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Abstract

The outbreak of COVID-19 resulted in high death tolls all over the
world. The aim of this paper is to show how a simple SEIR model
was used to make quick predictions for New Jersey in early March
2020 and call for action based on data from China and Italy. A more
refined model, which accounts for social distancing, testing, contact
tracing and quarantining, is then proposed to identify containment
measures to minimize the economic cost of the pandemic. The latter
is obtained taking into account all the involved costs including reduced
economic activities due to lockdown and quarantining as well as the
cost for hospitalization and deaths. The proposed model allows one to
find optimal strategies as combinations of implementing various non-
pharmaceutical interventions and study different scenarios and likely
initial conditions.

1 Introduction

The COVID-19 outbreak gave rise to an unprecedented production of models
and studies aimed at understanding the pandemic, predicting its evolution
and designing measures to reduce its spread. A complete account would be
fairly impossible and would likely become obsolete in short time. However, a
review of some approaches is in order to better cast the contribution of this
paper.
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The birth of epidemiological models dates back to the pioneering work
of Kormack and McKendrick [34], which proposed to divide the population
in categories as susceptible, exposed, infected and recovered. Such models,
using the first letter of populations, are called SEIR and are based on systems
of differential equations. The infection and recovery rates dramatically affect
the trajectories of model populations, making them key parameters in our
model. Various generalizations of the SEIR model were used to model the
COVID-19 spread, such as: 1) considering time-dependent infection rates,
travel and zoonotic infections [16, 45]; 2) including more sub-populations
capturing different disease progressions and/or hospitalization [28]; 3) adding
age-structure and spatial models [12, 19, 20, 32, 58, 57].
Let us also mention several other approaches not based on SEIR models, such
as multiscale models [8], reaction-diffusion equations [5], integro-differential
equations [33]. There has also been discussion on the role played by models
for predictions [37, 53]. The problem is particularly difficult as any model
including human behavior in the system, see [38].

In this paper, we focus on modeling a combination of interventions to con-
trol the spread of the infection. Interventions include social distancing and
other restrictive measures, testing for infected persons and contact tracing
for persons who had contact with infected ones or traveled to areas with high
rate of infections. The action following testing and contact tracing is to man-
date quarantine for a period of time. There has been effort in modeling and
analyzing such control policies and, as said above, we report a subset of the
feasible approaches to better understand effects of these interventions. Pre-
vious work in control of pandemic includes: determining the controllability
using daily data [14], considering individual reaction to non-pharmaceutical
interventions [36], determining best timing of interventions [27, 42], including
testing and quarantining [6]. Moreover, some of the considered interventions
were already modeled for other viruses such as HPV [13, 46]. Finally, some
papers focused on the economic cost considering uncertainty in data [29],
cost of lockdown [1, 4], hospital and ICU occupancy [18, 47].

Our work developed over the past year starting with a simple SEIR model
to predict the need of hospital beds in different social distancing scenarios.
The model included discrimination between asymptomatic and symptomatic
infected to better capture the spread dynamic and also provide an estimate of
hospital bed occupancy and shortfall directly due to COVID-19. The model
was instrumental in identifying the needs for the state of New Jersey as the
spread was arriving from the neighboring New York, see [2] and was cited in
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a letter from New Jersey Governor Phil Murphy [39].
We then augmented the model to include three main control mechanisms:
(1) general social distancing measures; (2) testing and (3) contact tracing.
The focus of this work is on understanding the effects of the different controls
and optimizing a cost function capturing the economic cost of the controls,
healthcare, and population. More precisely our advanced SEIR-type model
includes quarantined, hospitalized and deceased subpopulations. The dy-
namics introduces additional terms to model the effects of social distancing
and lockdown measures, as well as the quarantined based on testing and con-
tract tracing activities. The model is then tuned to data from New Jersey,
separated into three groups of counties: Northern(Red), Central(Orange),
and Southern(Yellow). This reflects the different characteristic of the pan-
demic evolution, which was affected by regional differences in population den-
sity and population structure. For instance the basic reproduction number
R0 was estimated to be higher in the northern and central regions compared
to the southern one, while hospitalization rate was higher in the northern
region than the central one.

We consider an optimal control problem using the NJ dataset and our
model, wherein the cost is given by the sum of six terms: the economic
cost of lockdown measures, the cost of testing, the cost of contact tracing,
the economic cost of quarantining, the economic cost of hospitalization and,
finally, the economic cost of deaths. The economic cost of lockdown and
quarantining is estimated as a daily cost per person, while the economic cost
of hospitalization is differentiated for bed cost when the occupancy is below
or above the normal capacity. We simulated the scenario of detection of
the infection spread after 15 days of appearance. The main results are the
following: a) the lockdown should be as strict as possible for the first 60
days after detection; b) testing should be sustained at its maximum for the
whole time horizon; c) the contact tracing should be activated only for two
weeks after the detection. Interestingly enough, despite the difference in the
characteristic of the pandemic spread in the three regions, the optimal policy
appears to be reasonably uniform. We believe that the tools presented here
could be useful in the management of the pandemic in different phases of its
progression and for different states.
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2 A SEIR model for quick predictions of hos-

pital bed needs

In March 2020, a study [3] was developed by the Senator Walter Rand Insti-
tute and the Center for Computational and Integrative Biology, in collabo-
ration with New Jersey Health Initiatives. This work compared the available
hospital beds in eight counties of New Jersey, with the likely demand of hos-
pital beds due to the COVID-19 outbreak, considering multiple virus spread
scenarios. The focus was on using a simple model for a quick prediction of
the imminent spread and an estimate of hospital beds needed to manage the
spread.

