an anti-inflammatory 

property, but its levels decrease 

during an IBD episode.  

- Oral prohibitin-loaded PLA 

particles or rectal prohibitin-loaded 

adenovirus increased the prohibitin 

levels in the inflamed colonic 

region.  

- Increased prohibitin levels 

correlated with decreased 

inflammation intensity translated by 

lower clinical and histological 

scores, reduced myeloperoxidase 

activity, proinflammatory cytokines, 

and protein carbonyl content.  

 

227
 

 

 

Adenovirus 

 

 

enema 

Ginger active 

compound  

(6-shogaol) 

 

Poly(lactic-co-

glycolic 

acid)/poly(lactic 

acid)-polyethylene 

glycol-folic acid  

 

PLGA/PLA-PEG-FA  

DSS 

(mice) 

Oral Oral delivery of 6-shogaol loaded into 

nanoparticles reduced the virulence of 

the colitis by:  

- Diminishing the levels of 

proinflammatory cytokines (TNF-α, 

IL-6, IL-1β) 

- Increasing the level of anti-

inflammatory factors such as the 

nuclear factor (erythroid-derived 2)-

like 2 (Nrf-2) and  

HO-1.  

- Accelerating wound repair  
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immunomodulatory, anti-inflammatory, regulation of intestinal flora imbalance, and healing 1 

properties), their use to alleviate IBD has gained significant interest over the last years.
23, 229

 2 

Table 5 summarizes the main polysaccharides studied for their role in IBD modulation. 3 

Polysaccharides manage IBD by different mechanisms. From one side, they can regulate the 4 

different proinflammatory signalling pathways such as Toll-like receptors (TLR), mitogen-5 

activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and G-protein coupled 6 

receptors. On the other side, polysaccharides play a crucial role in the intestinal flora balance. 7 

They increase the symbiotic bacteria (e.g., Lactobacillus) and decrease the pathogenic 8 

bacteria (e.g., Facklamia, Clostridium, and Enterococcus species).
230, 231

 Polysaccharide 9 

metabolites, known as short-chain fatty acids (SCFAs); can also modulate the homeostasis of 10 

the GI tract as several described their role in the inhibition of pathogenic microorganisms.
232-11 

234
 Acetic acid, propionic acid, and butyric acid are the main SCFAs. Lactic acid and valeric 12 

acid are also metabolites produced by microbial fermentation of undigested carbohydrates and 13 

dietary fibers.
235-237

 SCFAs decrease the pH of the intestine. They improve the homeostasis of 14 

the intestinal flora by inhibiting the growth of pathogenic bacteria and enabling the 15 

proliferation of beneficial bacteria.
238

 SCFAs also have direct antimicrobial activity against 16 

bacterial pathogens by diffusing across the bacterial membrane and reducing the intracellular 17 

pH. In particular, butyrate has a positive effect on epithelial integrity and tight junction 18 

permeability.
229, 239

 Butyrate enhances the intestinal barrier by facilitating tight junction 19 

assembly via activation of AMP-activated protein kinase
240

 and up-regulating the tight 20 

junction protein Claudin-1 transcription.
241

 Additionally, butyrate increased mRNA 21 

expression and protein abundance of claudins-3 and 4 and influenced intracellular ATP 22 

concentration in a dose-dependent manner.  23 

From another perspective, it is well documented that several polysaccharides (e.g., 24 

dextran, inulin, chondroitin sulfate, cyclodextrin, and hyaluronan) are stable within the 25 

stomach and intestinal environment but are degraded in the colon by the colonic bacterial 26 

flora.
242, 243

 These characteristics have driven scientists to investigate the possibility of using 27 

them as drug carriers to deliver API in the inflamed region of the colon selectively. 28 

