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Abstract We focus on deep learning algorithms, improving upon the Weather
Research and Forecasting (WRF) model, and we show that the combination
of these methods produces day-ahead wind speed predictions of high accuracy,
with no need for previous-day measurements. We also show that previous-day
data, if available, offer a significant enhancement. Our main contribution is the
design and testing of original neural networks that capture both spatial and
temporal characteristics of the wind, by combining convolutional (CNN) as
well as recurrent (RNN) neural networks. The input predictions are obtained
by a WRF model that we appropriately parameterize; we also specify a grid
adapted to each park so as to capture its topography. Training uses historical
data from 5 wind farms in Greece, and the 5-month testing period includes
winter months, which exhibit the highest wind speed values. Our models im-
prove WRF accuracy on average by 19.4%, and the improvement occurs in
every month; expectedly, the improvement is lowest for the park where WRF
performs best. Our neural network is competitive to state-of-the-art models,
achieving an average MAE of 1.75 m/s. Accuracy improves for speed values
up to 20 m/s, which are important in wind energy prediction. We also develop
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Fig. 1 Map of Greece: 5 case study parks (red) in a high-resolution WRF rectangle with
corners (20.98, 39.38), (20.98, 36.99), (24.62, 39.38), (24.62, 36.99).

an RNN model and show that MAE reduces to less than 1 m/s for short-term
predictions if actual data is employed.

Keywords Machine learning · neural network · Numerical Weather
Prediction · long-term forecast · data modeling · wind speed · wind energy

1 Introduction

Wind is a renewable energy source of paramount importance for society thanks
to its minimal environmental impact. Wind forecasting is crucial as it permits
the power network to be prepared for variations in production, but also in
optimizing energy trading [11]. An additional motivation includes site selection
of wind farms, since the latter constitute an increasingly complex and costly
investment [16]. In 2018, global wind power capacity grew by 9.6% to 591 GW
and yearly wind energy production grew by 10%, reaching 4.8% of the world’s
electric energy consumption [4], while providing 14% of the electricity in the
European Union. The latter share rose to 15% in 2019 [22].

We concentrate on the Greek market for various reasons. First, it goes
through a critical transitioning to the European target model which pre-
scribes that Renewable Energy Source producers or aggregators are reimbursed
through market-based mechanisms but are subject to balancing costs if pro-
duction forecasts differ from actual output. Second, we report on an ongoing
collaboration with industrial partners in Greece, namely Meteorologica P.C.,
and Terna Energy, the largest company in the sector, with presence in USA
and Southeastern Europe. Terna provided actual data from 5 farms (Figure 1).
The terrain complexity is a third reason for concentrating on Greece, since it
is characterized by a mountainous profile and the interplay of land and sea.

We employ standard metrics for statistical evaluation: MAE (Mean Ab-
solute Error), MAPE (Mean Absolute Percentage Error), WAPE (Weighted
Absolute Percentage Error), MSE (Mean Squared Error), and RMSE (Root
Mean Squared Error), which are defined below, where y represents the actual
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1.1 Previous Work

Let us review supervized learning methods that have shown strong perfor-
mance in forecasting wind speed as well as energy [8].

Wind speed forecasting can be distinguished into very-short (seconds to
30 min), short (up to 6 hrs), medium (up to a day), long (up to a week),
and very-long term forecasts. Most of the referenced methods use as input
the timeseries of wind speed measurements, with AI models usually relying
on recurrent neural networks (RNN) [1], such as LSTM or Elmann RNN [21],
meant to capture time-dependent phenomena. One RNN for hourly forecasting
in a 6-hr horizon with 12-hr input achieved a MAE of 1.18 m/s but used
a testing period of only 45 days [7]. More standard architectures, like fully
connected or convolutional neural networks (CNN) are also employed [5,20].

Day-ahead forecasting is our focus. One LSTM model forecasts speed for
a 24-hr horizon [19]. Using both actual data and Weather Research and Fore-
casting (WRF) predictions for training and forecasting, it achieves a MAE of
1.66 m/s. In the sequel, we combine it with our DSTNN to yield an ensemble
that improves the accuracy of DSTNN.