2.1 The SEIR model

The work is based on an augmented form of a SEIR model [55] for COVID-19
in Wuhan and its international spread. Additional features were added to
the model and parameters were fit with data from the Italian outbreak of
February 2020. For each county, the following were estimated:

• Hopital bed availability;

• Expected day of peak in hospital bed demand considering three social
distancing policies: minimal, moderate, and strong;

• Expected demand exceeding hospital bed capacity;

• Impact of social distancing on R0 and lessening the spread of COVID-
19.
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Name Description Estimate Units

R0 rate of infection [2-6] -

DI infectious period 5-7 days

DE latent period 4-14 days

DH hospitalization period 7-14 days

α asymptomatic rate 0.81 -

σ hospitalization rate 0.1-0.55 -

Table 1: Parameters for the initial SEIR model in (1) from [3].

The augmented SEIR model considered in (1) is given by:
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(1)

where S are susceptible, E exposed, IA infected asymptomatic, IS infected
symptomatic, R recovered, andN = S+E+IA+IS+R is the total population.
The main augmentation is the distinction between infected symptomatic IS
and infected asymptomatic IA, so the total number of infected is given by
I = IA + IS. The parameter α is the asymptomatic incidence estimated to
be 0.81 by the study [56]. Also added is the hospitalization rate σ = 0.55 of
symptomatic patients from the same study. The whole set of parameters are
reported in table 1.

To fit the model, we used data from China and Italy. More precisely, data
was gathered from a publication from the Chinese Center for Disease Control
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and Prevention on the largest case series to date of coronavirus disease [56],
and from recent data at the time of writing about the impact on Italy [44] in
order to find suitable model parameters. China’s spread was already under
control in March 2020 after strong social distancing and lockdown measures.
Italy was the country with the highest infection rates in February and early
March 2020 and data were publicly available. The number of hospitalizations
in northern Italy quickly bumped from 200 on February 24 2020 to around
6,000 on March 11 2020 on a population of around 25 million affected in
North Italy [44]). The resulting basic reproduction number was estimated as
R0 = 3.9. To perform simulations, we considered different choices of the basic
reproduction number: R0 = 3.9 as estimated by the Italian data, R0 = 2.68
as suggested in the study [55] based on Wuhan data and R0 = 1.3. The
choices were reflecting the expected spread evolution in cases of different
levels of intervention with social distancing measures. At the time, social
distancing measures were still under design at state level as cases were quickly
shifting from the neighboring New York State.

2.2 Results of Initial SEIR study

The research brief [2] provided predictions based on possible “moderate in-
tervention” and “strong intervention” with social distancing measures. A
confidence interval of dates was given for each county, when the hospital bed
demand was expected to surpass capacity. Moreover, a range of parameter-
izations of the SEIR model (1) led to the prediction interval. At the time,
and still now, it was not clear how the social distancing measures and lock-
down would impact the basic reproduction number, thus we resorted to the
two levels observed from Italian and Chinese data and the level R0 = 1.3
corresponding to more robust measures. The motivation for this study was
to forecast as early as possible the hospital bed shortfall in New Jersey from
the COVID-19 pandemic. By quickly assembling a collaboration between
the Center for Computational and Integrative Biology, the Senator Walter
Rand Institute, and New Jersey Health Initiatives, we were able to release
this briefing on March 16, 2020 and Gov. Murphy cited the study in a letter
to President Trump [39]. Results are summarized in a graphic (Fig. 1).
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Figure 1: Predictions to reach hospital bed capacity given implementing a
moderate or strong social distancing policy from March 16, 2020 research
brief [2].
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3 Continued model fitting with New Jersey

dataset

In the following months the SEIR model (1) was continuously updated using
data from New Jersey. To fit our model parameters we used three distinct sets
of NJ counties where the virus spread differently. The zones were identified
with a color (red, orange and yellow) and the map is shown in Figure 2
(below). The northern collection of counties are referred to as the “red zone”
(population = 4,111,309). The central collection of counties are referred to
as the “orange zone” (population = 2,835,111). The southern collection of
counties are referred to as the “yellow zone” (population = 1,845,474). Figure
2 (above) reports the list of counties with onset dates, time for doubling of
cases and deaths and other data.

3.1 Fitting the reproduction number

Estimates of the reproduction number were obtained using techniques devel-
oped by Thompson et al. [49]. This method deals with the instantaneous
reproduction number, given by the average number of secondary cases that
would arise from a primary case infected at time t given all causal factors
remain fixed after time t [26]. Intuitively, the instantaneous reproduction
number characterizes the “instantaneous” transmissibility at time t and does
not require assumptions about the future [49], thus making it easier to es-
timate. Thompson et al. [49] also provide access to an online tool for the
purpose of this task (the tool is available through the following URL [48]).

