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Abstract. We offer a closed form bound on the m-Bézout bound for
multi-homogeneous systems whose equations include two variable subsets
of the same degree. Our bound is expectedly not tight, since computation
of the m-Bézout number is #P-hard by reduction to the permanent. On the
upside, our bound is tighter than the existing closed-form bound derived
from the permanent, which applies only to systems characterized by fur-
ther structure.

Our work is inspired by the application of the m-Bézout bound to count-
ing Euclidean embeddings of distance graphs. Distance geometry and
rigidity theory study graphs with a finite number of configurations, up to
rigid transformations, which are prescribed by the edge lengths. Counting
embeddings is an algebraic question once one constructs a system whose
solutions correspond to the different embeddings. Surprisingly, the best
asymptotic bound on the number of embeddings had for decades been
Bézout’s, applied to the obvious system of quadratic equations express-
ing the length constraints. This is essentially 2dn, for graphs of n vertices
in d dimensions, and implies a bound of 4n for the most famous case of
Laman graphs in the plane. However, the best lower bound is about 2.5n,
which follows by numerically solving appropriate instances.

In [3], the authors leverage the m-Bézout bound and express it by the
number of certain constrained orientations of simple graphs. A combina-
torial process on these graphs has recently improved the bound on orienta-
tions and, therefore, has improved the bounds on the number of distance
graph embeddings [4]. For Laman graphs the new bound is inferior to 3.8n

thus improving upon Bézout’s bound for the first time. In this paper, we
obtain a closed-form bound on the m-Bézout number of a class of multi-
homogeneous systems that subsumes the systems encountered in distance
graph embeddings.
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2 E. Bartzos et al.

1 Introduction

Distance Geometry is the branch of mathematics studying configurations of sets
of points, when only (some of) their distances are known. Given a set of distances
for some pairs of points, one of the main problems in Distance Geometry is to
determine the unspecified distances. This is highly motivated by applications
in molecular biology [16], robotics [26], civil engineering [1,13], sensor network
localization [27], data science [18], material theory [8,22].

Rigidity theory studies the properties of graphs that have rigid embeddings
in Euclidean space for fixed edge weights that represent length between points.
Rigidity is defined for a specific embedding space. Let G = (V,E) be a simple
undirected graph and p = {p1, . . . , p|V |} ∈ R

d·|V | be a conformation of |V | points
in R

d. The framework G(p) is rigid if and only if there are only finite embeddings
that satisfy the given edge lengths λ = (‖pu − pv‖)(u,v)∈E induced by p, where
pv ∈ R

d are the coordinates of vertex v. A graph is generically rigid if it is rigid
for almost all conformations and this is a property of the underlying graph (and
not of the specific embedding). In other words, genericity refers to the prescribed
edge lengths of the graph.

A major open problem in rigidity theory is to find tight upper bounds on the
number of realizations of minimally rigid graphs, e.g. [15]; we refer to this number
as embedding number. A Euclidean embedding is related to the real solutions of a
well-constrained system of algebraic equations. The complex solutions extend the
notion of real to complex embeddings and allow one to leverage complex algebraic
geometry. Direct application of Bézout’s bound of the quadratic polynomial
system that corresponds to the edge constraints yields a bound of O(2d·|V |).
In [7], they presented an upper bound that had been the best until recently,
applying a theorem on the degree of determinantal varieties [14]. However, it
does not improve asymptotically upon Bézout’s. For d = 2, techniques using
mixed volume have been introduced in [24], without managing to improve the
bound. A recent result in algebraic frame theory establishes a bound on the
degree of the projections of finite unit norm tight frames [5] using algebraic
matroids.