Accordingly, many studies have flourished while formulating different polysaccharide-29 

micro/nanocarriers.
244-248

  30 

The main polysaccharides used for designing nanoparticles for IBD treatment are 31 

chitosan, hyaluronic acid, pectins, alginates, and inulin (Table 5).
249

 Other polysaccharides for 32 

IBD have also been reported, such as xanthan gum and guar gum.
250, 251

 Hereafter, 33 
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polysaccharide nanoparticles for IBD are summarized, and the structure-activity relationship 1 

is discussed.  2 

5.1. Chitosan  3 

Chitosan is obtained by the partial deacetylation of chitin which is mainly derived from 4 

the shells of crustaceans such as lobster, shrimp, or crab. It can also be found in fungi and 5 

insects. Chitin is the second largest and most abundant polysaccharide in nature after 6 

cellulose. It is responsible for maintaining the fungal shape, strength, and cell's structural 7 

integrity. Chitosan is a linear heteropolymer composed of -(1-4) linked N-acetyl-D-8 

glucosamine and D-glucosamine. The molecular weight and the degree of acetylation (DA) 9 

are essential characteristics of chitosan. The DA of chitosan (    ) represents the fraction 10 

of N-acetyl-D- glucosamine relative to the total number of units. Contrary to chitin (   11 

   ), which is insoluble in aqueous and many organic solvents, chitosan is hydrophilic and 12 

soluble in acidic solutions, while the amine groups present on the macromolecule are 13 

protonated. Chitosan with low DA and low molecular weight has increased solubility in 14 

water.  15 

However, the physicochemical properties of chitosan derived from the deacetylation of 16 

chitin from crustaceans are heterogeneous, depending on the raw material source.
252

 More 17 

recently, chitosan was produced from chitin contained in selected fungi' cell walls and septa. 18 

Ascomycetes, Zygomycetes, Basidiomycetes, and Deuteromycetes. Chitosan from fungi is 19 

characterized by low molecular weight (e.g., 45 kDa)
253

 can be directly extracted from the raw 20 

material without needing thermal or chemical depolymerization.  21 

Due to its intrinsic anti-inflammatory, healing, and immunomodulatory activity, chitosan 22 

is the most cited polysaccharide in developing nanoparticulate DDS for IBD.
249

 It is the only 23 

cationic polysaccharide used to develop positively charged nanoparticulate DDS. The net 24 

positive charge of chitosan nanoparticles confers mucoadhesive properties through the 25 

electrostatic interactions with negatively charged mucins.
254

 Chitosan interacts with 26 

negatively charged proteoglycan on the cell surface. It increases cell permeability by 27 

reversibly acting on paracellular and intracellular pathways of epithelial cells.
255, 256

 28 

Nanoparticle intrinsic activity was further improved by functionalizing chitosan to natural 29 

molecules such as gingerol, used for its anti-inflammatory and antioxidant properties.
257

 The 30 

nanoparticles composed of chitosan covalently linked to gingerol           , -21 mV) 31 

were successfully used for the encapsulation and the controlled release of 5-ASA. Although in 32 



 

 29 

vivo evaluations were not yet performed using those nanoparticles, size and charge properties, 1 

as well as drug release control, could be favorable in vivo for the treatment of IBD.
257

  2 

Due to its solubility in acidic media, chitosan-based nanoparticles could exhibit a 3 

premature release of the drug before reaching the colon. Different strategies were thus 4 

envisioned to improve colon-specific drug delivery in IBD. Chemical crosslinking (e.g., 5 

glutaraldehyde) or ionic crosslinking (e.g., tripolyphosphate (TPP)) are the most commonly 6 

used methods to make chitosan nanoparticles insoluble in acidic media.
258, 259

  7 

Hybrid multifunctional nanoparticles composed of a blend of chitosan and anionic 8 

polysaccharides such as alginate
218, 260-264

, hyaluronan,
265, 266

 pectins,
258

 fucoidans,
267, 268

 or 9 

carboxymethyl starch
269

 showed promise to deliver the drug to the colon and to control its 10 

release. Ahmed et al.,
258

 demonstrated that the administration of taurine encapsulated in 11 

chitosan/pectin nanoparticles exerted beneficial effects in induced colitis in rats thanks to their 12 

anti-inflammatory and antioxidant activities. The nanoparticles (      , 48 mV) were 13 

prepared by ionic gelation and crosslinked with sodium TPP. However, at pH 6.4, a burst 14 

release was observed after the first 30 min followed by a slower release over 4 h.
258

 Coating 15 

of nanoparticles composed of chitosan/TPP with Eudragit (FS30D),
140

 confers a sustained 16 

release and a pH stimulated delivery of the encapsulated active drug in addition to a good 17 

accumulation in the colonic region of UC-induced rats.
140

 Nanoparticles composed of 18 

multilayers of chitosan oligosaccharide, alginate, and Eudragit S100 demonstrated pH-19 

dependent release of dexamethasone with a limited initial burst release in acidic pH. The 20 

nanoparticles exhibited significant therapeutic activity in a colitis-induced mouse model.
270