Serial intervals, defined as the time between successive cases in a single
series of transmission, are typically interval-censored data studied in the form
of approximate lower and upper bounds on the interval. These data are often
reported by the way of household-interviews and analysis of hospital records
such as in the case of Ebola [22]. Without an early stage contact-tracing
protocol, accurately collecting data on transmission chains is a challenging
task.

By initializing a gamma distribution prior for the serial intervals, we per-
form a Bayesian parameter estimation to obtain posterior samples of the
serial interval distribution. Assuming that the number of daily (local) in-
cidences is drawn from a Poisson distribution, a gamma distributed prior
(conjugate to the Poisson likelihood) can be used to obtain a fully analytical
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Figure 2: Map of NJ counties according to colored zones (below) and table
of data per each county (above).
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Figure 3: Estimate of R0 (Left:Red, Center:Orange, Right:Yellow) over time
with confidence interval (day 1 is January 22nd).

form of the posterior distribution of Rt, the time-varying reproduction num-
ber, given the incidence data up to time t and the serial interval distribution.
Lacking any data on the transmission chains in the state of New Jersey at
the time of our study, we parameterize the gamma distributed prior with
a mean interval of 3.96 days with a standard deviation 4.75 days based on
a study of 468 confirmed cases of coronavirus disease reported in China as
of February 2020 [23]. The estimated Rt for the three regions is shown in
Figure 3.

3.2 Fitting the model with confirmed cases, hospital-
izations and deaths

After fitting the reproduction number Rt, we used further data from the
Johns Hopkins public repository [21]: confirmed COVID-19 cases, COVID-
19 related hospitalizations, and COVID-19 related deaths. As with R0 we
segregated Rt into the three sets of counties called “Zones”: Red, Orange,
and Yellow.

The confirmed cases, hospitalization, and deaths time series data was used
to generate a seven day moving average of the daily cumulative totals; the
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moving average of the time series is used to account for irregularities in the
data due to the day of the week. The deaths data was additionally processed;
on June 26, 2020 many deaths were deemed resulting from COVID-19 that
had previously been considered otherwise. This caused an abrupt increase in
cumulative deaths from day 83 to 84.

To reflect the true cumulative deaths from COVID-19 over time, we took
the difference from day 84 and 83 and spread this amount over day 1 to
day 83, weighted by the proportion of deaths from day 1 to day 83. Let
the increase in number of deaths from day 83 to day 84 for the red, orange,
and yellow zones be, J = 1126, J = 538, J = 132 respectively. We find the
proportions of J that we must add to every day before day 84. For cumulative
deaths on day t, we have the raw deaths (the data with a large jump from
day 83 to 84) and the normalized deaths (the data after we process it to
smooth this jump) shown in Figure 4.

w(t) = DR(t)−DR(1)

DN(t) =

{
J DR(t)

w(t)
if t ≤ 83

DR(t) otherwise
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Figure 4: Left: Artifact in raw Deaths dataset due to retroactively labeling
a large group of deaths as resulting from COVID, and Right: the normalized
dataset after we distribute the large jump over all previous days.

We considered three ways to interpret how confirmed cases data informs
our model. A person who tests positive may not necessarily be sick already,
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in which case the positive test would move one person to the IS compartment.
If they were not yet sick, this means the positive test moves one person to IA
because they are asymptomatic. Because testing was scarce in the beginning
of the pandemic, there is reason to believe that a vast majority of those
testing positive were symptomatic and should therefore count towards the IS
population. In later months, increased testing suggests that there would be
more test positive for asymptomatic people.

1. All confirmed cases contribute to IS.

2. 100% of cases contribute to IS until April 20, then cases contribute 50%
IS, 50% IA by May 31. The contribution percentage is interpolated
linearly between these two dates.

3. All confirmed cases contribute to IS until April 20, then no longer fit
data for confirmed cases afterward.
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Figure 5: Data starting from April 2020. Top Left: 7-day rolling average
of confirmed cases; Top Right: 7-day rolling average of confirmed deaths.
Bottom Left: Confirmed cases resulting in hospitalization; Bottom Right:
Estimated reproduction rate.
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With these four datasets: calculated Rt, confirmed cases, hospitalizations,
and deaths, we now fit model parameters using a least squares optimization
scheme. The optimization script was written with AMPL code (“A Mathe-
matical Programming Language”). The optimization algorithm requires that
we use a continuous function to represent each of the four time series datasets
we’ve described above. We used matlab to interpolate all four datasets, trans-
forming the time series into a degree 8 polynomial. Then, to find the best
fitting parameters, we chose reasonable bounds in the parameter space over
which the fitting was done. The bounds for DI , DE, and DH are shown in
the estimate column of Table 1 whereas the other parameters had the follow-
ing intervals: R0 ∈ [0, 15], α ∈ [0, 1], σ ∈ [0, 1], r ∈ [0, 1], E0 ∈ [0, 8 × 106],
IA0 ∈ [0, 8× 106]. Figure 6 reports the fitting results for the red zone.

zone maxRt DI DE DH α σ r E0 IA0

Red 2.79 5.00 4.00 10.60 0.39 0.14 0.47 38, 682 1.85

Orange 3.26 5.00 4.01 10.87 0.35 0.17 0.43 15, 159.3 1.33136

Yellow 1.66 5.00 4.00 7.52 0.62 0.32 0.21 5141.2 407.32

Table 2: Values of parameters per zone.