Two recent publications dealing with that problem managed to improve
the asymptotic bound based on the combinatorial properties of minimally rigid
graphs. This is the approach on which the present work relies. In [3], outdegree-
constrained orientations as well as matrix permanents are related to the m-
Bézout bound of certain algebraic systems that compute the embedding number.
This work resulted to improved asymptotic upper bounds for d ≥ 5, using the
Brégman-Minc permanent bound [9,21]. More importantly, this work led to the
following combinatorial technique. In [4], the target is on a method that bounds
the number of outdegree-constrained orientations. It managed to improve the
bound on embeddings for all d ≥ 2 (the case of d = 1 is trivial) and proved that
the permanent bounds can be ameliorated in that case. For instance, in the case
of d = 2, this approach results to an upper bound of O(3.77n), while the Bézout
bound is O(4n).
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The m-Bézout Bound and Distance Geometry 3

It is well known that, applied to the same system, Bézout’s bound is smaller or
equal to the multi-homogeneous Bézout bound (m-Bézout) [23], which is smaller
or equal to the BKK bound expressed by mixed volume [6]. The bounds coincide
for dense systems, where all coefficients for a given total degree are nonzero, but
differ as the system becomes sparser. Of course, each bound counts roots in a
different ambient variety. These bounds are compared in [12], with emphasis on
computing mixed volume, which coincides with the m-Bézout number for multi-
homogeneous systems whose maximal monomials have nonzero coefficients. For-
mally, the latter condition requires that none of the monomials corresponding
to vertices of the Newton polytopes vanishes.

Computing the m-Bézout number for a given variable partition is #P-hard
by reduction to the permanent, which is the cornerstone #P-hard problem. The
same hardness result holds for mixed volume, which coincides with the m-Bézout
number for certain polynomial structures; when the system is sparse, in order
words has certain zero coefficients, the mixed volume may be smaller. More-
over, it is known that mixed volume is APX-hard, in other words it is hard to
deterministically approximate it within an error which is asymptotically smaller
than exponential in the system’s number of variables. Another problem is, given
an algebraic system, to find the optimal variable partition so that the system
is modeled as a multi-homogeneous one with minimum m-Bézout number, see
Definition 2. This problem is not in APX, unless P = NP [19].

Recently, other approaches came to our attention relating polynomial systems
with graph theoretical concepts. More precisely, there are connections of the
polynomial system with chordal graphs in order to enhance Cylindrical Algebraic
Decomposition (CAD) [17] and Gröbner bases [10] algorithms.

Our Contribution. In this paper, we generalize the aforementioned approach
to bounding the m-Bézout bound of a quite general class of multi-homogeneous
polynomial systems, which subsumes the class of systems encountered in rigidity
theory. We exploit the connection between the system’s m-Bézout number and
the number of constrained orientations of a simple graph that we specify for the
systems under investigation, then bound the number of the graph’s orientations.
This procedure relies on the proofs in [3,4]. It offers the first closed-form bound
on m-Bézout numbers; we hope this may prove useful in a fast estimation of
the algebraic complexity of problems modeled by multi-homogeneous algebraic
equations. Trivially, our closed form upper bounds the mixed volume of these
multi-homogeneous systems.

Our main result concerns any multi-homogeneous 0-dimensional polynomial
system P (x) = (P1(x), P2(x), . . . , Pm(x)) that cannot be split to smaller sub-
systems: formally, there is no subset of equations P ′ including only a sub-
set of variables that do not appear in P \P ′. The multi-homogeneous struc-
ture is manifest by partitioning the variables to subsets (X1,X2, . . . Xn) with
|Xi| = di, d1 + · · · + dn = m, so that each Pi is homogeneous in each Xj (see
Definition 2 for more details).
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4 E. Bartzos et al.

Theorem 1. Given multi-homogeneous system P as above, let us assume that

– every Pi contains at most two variable subsets,
– two polynomials Pi, Pj do not contain the same pair of variables, and
– the degree of each Pi, denoted by δi, is the same in both variable sets.