  21 

The chemical grafting of recognition ligands on chitosan nanoparticles further improved 22 

the targeting of the immune cells in the inflamed colon. Galactosylated chitosan nanoparticles 23 

were mainly used for the encapsulation of TNF-α siRNA or Map4k4 siRNA to increase the 24 

cellular uptake by activated macrophages through the galactose-mediated receptor.
201, 271, 272

 25 

Major results revealed that galactosylated nanoparticles that have a high binding affinity for 26 

siRNA showed enhanced in vivo anti-inflammatory efficacy in a mouse model of UC.
201, 271

 27 

To learn more about chitosan nanoparticle-mediated gene therapy strategies for mitigating 28 

IBD, see the review of Verma et al.
16

  29 

5.2. Hyaluronan 30 

Hyaluronan (HA), a nonsulfated glycosaminoglycan, is an essential component of the 31 

vertebrate extracellular matrix, where it is naturally present at relatively high concentrations 32 



 

 30 

in the extracellular matrix, especially of soft connective tissues (e.g., skin, vitreous humor, 1 

synovial fluid, umbilical cord). Viruses and bacteria also produced HA.
273

 HA is a linear 2 

heteropolysaccharide composed of repeating -1,4 bond disaccharide units of D-glucuronic 3 

acid and N-acetyl-D-glucosamine linked together through -1,3 glycosidic bonds. HA is a 4 

polyanionic polysaccharide. The HA molecule is negatively charged when the pH is higher 5 

than the pKa of HA carboxyl groups (   ).  6 

HA is implicated in various physiological functions in the intercellular matrix (e.g., 7 

homeostasis of water and plasma protein). HA is either anchored firmly in the plasma 8 

membrane or bond via HA-specific binding proteins. Among those receptors, called 9 

hyaldherins, CD44 is a transmembrane receptor known to play a critical role in 10 

inflammation.
274

  11 

HA has a variable molecular weight depending on the source of production. It is highly 12 

polydisperse and varies from 2 kDa to           . The rheological properties of HA are 13 

dependent on the HA molecular weight. In water, HA has a semi-flexible structure adopting a 14 

worm-like random coil. The radius of gyration,    depends on the molecular weight of HA as 15 

follows               
   .

275
 HA has intrinsic healing and anti-inflammatory properties 16 

that rely on the HA molecular weight. While high molecular weight HA (HMw-HA) has anti-17 

inflammatory activity, low molecular weight HA (LMw-HA) activates an innate immune 18 

response. Also, the affinity toward hyaldherins such as CD44 and RHAMM (receptor for HA-19 

mediated motility, designated as CD168) was controlled by the Mw of HA in solution or 20 

grafted on the particle surface.
276, 277

 Surface plasmon resonance experiments revealed that 21 

low molecular weight HA nanoparticles (6.4 kDa) exhibited low binding to CD44 receptor, 22 

while high molecular weight HA nanoparticles (1500 kDa) had a high binding affinity.
276

  23 

Intensive research investigations were focused on designing HA functionalized 24 

nanoparticles as a vehicle for active drugs to alleviate IBD (e.g., bilirubin,
278

 Lysine-proline-25 

valine (KPV tripeptide),
279

 budesonide,
280, 281

 methotrexate
265

). The drug is either 26 

encapsulated or covalently linked to HA nanoparticles. It was demonstrated that CD44 27 

overexpression on the surface of inflamed intestinal epithelial cells
281

 and proinflammatory 28 

macrophages
278

 contributed to the accumulation of HA nanoparticles in the inflamed colonic 29 

tissue in DSS-induced colitis mice.
278

 In addition to the eEPR effect, the glycoside cluster 30 

provided by dense HA on nanoparticle surface contributes to higher receptor-mediated 31 

interaction with cells.
282

 This property was exploited for the intracellular delivery of nucleic 32 



 

 31 

acids. CD44 targeting HA nanoparticles can selectively deliver siRNA (silencing TNF-α or 1 

CD98) to peritoneal macrophages leading to downregulation of proinflammatory cytokines.
215