The optimization to model parameters was done with chosen “reasonable”
bounds for each parameter and we penalized max Rt if it was lower than
2.5 and higher than 3.5; max Rt was strictly bounded between 0 and 15;
DI ,DE,DH were strictly between 5 and 7, 4 and 14, and 7 and 14 respectively;
α was bound between 0 and 1.

The main takeaways after fitting parameters are as follows. The basic
reproduction max Rt number was similar for the three zones with a higher
value for the orange zone. The time duration of exposure DE, infection DI ,
and hospitalization DH were reasonable values determined by the optimizer,
and they were similar among the zones. The initial asymptomatic infected
population IA0 is smallest for the red zone and largest for the yellow zone.
The initial Exposed E0 was highest in the red zone , and smallest in the
yellow zone which reflects the total population in these zones. σ was bound
between 0.1 and 0.55; r was bound between 0 and 1; E0 was bound between
0 and 8 million. We penalized IA0 if it was greater than 500, with a strict
upper bound of 8 million.
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Figure 6: Result of fitting infected, hospitalized and death data for the red
zone. Blue line: data from the Johns Hopkins public repository. Red line:
model trajectory using optimized parameters.

4 A model for social distancing, testing and

contact tracing

Measures to keep the pandemic under control included: testing for the pres-
ence of the virus, contract tracing for people that had recent contact with
infected people, and social distancing measures to reduce the reproduction
number. Moreover, quarantining was put in effect for detected infected per-
sons, but also via contact tracing.

To model these measure, we add three populations: SQ, resp. EQ, the
population of susceptible, resp. exposed, that are quarantined by effect of
contact tracing and IQ of infected that are quarantined by either test or con-
tact tracing. We also add the number of deceased D, which will serve later
to estimate the economic cost of the pandemic and the controls.
The social distancing and lockdown measure are captured by a control vari-
able u ∈ [0, 1], which multiplies the basic reproduction number R0. In other
words, this represents the social behavior that limits number of asymptomatic
infected exposing other populations to the virus. Moreover, two other con-
trols are added: a parameter δ corresponding to tests and µ related to contact
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tracing. The final model reads:
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The equation for susceptible S has two additional terms: the first is nega-
tive and reflects the quarantining as result of contact tracing and the second
is positive and reflects the end of quarantining. Notice that the first term
is obtained by multiplying the number of tested positive (i.e. δIA

S+E+IA
) and

the fraction of susceptible among individual quarantined because of contact
tracing (i.e. µ S

S+E+IA
). The second term is simply obtained from SQ using

the quarantining duration in days DQ.
The equation for exposed E has similar terms, while the equation for in-
fected asymptomatic IA has the additional negative term due to positive
tests δ IA

S+E+IA
. Also, the correction for the infected symptomatic IS is only

due to the new population EQ.
The equations for the new quarantined populations SQ, EQ and IQ are as
follows. SQ has two terms corresponding those of S since in quarantine sus-
ceptible will not be infected. The equation for EQ has the positive term
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corresponding to the negative for E and two negative terms as for transition
either to recovered at the end of quarantine, i.e. DQ days, in the asymp-
tomatic case and to infected symptomatic for the symptomatic case, with
the same ratio α as for E. Finally, IQ represent the infected quarantined
which are necessarily asymptomatic or mildly symptomatic. Therefore the
equation has three positive terms for symptomatic which are mild and not
hospitalized, and asymptomatic found by testing and contact tracing, and
one negative term for quarantine ending.
The equation for hospitalized H is as before, the recovered include terms for
the end of quarantine and a correction from hospitalized that transition to
the new category D of deceased.
The bounds for the control variables are as follows:

• Control u = 1 means no intervention, while u = 0 would represent total
lockdown. For our simulations, we subject u(t) to constraints to ensure
that R0u(t) ∈ [0.8, R0] for R0 measured before any social distancing
policy.

• δ is the amount of testing of infected not symptomatic population to de-
tect Sars-Cov-19 presence. Given a maximum test-per-day availability
M1 we have the following constraint δ ≤M1.

• µ is the amount of contact tracing to quarantine persons which had
contacts with IA detected by test. Given a maximum tracing-per-day
availability M2 we have the following constraint µ ≤M2.

This model has new variables and parameters in addition to those of the
initial SEIR model (1). The quarantine time was chosen as DQ = 14 days,
while the other model parameters were fit to data as explained in Section 3.