Let d = max
1≤i≤n

(di), k = nd − m, then the m-Bézout number of P is bounded by

αn
d · βk−1

d ·
m∏

i=1

δi, (1)

where

αd = max
p≥d

(
2p−d

(
p

d

)2d−3
) 1

2p−3

, βd =

(
2
(

p

d

)−2
) 1

2p−3

,

and p ∈ N appearing in βd is the one which maximizes αd.

Notice that βd < 1, so an
d gives the asymptotic order of this bound. An

asymptotic expression of ad is given in [4]:

αd �
√

1
2

(
2d

d

) (
1 + O

(
ln2 d

d

))
.

Upper bounds on αn
d are provided in Table 1.

Table 1. Upper bounds on αn
d

d 2 3 4 5 6 7 8 9

αn
d 1.88n 3.41n 6.34n 11.9n 22.7n 43.7n 84.4n 163.7n

Paper Structure. The rest of the paper is organized as follows. In Sect. 2, we
discuss established methods that relate the m-Bézout bound with the number
of orientations of a graph, and methods that improve the upper bounds on the
number of embeddings. In Sect. 3, we extend these methods to a class of multi-
homogeneous systems, thus bounding their m-Bézout number. Finally, in Sect. 4
we present concluding remarks and present ideas of future work.

2 Bounds on the Embedding Number

In this section, we start by offering further background on rigid graphs. Then
we present previous work, that relates the number of orientations of a graph to
the m-Bézout, and methods that harness this relation to improve the asymptotic
upper bounds on the embedding number.
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The m-Bézout Bound and Distance Geometry 5

A generically minimally rigid graph is a rigid graph that loses the rigidity
property if any of its edges is removed. A fundamental theorem in graph rigidity
due to Maxwell, gives a necessary condition for a graph and all its subgraphs to be
rigid. In particular, if a graph G is minimally rigid in R

d, then |E| = d·|V |−(d+1
2

)
,

and for every subgraph G′(V ′, E′) ⊂ G it holds that |E′| ≤ d · |V ′| − (d+1
2

)
[20].

Below this number of edge constraints shall become quite intuitive since it equals
the number of unknown variables in the respective algebraic system.

In order to compute the embeddings of a rigid graph up to rigid motions,
we use the following formulation used also in [11,24], which is called sphere
equations in [2].

Definition 1 ([2]). Let G = (V,E) be a graph. We denote by λ the lengths of
the edges on G and by X̃u = {xu,1, ..., xu,d} the d variables that correspond to the
coordinates of a vertex u. The following system of equations gives the embedding
number for G:

||X̃u||2 = su, ∀u ∈ V

su + sv − 2〈X̃u, X̃v〉 = λ2
u,v, ∀(u, v) ∈ E\E(Kd)

where 〈X̃u, X̃v〉 is the Euclidean inner product. The first set of equations shall
be called magnitude equations, while the second are the edge equations.

This formulation is suitable for sparse elimination theory (see [3] for a general
discussion on the algebraic system). In order to factor out rigid motions, if G
possesses a complete subgraph in d vertices, the coordinates of these vertices
shall be fixed.

Notice that, when we fix d vertices, the above algebraic system has d · n − d2

edge equations and n − d magnitude equations. In [3] the variables are parti-
tioned into subsets, such that each subset of variables contains these ones which
correspond to the coordinates and the magnitude of a vertex Xu = X̃u ∪ {su}.

Let us formally define multi-homogeneous systems in general, thus subsuming
the systems presented in the Introduction.

Definition 2. Let x be a vector of m variables and P (x) be a system of m poly-
nomial equations in C[x]. Let X1 = (x1,1, x1,2, . . . , x1,d1), X2 = (x2,1, x2,2, . . . ,
x2,d2), . . . , Xn = (xn,1, xn,2, . . . , xn,dn

) be a partition of the affine variables,
such that |Xi| = di, and d1 + · · · + dn = m. The degree of a polynomial Pi in
a variable set Xj is the same as the degree of this polynomial, if all variables
xj′,k /∈ Xj were treated as coefficients and is denoted with δi,j. Every Pi is homo-
geneous in each variable set Xj, with homogenizing variable xi,0 and multidegree
specified by vector δi = (δi,1, δi,2, . . . , δi,n). Then P is multi-homogeneous of type

(d1, . . . , dn; δ1, . . . , δn ).