  2 

HA nanoparticles act on the tight junction proteins ZO-1 and occludin-1, which are tight 3 

junction-associated proteins that play pivotal roles in gut homeostasis.
279

 DSS-colitis mice 4 

orally administered with HA nanoparticles covalently linked to bilirubin normalized the 5 

expression patterns and messenger RNA levels of ZO-1 and occludin-1, while other control 6 

groups, including free HA, and the association of HA and bilirubin had minimal impact.
278

 7 

Furthermore, the same study reported the role of HA nanoparticles conjugated to bilirubin in 8 

restoring intestinal barrier functions and reducing the level of apoptosis in the colonic 9 

epithelium. This formulation significantly reduced the local levels of proinflammatory 10 

cytokines, such as IL-1β, TNF-α, and IL-6, while increasing the levels of anti-inflammatory 11 

IL-10 and TGF-β cytokines.
278

  12 

HA nanoparticles also modulate the gut microbiota, increasing the overall richness and 13 

diversity. HA nanoparticles covalently linked to bilirubin markedly increased the abundance 14 

of Akkermansia muciniphila (known to be associated with protective intestinal barrier 15 

functions
283

) and Clostridium XIVα, which are microorganisms with crucial roles in gut 16 

homeostasis.  17 

5.3. Pectins 18 

Pectins are a class of complex polysaccharides extracted from most terrestrial plants' cell 19 

walls, where they exert a function of controlling the movement of water and cementing for the 20 

cellulosic network.
284

 They are known for their ability to form gels in the presence of calcium 21 

ions, solutes, or at low pH. Pectins are mainly composed of a linear chain of a homopolymer 22 

of -(1,4)-D-galacturonic acid. The carboxylic acid groups on the backbone are methyl 23 

esterified at various degrees, thus controlling the gelling properties of pectins.
285

 Pectins are a 24 

class of block copolymers because the linear chain termed ‘smooth region’ is occasionally 25 

interrupted by side chains composed of rhamnogalactomannan. This heteropolymer alternates 26 

(1,2)-α-L-rhamnosyl-(1-4)-α-D-galacturonic acid disaccharide units. These neutral chains tend 27 

to be gathered into particular areas of the pectin molecule are called ‘hairy regions’. There 28 

may be different branched blocks in pectins from one cell wall or even within a single pectin 29 

molecule. Notably, pectins with high hairy regions are less stable at low pH than pectins with 30 

smooth regions.  31 



 

 32 

Pectins possess intrinsic anti-inflammatory activity depending on the degree of 1 

methylesterification.
286

 Low methylesterification pectins would be a more efficient anti-2 

inflammatory agent than high methylesterification pectins upon oral administration.
286

 Low 3 

methylesterification pectin inhibited local and systemic inflammation, whereas high 4 

methylesterification pectins prevented intestinal inflammation.
286

 When administered orally, 5 

pectins are subject to biodegradation by colonic bacteria. This property makes it ideal for 6 

targeted drug delivery to the colon.
287

 In particular, pectins with low hairy regions and low 7 

methylesterification are more subject to degradation in the colon have been widely used to 8 

design colon-specific nanoparticulate DDS for the treatment of IBD. In addition to these 9 

advantages, pectins are known for their mucoadhesive properties,
288

 making them ideal 10 

candidates to design colon-specific nanoparticulate DDS to alleviate IBD.  11 

In a recent work conducted by Yener et al.,
289

 pectin-based nanoparticles containing 12 

melatonin ameliorated the TNBS-induced IBD in rats by decreasing colonic fibrosis, 13 

oxidative stress, and inflammatory parameters of the colon. Melatonin was used as an 14 

antioxidant, anti-inflammatory, and radical scavenger drug. The nanoparticles formed by the 15 

polyelectrolyte complexation method using CaCl2 had a mean hydrodynamic diameter of 75 16 

nm and zeta potential of 24 mV. The same study revealed that pectin nanoparticles were 40 17 

times more adherent to the inflamed rat’s colon than the healthy colon mucosa, where the 18 

drug is released.
289

  19 

The efficacy of pectin nanoparticles was further improved by adding HA in the 20 

formulation. The resulting hybrid particles (284 nm in size) were used to encapsulate Rhein as 21 

a natural anti-inflammatory ingredient.
290

 According to physicochemical characterizations, the 22 

HA is located on the nanoparticles’ outer shell that actively targets macrophages through 23 