5 Optimal Control

In this section we propose an optimal control problem for the model (2) with
controls representing social distancing, testing, contact tracing and quaran-
tining. We use the model fit to the three New Jersey areas (Red, Orange
and Yellow) and optimize the strategy over the economic cost of pandemic
management under the scenario that the infection spread is detected after
15 days of first case.
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We define the cost function C = C(u, δ, µ, S, E, IA, H) by

C = C1 + · · ·+ C6,

where
C1 = c1S0(1− u), C2 = c2δ, C3 = c3µ,

C4 = c4(SQ + EQ + IQ), C5 = c5ψ(H), C6 = c6D

and the constants c1, . . . , c6 and the function ψ are to be defined. The mean-
ing of the cost function is as follows. The term C1 reflects the cost of social
distancing: u = 1 correspond to no measure so zero cost, while u = 0 corre-
sponds to total lockdown so a loss of c1 dollar per day per susceptible person.
The term C2 represent the cost of testing and C3 of contact tracing. The cost
C4 is the cost of quarantining with a loss of c4 dollars per day per quarantined
person. The cost C5 represent the cost of hospitalization. More precisely we
define:

ψ =

{
H for H ≤ Hcapacity

Hcapacity + 10(H −Hcapacity) for H > Hcapacity

(3)

where Hcapacity is the number of available hospital bed before the pandemic
onset. Therefore the cost of hospitalization is c5 dollars per day per hospi-
talized person up to capacity. Then the cost is multiplied by a factor of 10
representing the need of creating new capacity by building hospitals. Finally,
the term C6 capture the social cost c6 dollars per deceased person.
To obtain an explicit expression of the cost, we use the parameters in the
following table:

C1 = c1S0(1− u) c1 = 70, cost of social distancing,

C2 = c2δ c2 = 100, cost of testing,

C3 = c3µ c3 = 100 cost of contact tracing,

C4 = c4(SQ + EQ + IQ) c4 = 70 cost of quarantining,

C5 = c5ψ(H) c5 = 2700 cost of hospitalization,

C6 = c6D c6 = 1,500,000 cost of mortality.

The values of c1-c6 shape the cost function; thus, choosing reasonable
values for these constants is important. However, choosing appropriate con-
stants is challenging because the actual costs associated with these constants
(social distancing, testing, contact tracing, quarantining, hospitalization, and
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death) varied by jurisdiction and also changed over the course of the pan-
demic. To select values, we searched for estimates of each cost in New Jersey
(or the country) during the pandemic. Here we explain the context for our
choices.

As discussed, we cannot know true values of c1-c6 with complete certainty.
Thus, confidence in the model rests on the assumption that the difference
between selected c1-c6 and true c1-c6 values are in a range that would not
change the model output. To test the security of that assumption, we con-
ducted a sensitivity analysis (described below). This analysis showed model
outputs are similar provided that true c1-c6 values are within roughly an
order of magnitude of selected c1-c6. Because the variation in estimates of
each constant was well within an order of magnitude, we are confident in
using the selected values of c1-c6 to inform the model.

To estimate the cost of social distancing (C1), we used two estimates of
the economic cost during lockdown. The president of the St. Louis Federal
Reserve bank estimated on April 16th, 2020 that the lockdown cost the US
economy 25 billion per day [41]. With a US population of 331 million on that
date [15], this puts the cost of social distancing at $76 per person per day.
A second estimate from the Wall Street Journal suggests that the economic
shutdown would decrease GDP in the US by 30% [31]. The World Bank
estimates GDP per capita in the US in 2019 as 65,000 [7]. This puts the cost
of shutdown per person per day as $53 (30%*65,000/365).

Although the cost of a COVID-19 test varied by provider and time during
the pandemic, the New York Times estimates that the cost of a test (C2)
averaged about $100 [50].

In the fall of 2020, New Jersey issued a 37 million contract for contact trac-
ing for the six month period from October 2020-March of 2021 [30]. During
that time period, New Jersey had 694,000 COVID-19 cases [21]. The per-
centage of contacts traced varied in that time. On 15 days sampled between
October 1st and March 31st from the New Jersey COVID-19 dashboard, on
average 62% had successful contact tracing [40]. At 37 million for 420,280
cases with contact tracing, this is $86 per person for contact tracing (c3).

The cost per person for quarantining (c4) can vary widely. Some individu-
als quarantine at home, while others are in hotels. In some cases quarantining
also includes lost wages or unemployment, while in other cases individuals
continue to work from home. In February of 2021, the estimated cost of
quarantine per person was $430 for a 7 day quarantine, or $61 per person
[10].
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Hospitalization costs (c5) also vary widely. In New Jersey, the average
estimated cost of hospitalization per day is 2,786 per person per day [24].
Once beds are full, the cost of constructing a new hospital is large. One
estimate is $70 million for 3000 bed hospital, which puts the cost at about
23,000 per bed.

Finally, estimates of early mortality vary widely. For insurance and and
policy guidelines, different entities place economic valuations on human life.
When deciding on whether to recommending health interventions, for exam-
ple, it is common to weigh the cost of an intervention against the years of
quality life it helps achieve. While there is a range of estimates for COVID,
one analysis puts the cost of an average COVID-19 death at $1.5 million [17].

We consider the optimal control problem in Bolza form over the time
horizon [0, T ]

min
u(·),δ(·),µ(·)

∫ T

0

C(u(·), δ(·), µ(·), S(t), E(t), IA(t), H(t)) dt (4)

for the dynamics (2).

5.1 Optimization algorithm

The optimal controls are included in two steps:

1. Define bounds for the controls; bounds for u(t) are calculated from the
estimates of R0.

u(t) ∈ [a, 1], µ(t) ∈ [0, 1e4] and δ(t) ∈ [0, 1e4],

where a = 0.8
maxR0(t)

. The choice of a ensures that the lowest measured

R0(t) = 0.8 which is consistent with data.