If all positive entries have the same value in a multidegree vector δi , then this
value will be denoted with mdeg(Pi).
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6 E. Bartzos et al.

Let us recall a classic theorem from algebraic geometry, see e.g. [23], defining
the m-Bézout bound.

Theorem 2. Consider the multi-homogeneous system P (x) defined above. The
coefficient of the monomial Y d1

1 · · · Y dn
n in the polynomial defined by the product

m∏

i=1

(δi,1 · Y1 + · · · + δi,n · Yn). (2)

bounds the number of roots of P (x) in P
d1 ×· · ·×P

dn , where Yi are new symbolic
parameters, and P

j is the j-dimensional projective space over C. The bound is
tight for generic coefficients of P (x).

The most efficient method to compute the m-Bézout bound is by evaluating
the permanent of a matrix capturing the polynomial structure, see [12]. Let this
matrix be A for a multi-homogeneous system P as above, and let per(A) denote
the permanent of this matrix. Then the m-Bézout bound equals

1
d1!d2! · · · dn!

· per(A). (3)

By applying Theorem 2, the following expansion is considered in the case of
sphere equations (see Definition 1):

∏

u∈V ′
2 · Yu

∏

(u,v)∈E′
(Yu + Yv) = 2n−d ·

∏

u∈V ′
Yu

∏

(u,v)∈E′
(Yu + Yv),

where G′(V ′, E′) = G\Kd. Thus, it suffices to find the coefficient of
∏

u∈V ′
Y d

u in

the expansion of the product:
∏

(u,v)∈E′
(Yu + Yv).

In [3], it is proven that this coefficient equals the cardinality of the set of
those orientations of G′ = (V,E\E(Kd)) satisfying the conditions set in the
following theorem.

Theorem 3 ([3]). Let G = (V,E) be a minimally rigid graph that contains
at least one complete subgraph on d vertices, denoted by Kd = (v1, . . . , vd). Let
B(G,Kd), stand for the number of outdegree-constrained orientations of G′ =
(V,E\E(Kd)), such that:

– the outdegree of v1, . . . , vd is 0.
– the outdegree of every vertex in V \{v1, ..., vd} is d.

The orientations that satisfy these constraints are called valid. Then the number
of embeddings of G in C

d, does not exceed

2|V |−d · B(G,Kd).
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The m-Bézout Bound and Distance Geometry 7

v1 v2 v3

v4 v5 v6

v2 v6

v5 v3

Fig. 1. Left: Graph K3,3 where v1, v2 are chosen as fixed vertices (d = 2). Right: the
resulting pseudograph, after removing the fixed vertices.

The theorem extends to the case where a fixed Kd does not exist [4].
In [4], this method yields the current record upper bounds on the number

of embeddings. To achieve this, the valid orientations of Theorem 3 are associ-
ated to a graphical structure in which the vertices that have fixed outdegree 0
are omitted. This graphical structure is called pseudograph [4], and extends the
notion of a standard graph by allowing hanging edges, which have a single end-
point; hanging edges are always oriented outwards from its incident vertex. In
correspondence with Theorem 3, the hanging edges represent edges incident to
the missing vertices in the original graph. It is thus a collection G = (V,E,H),
where V denotes the vertices, E the edges with two endpoints and H the hanging
edges.

An elimination process that applies to a pseudograph bounds the number of
orientations. At each step, one or more vertices (see Fig. 2) are removed from
the pseudograph and their incident edges are either removed or become hanging
edges in a smaller graph. The number of possible outcomes in every step multi-
plies the current count until a terminal condition is reached; the overall product
bounds the number of valid orientations.