CD44-mediated endocytosis. Biological evaluations revealed that the nanoparticles 24 

accumulated in the inflamed area of the colon of a DSS-induced UC mouse model. The 25 

nanoparticles protected the intestinal barrier of UC mice by acting on tight junction proteins.  26 

5.4. Inulin  27 

Inulin is a natural fructose polymer mainly derived from plants. Examples of plants that 28 

contain large quantities of inulin are Jerusalem artichoke, chicory root, asparagus root. It can 29 

also be found in consumed vegetables such as onion, banana, leek, garlic, rye, barley, and 30 

wheat. Inulin consists of linear chains of D-fructose units (        ) linked by β-(2,1)-31 

glycosidic bonds and a terminal glucose residue (For review article on inulin structure and 32 



 

 33 

physicochemical properties see reference
291

). Inulin containing a maximum 10 fructose units 1 

is also referred to as oligofructose. Inulin had several intrinsic biological properties, such as 2 

anti-inflammatory activity. It can promote the proliferation of beneficial intestinal bacteria 3 

(e.g., Bifidobacterium and Lactobacillus) and maintain intestinal micro-ecological balance 4 

and host health.
292, 293

 In a pilot study, inulin-type fructans orally administered to patients with 5 

active UC induced functional but not compositional shifts of the gut microbiota. High dose 6 

administration of inulin-type fructans increased Bifidobacteriaceae and Lachnospiraceae 7 

abundance and increased SCFA levels.
294

  8 

Inulin is a potential candidate for drug delivery to the colon because the presence of β-9 

(2,1)-glycosidic bonds prevents its degradation in the upper part of the GI tract, while it gets 10 

degraded in the colon by colonic enzymes (e.g., ptyalin and amylase, which are adapted to 11 

digesting starch)
295

 and bacteria (Bifidobacteria).
296

  12 

Inulin has moderate solubility in water which decreases with temperature.
297

 Inulin was 13 

hydrophobically modified by grafting carboxymethyl groups
298

 hydrophobic 14 

dehydropeptide,
299

 on hydroxyls present on inulin backbone to deliver hydrophobic drugs like 15 

glucocorticoids (e.g., budesonide) or nitroimidazole antibiotics (e.g., ornidazole)
300

 for IBD 16 

treatment. In vivo results revealed that budesonide-loaded carboxymethyl inulin nanoparticles 17 

accumulate in inflamed colon tissue. Those systems showed enzyme- redox- and/or pH-18 

sensitive properties allowing a specific drug release into the inflamed colon.
298, 299

  19 

It has been reported that apremilast-loaded inulin nanoparticles can be coupled with 20 

mannose as a macrophage-targeting ligand.
197

 Apremilast was used as a model anti-21 

inflammatory drug for the treatment of IBD.
301

 Mannosylated nanoparticles showed greater 22 

uptake in inflamed macrophages than the untreated macrophage and mannose receptor-23 

negative cell lines. In vivo biodistribution exhibited 60% of mannosylated nanoparticles 24 

accumulated in the inflamed colon of UC mice. In addition to the colon-targeting property and 25 

anti-inflammatory activity of inulin, macrophage-targeted drug delivery could have promise 26 

for the treatment of IBD.
197

  27 

Table 5: A list of significant polysaccharides used to monitor IBD. 28 

Polysaccharides Origin Role in IBD  

Chitosan Exoskeleton of 

crustaceans
302, 

303
  

The cell wall of 

Different aspects of chitosan were explored for the monitoring 

of IBD:  

1- As a carrier of conventional drugs due to its upper GI tract 

resistance properties
306
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fungi
304, 305

  2- As a drug, where it can regulate different mechanisms:  

- Increasing the number of probiotics that regenerate the 

microbiota balance
307, 308

  

- Protecting the intestinal integrity by modulating the 

inflammation and oxidative stress
309

  

- Down-regulating the levels of macrophage-

inflammatory protein (MIP)-2 in the serum. 

- Up-regulating the frequency of FoxP3+ T cells, which 

prevent the auto-immune attacks. 

Hyaluronan 

(HA) 

Various origins 

Traditionally: 

extraction from 

rooster combs 

Nowadays: 

streptococcal 

fermentation 

 

HA is one of the glycosaminoglycans that is a significant 

component of the extracellular matrix of the intestinal 

mucosa,
310

 where it has a crucial function of maintaining the 

translocation of luminal content into the general circulation. 