2. Optimize to find the levels of social distancing (u(t)), testing (δ(t)),
and contact tracing (µ(t)) that will minimize the economic costs. These
controls are introduced formally in Section 5.

To compute numerically the optimal solutions of our optimal control prob-
lem, we choose here a direct method. Very briefly, when dealing with an
optimal control problem, one usually distinguishes between direct and in-
direct methods. Direct (transcription) methods consist in discretizing the
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whole problem (discretize the system, e.g., by some Runge-Kutta method;
discretize the cost functional, e.g., by some trapezoidal rule) so that we end
up with a high-dimensional, but classical, nonlinear optimization problem
under equality and inequality constraints, which can then be handled thanks
to an optimization solver implementing, e.g., a gradient-like method based
on the KKT rule, or a dual method like Uzawa. In other words, in the
direct method, we first discretize, then optimize (or dualize). In the indi-
rect approach, in contrast, we first apply a first-order necessary condition
for optimality to the optimal control problem, i.e., we apply the Pontryagin
maximum principle (see [11, 35, 43, 52]), which leads to a shooting problem
that can be solved, numerically, thanks to a Newton-like method (see [9] for
well-posedness issues). In other words, in the indirect approach, we first op-
timize (or dualize) and then discretize. We refer to [51, 52] for a survey on
these methods and on the pros and cons of direct vs indirect approaches.

Here, we choose the direct transcription approach because our optimal
control problem involves state constraints that would be difficult to handle in
the Pontryagin approach. Moreover, direct methods are much softer insofar
they allow to change the model very easily. We discretize the control system
with the implicit RK2 scheme and the cost functional with the trapezoidal
rule, on a regular subdivision of the time interval (we take: one step = one
day).

The numerical implementation of the optimal control problem is done by
combining the sophisticated modeling language AMPL [25] (which encapsu-
lates automatic differentiation in a very efficient way) with the open-source
expert optimization routine IpOpt [54].

The initialization of the algorithm is done in a very simple way by ini-
tializing the discretized controls to (any) constant value and the discretized
states to a constant value that is corresponding to the initial condition of each
state. This rough initialization suffices to ensure convergence. Execution on
a standard desktop machine is almost instantaneous.

5.2 Results

Using the optimization algorithm of Section 5.1, we identified the optimal
policies for lockdown measures (u(t)), testing (δ(t)), and contract tracing (δ)
assuming an initial period of inaction of 15 days, due to lack of detection
of the virus, and time horizon of 200 days. The algorithm was used for the
three different zones, thus using different parameters specified in Table 2.
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Our main results are shown in Figures 7, 8 and 9.
In figure 7, the optimal policy for the red zone is shown, together with the

evolution of all the variables of the model (2). Let us first analyze the time-
evolution of the optimal controls. The lockdown captured by u(t) evolves
as follow. The first 15 days we have u = 0 due to lack of virus detection
so no measure taken. Then for around 85 days a maximum lockdown is im-
posed, with the reproduction number pushed down to the chosen minimum
of Rt = 0.8. After those 85 days, the lockdown is completely removed, thus
u = 1 for the rest of the simulation. The testing δ(t) is kept at its max-
imum after the first 15 days of inaction and completely stopped just after
the lockdown lift. On the other side the contact tracking µ(t) is activated at
its maximum after 15 days, but is quickly reduced to zero in around three
weeks.
The resulting effect of these control policies can be clearly seen in the evo-
lution of the populations. The susceptible population S decreases due the
infection in the first 15 days, then has a large dip due to quarantining, with a
bounce back completed around day 50, due to the stop in contact tracing. A
reversed evolution can be seen in SQ and the other quarantined populations
EQ and IQ. The exposed population E quickly decreases because of transi-
tion to infected and the control measures. The infected populations IA and
IS exponentially increase the fist 15-20 days and then are kept completely
under control. The evolution of the hospitalized population has consequently
the same characteristic, with a peak above 3000 around day 20, with a de-
crease to close to zero around day 60. The recovered quickly increase for the
first month but then saturate at around two months. Similarly deaths grow
quickly in the first month, then saturate reaching a total of around 5000 at
the end of the time horizon.
Lastly, it is interesting noticing the cost evolution. Costs C1, C2 and C3 as
expected grow linearly when the corresponding controls are active. Cost C4

grows quickly due to heavy quarantining in first 50 days then saturate. The
time-evolution of costs C5 and C6 is similar since hospitalizations and deaths
are on the high end only for a couple of months.
It is interesting to notice that the maximum cost is given by the lockdown
measures with final cost of the order of 1013, i.e. around 200 billions. Despite
the high level of this cost, the optimal strategy is to pay the high cost of lock-
down to prevent the infection from spreading and becoming uncontrollable.
If that happens, then, despite the fact that the other costs are lower per day,
they would accumulate over time giving rise to a higher final cost.
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In figure 8, the optimal policy for the orange zone is reported. We do not
notice big differences with respect to the red zone. An initial strong lockdown
lifted around day 100 is combined with testing lifted around the same time
as the lockdown, and contact tracing active only for around a month.

In figure 9, we report the optimal policy for the yellow zone. The most
significant difference is the longer period of total lockdown prolonged up to
around day 117, so for three months, while testing is stopped around day 75.