Fig. 2. Excerpt from [4]. Left: a (blue) vertex with 3 neighbours and no hanging edges.
Right: 3 possible cases for the orientation, after the removal of the blue vertex, when
d = 2. The number of possible cases is multiplied in every elimination step, which
eventually bounds the number of valid orientations. (Color figure online)
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8 E. Bartzos et al.

We remark that from an algebraic point of view, the hanging edges corre-
spond to variables that can be eliminated linearly using the edge equations from
Definition 1. In other words, they represent a reduction in the cardinality of the
variables set of the specific vertex (see Fig. 1).

Theorem 4 ([4]). Let Bd(n, k) denote the maximal number of orientations
with outdegree d for a connected pseudograph with n vertices and k hanging
edges. Then it holds that:

Bd(n, k) ≤ αn
d · βk−1

d ,

where αd and βd are defined as in Theorem 1.

For d = 2, . . . , 9, the formula yields improved bounds on the number of orien-
tations which are expressed by an

d , see Table 1, since βd < 1. Due to Theorem 3,
these quantities multiplied by 2n, bound the number of embeddings in the d-
dimensional complex space. In the case of d = 2 and d = 3, this improved
the asymptotic bound on the embedding number to O(3.77n) and O(6.82n)
respectively.

3 Algebraic Systems Modeled by Simple Graphs

In this section we exploit the methods described above to bound the m-Bézout
number of a class of multi-homogeneous algebraic systems that shall be modeled
via a simple graph.

Recall the polynomial systems described in Theorem 1: For every polyno-
mial Pi containing variable sets Xu,Xv, it holds for the degree mdeg(Pi) = δi,j

only for j ∈ {u, v}, whereas δi,j = 0, for all j �∈ {u, v}. We also require that
the polynomial system cannot be split into smaller subsystems with disjoint
variables, and that two different polynomials cannot contain the same pair of
variable sets.

We call such systems simple graph polynomial systems since they define a
simple connected graph G(P ) = (V,E) as follows: The vertices of G correspond
to the n variable subsets, while each polynomial yields an edge whose endpoints
are the respective vertices. There are no loops, because no polynomial contains a
single variable set. Since the pair of variable sets is unique for each polynomial,
there can be only one edge with the same endpoints, hence no multiple edges
appear. Furthermore, if the graph was disconnected, every connected component
would contain vertices corresponding to sets of variables that do not appear in
the other connected components, which has been excluded. All these conditions
indicate that the graph is simple and connected.

The main observation here is that we can relate the m-Bézout bound in the
cases of simple graph polynomial systems with valid orientations, as described
in Sect. 2, but we can relax those conditions since it is not necessary to restrain
these constraints to outdegree d and outdegree 0 cases (see Theorem 3).
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The m-Bézout Bound and Distance Geometry 9

Theorem 5. Let P be a simple graph polynomial system with m equations for
a partition of variables X1,X2, . . . , Xn and let G(P ) = (V,E) be the associated
simple graph. Let |Xj | = dj, d = (d1, d2, . . . dn) and mdeg(P(u,v)) = δ(u,v), where
(u, v) is the edge associated with the polynomial containing Xu,Xv. We denote
by B(G(P ),d) the number of orientations of G(P ), constrained so that each
vertex u representing Xu has outdegree du. Then, the m-Bézout number for P
under this variable partition is exactly

B(G(P ),d) ·
∏

(u,v)∈E

δ(u,v).

Proof. The m-Bézout bound is the coefficient of the term Y = Y d1
1 · · · Y d2

2 · Y dn
n

in the polynomial
∏

(u,v)∈E

(δ(u,v) ·Yu+δ(u,v) ·Yv), where every Yk is a new symbolic

parameter. Clearly the latter is equal with
⎛

⎝
∏

(u,v)∈E

δ(u,v)

⎞

⎠ ·
∏

(u,v)∈E

(Yu + Yv).