Although its mechanism of action is not yet fully understood, 

HA plays a significant role in immuno-inflammatory process 

due to its high affinity to the CD44 receptors that are 

overexpressed by the endothelial cells of the inflamed colonic 

segments. These receptors are crucial for infiltrating immune 

cells (e.g., monocytes, macrophages, neutrophils) in the 

inflamed tissues to aggravate the inflammation. Accordingly, 

the selective binding of HA to endothelial CD44 receptors 

during an inflammatory process will hamper the recruitment of 

immune cells.
311-313

 In another study, Chen et al., explored the 

anti-inflammatory potential of high molecular HA (HMW-HA) 

in reducing inflammation through a Toll-like receptor 4 (TLR4) 

modulation.
314

 Indeed, TLR4 are widely distributed in the 

colon,
315

 and they play a pivotal role in the colonic defense 

system. Their results confirmed their theory as HMw-HA 

reduced the TNBS induced colitis in wild-type mice but not in 

TLR4−/− mice.  

Pectins Various origins 

(e.g., orange, 

citrus, apple)  

According to the origin of the extracted pectins, their role in 

IBD was reported to be different. Indeed, in one study, authors 

reported that pre-feeding mice with a side chain content of 

orange-extracted pectins had a protective effect of a TNBS-

induced inflammation, whereas the pre-feeding with citrus-

extracted pectins did not improve the clinical symptoms.
316

 

Pectins have a powerful impact on the downregulation of 

nuclear factor (NF)-κB p65 that is directly implicated in the 

immune response.
317

  

Fructan Angiosperms
318

 

(e.g., wheat, 

garlic, leeks, 

artichokes, 

agave) 

 

Fructan, is reported to protect the intestinal mucosa due to its 

ability to enrich the mucosal intestine with probiotics. Indeed, 

Hino et al., suggested that a TNBS-induced colitis healing in 

rats could be a consequence of an increase in the number of 

lactic acid-producing bacteria following the ingestion of short-

chain inulin-like fructan.
319

 More recently, similar data were 

obtained at the clinical level, where inulin-type fructan showed 
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clinical benefits in UC, as 77% of the patients showed a clinical 

response.
294

  

Guar gum Guar beans
251

  Guar gum participates in preventing and reducing UC by 

promoting the production of SCFAs. In a TNBS colitis model, 

it was demonstrated that partially hydrolyzed guar hum 

participated in the reduction of proinflammatory-cytokines, 

immune cells infiltration in the intestinal mucosa, and 

myeloperoxidase activity. Furthermore, another study reflected 

the wound healing of colonic epithelial cells and the repair of 

intestinal mucosa following the administration of partially 

hydrolyzed guar gum. The authors suggested that these 

observations would be a consequence of an up-regulation of 

extracellular signal-regulated kinases 1 and 2.  

  1 
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7. Challenges and future directions  1 

Nowadays, monitoring IBD relies on conventional drugs to prevent inflammation, 2 

alleviate the active phase, or modulate the immune response while using 3 

immunosuppressants. Nonetheless, using these drugs is often limited by either poor clinical 4 

efficiency or numerous side effects. Although the new biological therapies relying on the 5 

administration of monoclonal antibodies offer better management of the disease, their cost 6 

remains an obstacle for their ubiquitous use. Technological advances in designing 7 

nanoparticle-based therapies permitted the oral delivery of various drugs that would have 8 

found hurdles to reach the inflamed segment of the intestine after an oral administration. 9 

Nanoparticles exhibited many properties that make them suitable for the oral delivery of 10 

active drugs to alleviate IBD (e.g., ability to diffuse through mucus layer, mucoadhesive 11 

properties, passive targeting of the inflamed colon, and cell penetrability).  12 