To explore the sensitivity of the optimal policy w.r.t. the chosen cost
parameters, we performed various simulations for the yellow zone varying the
cost coefficients as well as the initial populations. The optimal policy is very
robust with initial strict lockdown (u at minimum value) lifted completely
at a fixed date. Contact tracing and testing have similar behavior. In figure
10, we report the dependence of the date of lockdown lift as a function of
some parameters: the cost c1 of lockdown per person per day, the initial
population of exposed and the economic cost c6 of death. We noticed a
stronger dependence on cost of lockdown which, when varied in our range
from $70 to $700, diminished the lockdown duration by almost 40 days. In
contrast, we see a milder dependence on the number of initial exposed and
economic cost of deaths with a change of the order of few days when varying
the initial exposed up to 10,000 and the economic cost of death up to $ 10
millions.

22



0
5
0

1
0
0

1
5
0

2
0
0

3
.4

3
.6

3
.84

1
0

6
S

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

01234

1
0

4
E

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

IA
(t

)

0
5
0

1
0

0
1
5

0
2

0
0

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

IS
(t

)

0
5

0
1

0
0

1
5

0
2

0
0

02468

1
0

5
S

Q
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0

5
0
0

1
0
0
0

1
5
0
0

E
Q

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

IQ
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0

1
0
0
0

2
0
0
0

3
0
0
0

H
(t

)

0
5
0

1
0

0
1
5

0
2

0
0

02468

1
0

1
0

4
R

(t
)

0
5

0
1

0
0

1
5

0
2

0
0

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

D
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0
.4

0
.6

0
.81

u
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

(t
)

0
5
0

1
0

0
1
5

0
2

0
0

0

0
.51

1
.52

1
0

1
3

c
o

s
t1

(t
)

0
5

0
1

0
0

1
5

0
2

0
0

02468

1
0

7
c
o

s
t2

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0

0
.51

1
.52

1
0

7
c

o
s
t3

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

02468

1
0

1
0

8
c

o
s
t4

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0123

1
0

8
c

o
s

t5
(t

)

0
5
0

1
0

0
1
5

0
2

0
0

0246

1
0

8
c
o

s
t6

(t
)

F
ig

u
re

7:
R

ed
zo

n
e

re
su

lt
s.

23



0
5
0

1
0
0

1
5
0

2
0
0

2
.4

2
.5

2
.6

2
.7

2
.8

1
0

6
S

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

E
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0

1
0
0
0

2
0
0
0

3
0
0
0

IA
(t

)

0
5
0

1
0

0
1
5

0
2

0
0

0

2
0
0
0

4
0
0
0

6
0
0
0

IS
(t

)

0
5

0
1

0
0

1
5

0
2

0
0

01234

1
0

5
S

Q
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0

2
0
0

4
0
0

6
0
0

E
Q

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0

2
0
0
0

4
0
0
0

6
0
0
0

IQ
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0

5
0
0

1
0
0
0

1
5
0
0

H
(t

)

0
5
0

1
0

0
1
5

0
2

0
0

01234

1
0

4
R

(t
)

0
5

0
1

0
0

1
5

0
2

0
0

0

5
0

0

1
0

0
0

1
5

0
0

2
0

0
0

D
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0
.2

0
.4

0
.6

0
.81

u
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

(t
)

0
5
0

1
0

0
1
5

0
2

0
0

0

0
.51

1
.52

2
.5

1
0

1
3

c
o

s
t1

(t
)

0
5

0
1

0
0

1
5

0
2

0
0

02468

1
0

7
c
o

s
t2

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0123

1
0

7
c

o
s
t3

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0246

1
0

8
c

o
s
t4

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

05

1
0

1
5

1
0

7
c

o
s

t5
(t

)

0
5
0

1
0

0
1
5

0
2

0
0

0123

1
0

8
c
o

s
t6

(t
)

F
ig

u
re

8:
O

ra
n
ge

zo
n
e

re
su

lt
s.

24



0
5
0

1
0
0

1
5
0

2
0
0

1
.4

1
.5

1
.6

1
.7

1
.8

1
0

6
S

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

E
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0

5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

IA
(t

)

0
5
0

1
0

0
1
5

0
2

0
0

0

5
0
0

1
0
0
0

IS
(t

)

0
5

0
1

0
0

1
5

0
2

0
0

01234

1
0

5
S

Q
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0

1
0
0

2
0
0

3
0
0

E
Q

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0

5
0
0

1
0
0
0

1
5
0
0

IQ
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

H
(t

)

0
5
0

1
0

0
1
5

0
2

0
0

0

5
0
0
0

1
0
0
0
0

1
5
0
0
0

R
(t

)

0
5

0
1

0
0

1
5

0
2

0
0

0

1
0

0

2
0

0

3
0

0

4
0

0

D
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0
.5

0
.6

0
.7

0
.8

0
.91

u
(t

)

0
5
0

1
0
0

1
5
0

2
0
0

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

(t
)

0
5
0

1
0

0
1
5

0
2

0
0

05

1
0

1
5

1
0

1
2

c
o

s
t1

(t
)

0
5

0
1

0
0

1
5

0
2

0
0

0246

1
0

7
c
o

s
t2

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0123

1
0

7
c

o
s
t3

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

0246

1
0

8
c

o
s
t4

(t
)

0
5
0

1
0
0

1
5
0

2
0
0

01234

1
0

7
c

o
s

t5
(t

)

0
5
0

1
0

0
1
5

0
2

0
0

0246

1
0

7
c
o

s
t6

(t
)

F
ig

u
re

9:
Y

el
lo

w
zo

n
e

re
su

lt
s.