Using a similar argument to that in the proof of Theorem 3 in [3], the mono-
mial Y appears only if each term Yu is selected exactly du times in the expansion
of this product. Since each set of variables represents a vertex and each poly-
nomial represents an edge in G(P ), this can be connected to du edges directed
outwards from u in a graph orientation. �

Now, we can derive general upper bounds on the m-Bézout number using
the pseudograph formulation. Combining Theorem 5 and Theorem 4 leads to
the following proof of Theorem 1.

Proof (of Theorem 1). Let d = max(d), for a system P , with d as defined
above. Let G = (V,E,H) be a pseudograph, such that V,E are the vertices and
the edges of G(P ), respectively, H are the hanging edges, where a vertex v has
exactly d − dv hanging edges as specified in Sect. 2. Now, if a vertex v has no
hanging edges, then all of its dv = d edges should be directed outwards from
it. On the other hand, for a vertex v that has kv = d − dv hanging edges, then
dv edges in E should be out-directed, which correspond to dv edges directed
outwards in G(P ). These cases capture exactly all valid orientations of G(P ).
The latter orientations are used to compute the m-Bézout bound of a simple
graph polynomial in Theorem 5.

Now, it suffices to bound the number of valid orientations of this pseudograph,
by extending the techniques of [4]. The bound on valid orientations with fixed
outdegree d for all pseudographs with |V | = n vertices and |H| = k hanging
edges is given by Theorem 4, thus establishing that Equation (1) bounds the
m-Bézout bound. �

Let us present two examples of simple graph polynomial systems, by com-
puting the m-Bézout number, and by deriving the bound in Theorem 1 that
concerns all systems whose graph has the same vertices and hanging edges.
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10 E. Bartzos et al.

X2

X1

X3

X4

X2

X1

X3

X4

X2

X1

X3

X4

X2

X1

X3

X4

Fig. 3. The 4 outdegree-constrained orientations of G(P ) in Example 1. Since |X1| =
|X3| = 2, |X2| = |X4| = 1, the outdegree of X1, X3 is 2, while that of X2, X4 is 1.

Example 1. The following system P is a simple graph polynomial system:

P(X1,X2) = x1,1x2,1 + 5x1,2x2,1 + 2x1,2 + 3

P(X1,X3) = 2x2
1,1x

2
3,1 + 2x2

1,1x
2
3,2 + 2x2

1,2x
2
3,2 + x1,1x1,2x3,1x3,2 + 2x1,2 − 13

P(X1,X4) = x1,1x1,2x
2
4,1 − x2

1,1x
2
4,1 + x1,2x4,1

P(X2,X3) = 4x3
2,1x

2
3,1x3,2 + x2,1x

2
3,1x3,2 + 2x3,2 + 7

P(X2,X4) = 2x2,1x4,1 + 3x2,1 + 5x4,1 − 9
P(X3,X4) = 4x3,1x4,1 + 5x3,2x4,1 + 7x3,1 + 2x4,1

for the partition of variables X1 = {x1,1, x1,2}, X2 = {x2,1}, X3 = {x3,1, x3,2},
X4 = {x4,1}. Of course, it is sparse in the sense that not all expected terms appear
with nonzero coefficient; hence, one would expect its mixed volume to be inferior
to its m-Bézout number. The vertices of G(P ) are labeled by these subsets; the
cardinalities are |X1| = |X3| = 2 and |X2| = |X4| = 1, hence d = (2, 1, 2, 1).
The edge set is:

E = {(X1,X2), (X1,X3), (X1,X4), (X2,X3), (X2,X4), (X3,X4)}.

The multi-homogeneous degrees are δ(X1,X2) = 1, δ(X1,X3) = 2, δ(X1,X4) = 2,
δ(X2,X3) = 3, δ(X2,X4) = 1, δ(X3,X4) = 1.