Polysaccharides, initially used for colon-specific drug delivery due to their 13 

biodegradability by bacterial enzymes, appear to be promising materials for designing 14 

nanoparticulate DDS for IBD treatment. The biocompatibility and the intrinsic activity of the 15 

polysaccharides, together with the advantages of the nanoparticulate systems, offer 16 

exceptional results in alleviating IBD. The most cited polysaccharides for IBD are chitosan 17 

and alginates. More recently, other polysaccharides were also investigated to alleviate IBD, 18 

such as hyaluronan, pectins, and inulin. Using those polysaccharides in combination (e.g., 19 

pectin and HA) is particularly interesting because it leads to multifunctional nanosystems with 20 

controlled properties such as drug release and receptor-mediated targeting. Furthermore, the 21 

synergism between the drug and the polysaccharide that have an intrinsic biological activity 22 

should be further explored in the future. Cui et al.,
126

 recently reviewed this synergism 23 

between the drugs and polysaccharide-based carriers.  24 

Overall, the results depicted from the numerous studies which investigated the use of 25 

polysaccharides as delivery systems are encouraging. Nonetheless, several hurdles need to be 26 

tackled. Most of the polysaccharides are both polymolecular and polydisperse. Their 27 

composition varies with the source and conditions of extraction, location, and other 28 

environmental factors. Thanks to fungi and bacteria fermentation processes, the sources of 29 

polysaccharides production have been diversified over recent years. Additional efforts should 30 

be made in this area to produce polysaccharides in reproducible and controlled manners.  31 
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A significant area of concern is to develop standardized methods for the in vitro 1 

evaluation of drug behaviors in simulated media of disease patients. Indeed, the simulated 2 

media usually used for in vitro investigations rather mimic healthy patients than patients 3 

suffering from IBD. IBD patients suffer from several physiological changes compared to 4 

healthy subjects. Those changes include pH in the GI tract, gut microbiota alteration, and 5 

variations in the colonic enzymes. This standardization should allow a better comparison 6 

between different research groups and a better correlation between in vitro and in vivo 7 

situations in humans. Furthermore, the models used to evaluate the mucoadhesion and the 8 

mucopenetration of nano-drug delivery were usually performed on mucus from healthy 9 

animals. In contrast, several changes in mucus, structure, composition, and viscoelastic 10 

properties were reported with the mucus of patients suffering from IBD. Alternative methods 11 

to evaluate the behaviors of nanoparticles toward mucus from animal models with induced 12 

inflammation should be developed.  13 

Due to the complexity of IBD pathophysiology, the DSS and TNBS colitis models are far 14 

from mimicking the disease in humans. Passive targeting using eEPR was found to be weaker 15 

in humans compared to animal models. It has been increasingly clear that the intestinal 16 

microbiome is different in mice and humans. The pH in the mouse stomach varies from pH 17 

2.7 to 4.1, while in humans, it can go down to pH 1.
320

 However, the intestinal pH in mice 18 

was lower than in humans. Transit time, the mucus growth rate, and thickness are also 19 

different in mice and humans.
321

 Mice mucus shows different levels of glycan profiles than 20 

humans. For a review article see reference 
322

. Furthermore, only a few percent of the 21 

bacterial gene are shared between mice and humans.
322

 Some receptors expressed by cells in 22 

mice are different from those in humans. Accurate animal models that mimic human IBD 23 

disease need to be developed in the future. Efforts were recently stressed on developing 24 

humanized mouse models,
323-325

 or using large mammalian models such as pigs.
326

  25 

Over the recent years, receptor-mediated targeting of immune cells showed promising 26 

preclinical results compared to non-targeted nanoparticulate DDS. However, the analysis of 27 

research articles in this field revealed that targeting strategies mainly focus on mannose 28 

receptor, CD44, and galactose agglutinin, while there are various receptors or cell adhesion 29 

molecules that are upregulated in the colon tissues of IBD.
327-330

 Those receptors and cell 30 

adhesion molecules are still not applied to design targeted nanoparticles. Also, efforts should 31 

be devoted to understanding additional molecules implicated in the pathological process of 32 

IBD.  33 
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Another hurdle is related to the low encapsulation efficiency and the premature drug 1 

release of the encapsulated drug. Low encapsulation efficiency and premature drug release 2 

were tackled through the covalent linkage of the drug to the polysaccharide.
331-334

 Compared 3 

with physical encapsulation, the prodrug strategy was explored for developing smart-4 

responsive drug-polysaccharides conjugates.
331

 In these systems, the drug was released under 5 

stimulus (e.g., pH, ROS, enzymes) for specific drug delivery at the site of inflammation.
298, 