25



0 2 4 6 8 10

114

114.5

115

115.5

116

116.5

117

117.5

118

118.5

119
Date Of Lockdown Lift By Varying C6

0 100 200 300 400 500 600 700

70

80

90

100

110

120

130

140
Date Of Lockdown Lift  By Varying C1 

0 2000 4000 6000 8000 10000

102

104

106

108

110

112

114

116

118

120

122
Date of Lockdown Lift By Varying Initial Exposed 

Figure 10: Sensitivity analysis of lockdown lift for the yellow zone. Left: cost
of lockdown per day. Center: initial population of exposed. Right: economic
cost of death.

6 Conclusions

In this paper we showed two main results on the use mathematical modeling
to fight the COVID-19 pandemic.
First we showed a simple SEIR model, including hospitalization, which was
particularly useful at the onset of the spread in New Jersey. Such simple
models are ready to use but are limited to very first estimates.
Second, we proposed a more complex model, still stemming from SEIR ap-
proach, including social distancing and lockdown measures, testing, contact
tracing and quarantining. Our main idea was to estimate the economic cost
of the pandemic taking into account the impact of social distancing and quar-
antining, but also of hospitalization, taking into account the limited capacity,
and deaths. The main result is that the best strategy consists of an immedi-
ate and strict lockdown for two to three months followed by a reopening. The
testing and consequent quarantining should be kept at capacity for around
the same time as lockdown (except for one zone in New Jersey with earlier
termination), while contact tracing is useful only at the onset for few weeks
and then can be dismissed. Beside these results with specific tuning to New
Jersey data, the model can be used to explore different scenarios and fit to
data from different states and countries.
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ond order optimality conditions in the smooth case and applications
in optimal control. ESAIM Control Optim. Calc. Var., 13(2):207–236,
2007.

[10] Margaret Bourdeaux, Jessica Kaushal, Linda Bilmes, Annmarie Sasdi,
Megan Mishra, and Anne Hoyt. Estimating the costs and benefits of
supported quarantine and isolation in massachusetts: The missing link
in covid-19 response. 2021.

[11] Alberto Bressan and Benedetto Piccoli. Introduction to the mathematical
theory of control, volume 2 of AIMS Series on Applied Mathematics.
American Institute of Mathematical Sciences (AIMS), Springfield, MO,
2007.

[12] Tom Britton, Frank Ball, and Pieter Trapman. A mathematical model
reveals the influence of population heterogeneity on herd immunity to
sars-cov-2. Science, 369(6505):846–849, 2020.

[13] V.L. Brown and K.A. Jane White. The role of optimal control in assess-
ing the most cost-effective implementation of a vaccination programme:
Hpv as a case study. Mathematical Biosciences, 231(2):126–134, 2011.

[14] Francesco Casella. Can the covid-19 epidemic be managed on the basis
of daily data. arXiv preprint arXiv:2003.06967, 3, 2020.

[15] US census. Us and world population clock.
https://www.census.gov/popclock/, 2020.

28



[16] Yi-Cheng Chen, Ping-En Lu, and Cheng-Shang Chang. A time-
dependent sir model for covid-19. arXiv preprint arXiv:2003.00122,
2020.

[17] The Apothecary Chris Conover. How economists cal-
culate the costs and benefits of covid-19 lockdowns.
https://www.forbes.com/sites/theapothecary/2020/03/27/how-
economists-calculate-the-costs-and-benefits-of-covid-19-
lockdowns/?sh=44a20e846f63, 2020.

[18] M. Chyba, Y. Mileyko, O. Markovichenko, R. Carney, and A. E.
Koniges. Epidemiological model of the spread of covid-19 in hawaii’s
challenging fight against the disease. In The Ninth International Con-
ference on Global Health Challenges GLOBAL HEALTH 2020. IARIA,
2020.

[19] Rinaldo M Colombo and Mauro Garavello. Well posedness and control
in a nonlocal sir model. Applied Mathematics & Optimization, pages
1–35, 2020.

[20] Rinaldo M Colombo, Mauro Garavello, Francesca Marcellini, and Elena
Rossi. An age and space structured sir model describing the covid-19
pandemic. Journal of mathematics in industry, 10(1):1–20, 2020.

[21] Ensheng Dong, Hongru Du, and Lauren Gardner. An interactive web-
based dashboard to track covid-19 in real time. The Lancet infectious
diseases, 20(5):533–534, 2020.

[22] Scott F. Dowell, Rose Mukunu, Thomas G. Ksiazek, Ali S. Khan,
Pierre E. Rollin, and for the Commission de Lutte contre les Epidémies
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[52] Emmanuel Trélat. Contrôle optimal. Mathématiques Concrètes. [Con-
crete Mathematics]. Vuibert, Paris, 2005. Théorie & applications. [The-
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