We compute the m-Bézout bound by Theorem 5. Since d1 = d3 = 2, d2 =
d4 = 1 the outdegree of vertices X1,X3 should be 2, while that of X2,X4 should
be 1 for a valid orientation. There are 4 such orientations (Fig. 3). Therefore
the m-Bézout bound is 12 · 4 = 48. The BKK bound gives a tighter bound by
exploiting sparseness: using phcpy [25], we found a mixed volume of 44, which
is the actual number of complex roots.
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In order to apply Theorem 1, we set d = max(d) = 2, so α2 = 241/5 and
β2 = 18−1/5. Since the number of vertices of G(P ) is n = 4 and the number
of equations m = 6, we have k = nd − m = 2, and

∏
E δ(Xi,Xj) = 12, then the

bound is �12 · 244/5 · 18−1/5� = 85.
Let us compare this estimate to the Bézout bound. The total degrees of the

equations are 2, 4, 6, 2, 4, 2; the Bézout bound is therefore 768.

In the second example the multidegree vector has either zeros or ones. This
means that we can relate the m-Bézout bound to the permanent of a (0, 1)-
matrix A capturing the polynomial structure. For this kind of matrices, there is
a permanent bound, better known as the Brègman-Minc bound [9,21]. Therefore,
we shall also compare this bound to ours.

Example 2. The following system Q is a simple graph polynomial system:

Q(X1,X2) = x1,1x2,1 + 2x1,1 + 3x2,1

Q(X1,X3) = 2x1,1x3,1 + x1,1x3,2 + x3,1 + x3,2 + 2x1,1

Q(X1,X5) = 5x1,1x5,1 + 2x1,1x5,2 + x5,1 + x5,2 + x1,1

Q(X2,X4) = 9x2,1x4,1 + x2,1x4,2 + x4,1 + x4,2 + x2,1

Q(X2,X5) = 9x2,1x5,1 + x2,1x5,2 + x5,1 + x5,2 + x2,1

Q(X3,X4) = 4x3,2x4,1 + 2x3,2x4,2 + 5x3,1x4,1 + 9x3,1x4,2 + x3,1 + x3,2 + x4,1

Q(X3,X5) = 3x3,2x5,1 + 4x3,2x5,2 + x3,1x5,1 + 7x3,1x5,2 + x3,1 + x3,2 + 2x5,1

Q(X4,X5) = x4,2x5,1 + 9x4,2x5,2 + 3x4,1x5,1 + 4x4,1x5,2 + 2x4,1 + x4,2 + 14x5,1

for the partition of variables X1 = {x1,1}, X2 = {x2,1}, X3 = {x3,1, x3,2},
X4 = {x4,1, x4,2},X5 = {x5,1, x5,2}; the cardinalities of the subsets are |X1| =
|X2| = 1, |X3| = |X4| = |X5| = 2, indicating that d = (1, 1, 2, 2, 2). The multi-
homogeneous degree is δ(Xi,Xj) = 1 for all (Xi,Xj) ∈ E but, of course, there are
some terms missing due to vanishing coefficients.

The vertices of G(Q) are labeled by these subsets. The edge set E is:

{(X1,X2), (X1,X3), (X1,X5), (X2,X4), (X2,X5), (X3,X4), (X3,X5), (X4,X5)}.

We count orientations such that the outdegrees of X1,X2 is d1 = d2 = 1, while
that of X3,X4,X5 is d3 = d4 = d5 = 2. Thus the m-Bézout number is the same
as the number of the orientations namely 6 (See Fig. 4). In that case this bound
is exact, since the number of roots is also 6, and so is the BKK bound.

We have d = 2, so α2 = 241/5 and β2 = 18−1/5. We have n = 5 and k = 2,
indicating that the bound from Theorem 1 is �24 · 18−1/5� = 13.