6 

331, 335
 However, the prodrug strategy could be limited by the availability of the appropriate 7 

functional groups of the drugs to be conjugated to the polysaccharide.  8 

Finally, from a technological point of view, there are several well-known hurdles related 9 

to complex manufacturing processes of nanoparticles, the difficulty of scalability, and poor 10 

reproducibility.
336

 These issues should be addressed by taking advantage of the considerable 11 

progress in the nanomedicine field these two last years. The psychological barrier to the 12 

clinical development of nanomedicines has been broken with the planetary commercialization 13 

of COVID vaccines composed of lipidic nanoparticles. The latest advances in lipid 14 

nanoparticles will undoubtedly orient future research works in the nanotechnology field. 15 

Today, we can rapidly overcome the technological and regulatory issues related to 16 

nanoparticle preparation and treatment processes after their preparations.  17 

8. Conclusion 18 

IBD remains one of the most challenging and less understandable diseases of the 21
st
 19 

century. Over the last couple of years, numerous medical and technological advances have 20 

allowed a better comprehension of the pathophysiology of IBD. Understanding 21 

immunological and proinflammatory signalling cascades has opened new avenues in 22 

monitoring the disease. Developing biological treatments relying on administrating 23 

monoclonal antibodies or siRNA targeting proinflammatory cytokines has gained much 24 

interest. Nonetheless, biologics are associated with some shortcomings, such as their 25 

expensive treatment or their reported loss of efficacy, partly because of the formation of anti-26 

drug antibodies (ADAbs). Within these circumstances, new strategies are under investigation 27 

to develop new management protocols for IBD symptoms. Such strategies include 28 

nanotechnology or polysaccharide-based therapies. The principal target behind using 29 

engineered nanoparticles is to deliver a lower drug dosage to reach a higher therapeutic 30 

response. This strategy is possible because nanoparticles can target the API directly to the 31 

inflamed region of the colon, allowing to avoid the numerous systemic side effects of the 32 
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current medicines. Another characteristic of nanoparticles is their ability to protect fragile 1 

drugs from degradation in the harsh GI tract environments, allowing them to reach their site 2 

of action. More recently, polysaccharide-based therapies are gaining more interest as potential 3 

molecules for the monitoring of IBD. In fact, in addition to their high safety and low systemic 4 

side effects, polysaccharides were reported in numerous studies to play a prime role in 5 

regulating the inflammatory cytokines, the intestinal microbiome, and the immune system. 6 

These characteristics put polysaccharides on the spot of being an exciting alternative for 7 

currently available drugs.  8 
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11. Abbreviations  1 

5-ASA: 5-aminosalicylic acid  2 

API: Active pharmaceutical ingredients  3 

CD: Crohn disease  4 

COX: Cyclooxygenase   5 

CRF: Corticotrophin-releasing factor  6 

CYA: Cyclosporine A  7 

DA: Degree of acetylation  8 

DDS: Drug delivery systems  9 

eEPR: Epithelial enhanced permeability and retention  10 

ES100: Eudragit S100  11 

GALT: Gut-associated lymphoid tissue  12 

GDNs: Grapefruit-derived nanovesicles  13 

HA: Hyaluronan  14 

HMw-HA: high molecular weight HA  15 

IBD: Inflammatory bowel disease  16 

Ig: Immunoglobulin  17 

ILC: Innate lymphoid cells  18 

KPV: Lysine-proline-valine  19 

LMw-HA: low molecular weight HA  20 

MAPK: Mitogen-activated protein kinase  21 

MeO-PEG-b-PMOT: Methoxy-poly(ethylene glycol)-b-poly [4-(2,2,6,6-22 

tetramethylpiperidine-1-oxyl)oxymethylstyrene]  23 

NF-κB: nuclear factor-κB  24 

NK: Natural killer  25 

NLC: Nanostructured lipid carriers  26 
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NO: Nitroxide  1 

PCL: Polycaprolactone  2 

PEG: Poly(ethylene glycol)  3 

PEI: Polyethyleneimine  4 

PLGA/PLA-PEG-FA: Poly(lactic-co-glycolic acid)/poly(lactic acid)-polyethylene glycol-folic 5 

acid   6 

ROS: Reactive oxygen species  7 

SCFAs: Short-chain fatty acids  8 

Silicon dioxide: SiO2   9 

TLR: Toll-like receptors  10 

TNBS: Trinitrobenzosulfonic acid  11 

TPP: Tripolyphosphate  12 

UC: Ulcerative colitis  13 