In order to use the Brègman-Minc bound, one constructs a matrix with rows
representing the variables and columns representing the equations (see [12] for
details). The entry (i′, j) equals δi,j for all xi′ ∈ Xi. The matrix is:
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X3 X4

X1 X2

X5

X3 X4

X1 X2

X5

X3 X4

X1 X2

X5

X3 X4

X1 X2

X5

X3 X4

X1 X2

X5

X3 X4

X1 X2

X5

Fig. 4. The 6 valid orientations of the graph in Example 2

Q(X1,X2) Q(X1,X3) Q(X1,X5) Q(X2,X4) Q(X2,X5) Q(X3,X4) Q(X3,X5) Q(X4,X5)

x1,1 1 1 1 0 0 0 0 0

x2,1 1 0 0 1 1 0 0 0

x3,1 0 1 0 0 0 1 1 0

x3,2 0 1 0 0 0 1 1 0

x4,1 0 0 0 1 0 1 0 1

x4,2 0 0 0 1 0 1 0 1

x5,1 0 0 1 0 1 0 1 1

x5,2 0 0 1 0 1 0 1 1

The Brègman-Minc bound for (0, 1)-matrices is
∏

i(ri!)1/ri , where ri is the
sum of entries in row i. Thus the permanent is bounded by 62 · 241/2. Based on

Equation (3) one divides by
n∏

i=1

di! = 8 and obtains a bound of �9√
6� = 22 on

the m-Bézout number, which is looser than our method’s.
The Bézout bound is 256, since all total degrees are 2.

In both examples above, the maximum outdegree d for a vertex in the asso-
ciated graphs was 2. To conclude let us give some brief examples for the com-
putation of the bound using the closed formula of Theorem 1 for larger d, given
the same graph with different cardinalities for the sets of variables. In all cases
we will consider δi = 1.

The graph that will be analyzed has 6 vertices and 13 edges. The edge
set is the following (see Fig. 5): (X1,X2), (X1,X3), (X1,X4), (X1,X5), (X2,X3),
(X2,X4), (X2,X5), (X3,X4), (X4,X5), (X5,X6).
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We will first consider the case that the cardinalities are |X1| = |X3| = 1,
|X4| = 2, |X2| = |X5| = |X6| = 3. We have d = 3, so α3 = 401/3, β3 = 200−1/9,
while k = 5. All these lead to �402 · 200−4/9� = 151 as a bound.

If the cardinalities change so do the constraints on the outdegrees. For
example for the following case |X6| = |X3| = 1, |X4| = |X5| = 2, |X1| =
3, |X2| = 4 we have clearly that d = 4, so k = 11. This means that we shall
use α4 = 29/13 · 355/13, β4 = 2−1/13 · 35−2/13, concluding that the bound is
�243/13 · 358/13� = 160.

Finally, let us present the case that |X1| = 5, |X2| = 3, |X3| = 2, |X4| =
|X5| = |X6| = 1. Now d = 5, k = 17 and also α5 = 219/17 · 637/17,
β5 = 2−3/17 · 63−2/17. The bound in that case is �266/17 · 6310/17� = 168. AQ2

X1

X3

X4

X5

X6

X2

Fig. 5. .

4 Conclusion

In this paper, we studied methods that use the multi-homogeneous Bézout to
improve the upper bounds on the number of embeddings of minimally rigid
graphs. We generalized these methods to polynomial systems which represent
simple graphs, and not only minimally rigid graphs. An open question is to
further understand the algebraic implications of our results. The graph elimi-
nation process that yields the closed form bound on the number of orientations
can be paralleled to algebraic variable elimination. The main open question is
whether our approach may be extended to a wider class of well-constrained alge-
braic systems. This would require extending the proof that bounds the number
of graph orientations to the graph corresponding to the more general class of
algebraic systems.

Another open question is to obtain tight upper bound on the number of
orientations of graphs. A result on this would immediately improve the upper
bound on the m-Bézout number. This is actually our current work. A more
theoretical question would be to estimate the error of our approximation.
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