A Multi Layer Perceptron (MLP) predicted speed for a 48-hr horizon using
actual data, with MAE from 1.45 to 2.2 m/s [17]. Another MLP offered a 24-
hr forecast, with RMSE between 0.997 and 1.803 m/s in Tilos, Greece [14]. A
CNN used hourly measurements from 7 days to predict hourly the following 3
[10] achieving a MAE of 0.80 m/s. Speed values are mostly in the range of 1.5
to 4 m/s, which may explain the good accuracy.

When meteorological data is available, accuracy is increased. Using feed-
forward neural networks with hourly wind speed and direction, and another
3 variables, very short term predictions achieved a MAE of 0.0212 [2]. This
high accuracy concerns very low speeds, mostly 2 to 4 m/s. After training
with meteorological data, an MLP using real data achieved an MSE of 5.27 to
7.05 m2/s2 for a 24-hr forecast [6].

We develop methods that bypass the need of previous day measurements,
which is the case for remote parks or when data fails to be transmitted on
time: It has been a key characteristic in our collaboration with several large
industrial producers. Meteorological predictions, of course, introduce their own
error. An ensemble mixture density network achieved a MAE of 1.66 m/s in a
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Fig. 2 The DSTNN architecture is based on a Time Distributed CNN followed by an LSTM.

72 hr horizon [13] using WRF predictions during 8 days: the first 5 for training,
and only 3 for testing. A more relevant approach employs an optimized WRF
model for training and forecasting [18], followed by a feed-forward network
trained during 12 months in 2013, tested from February to December 2014.
WRF and neural networks exhibit an MSE of 6.5 and 2.9 m2/s2 respectively,
thus a 55% improvement.

1.2 Our Contributions

We develop supervized learning methods for wind speed forecasting in hourly
time-steps, for a 24-hr horizon. Our main contribution is an original Deep
Spatio-Temporal neural network (DSTNN) (Figure 2). Our implementation
may also offer 48-hr forecasting, even in 15-min intervals. DSTNN forecasts
speed at every turbine per park. Experiments reveal that even for turbines a
few hundred meters apart, there can be a significant difference on the wind
speed and, subsequently, on wind energy generation. Furthermore, in forecast-
ing wind energy, individual turbines exhibit different availability.

DSTNN combines CNN and RNN, in order to capture, respectively, geospa-
tial and temporal aspects of wind. The use of RNN was inspired by the their
success in capturing general time-series [3]. Our model avoids actual measure-
ments but relies on WRF predictions provided by a two-nested scheme, with
increased resolution in the rectangle of interest (Figure 1). Our WRF model
has been appropriately parameterize and a grid has been adapted to each park.

We train our models with WRF forecasts as input, using historical data
as targets from 5 farms of Terna, and test our approach over a period longer
than 5 months including winter, which exhibits highest speed values. Our
results (Table 2) significantly improve WRF predictions by up to 25%, and
on average by 19.43%. It is a feature of our approach that the improvement
occurs in every month, and it is lowest for the farm where WRF performs best
(labeled SG). Our algorithms are competitive to state-of-the-art day-ahead
forecasting, since they achieve an average MAE of 1.75 m/s, ranging from 1.53
to 2.1 m/s, and average RMSE 2.3, ranging from 2.02 to 2.65. Error is lower
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for speed values up to 20 m/s that are most relevant to wind energy forecast.
Our operational model provides Terna with daily wind speed predictions.

Another contribution is an LSTM neural network for short-term forecast-
ing, relying on previous day measurements but no WRF; it mainly serves for
juxtaposing it to the first scenario. It achieves average MAE of 0.94 m/s,
ranging from 0.8 to 1.05 m/s. Lastly, the LSTM network of [19] has been com-
bined with our DSTNN in an ensemble model, thus improving the forecasting
accuracy (Section 4).

The next section presents how we obtain WRF predictions, and how we
process them, as well as our deep neural networks in Subsection 2.3. Section 3
analyzes our results statistically; Subsection 3.1 revisits existing approaches,
comparing their results to ours. Section 4 concludes with future work. Ap-
pendix A contains details on WRF and statistical results.

2 Data and Methods

2.1 WRF

Numerical Weather Prediction (NWP) is one of the most important tools for
weather forecasting. NWP takes current observations of weather and processes
them in order to forecast weather by Computational Fluid Dynamics (CFD).
Using the corresponding equations, and parameterizations of other physical
processes, CFD solvers integrate initial and boundary conditions and run over
a geographic domain. Weather observations are used as input, and meteoro-
logical variables are predicted.

We leverage the Weather Research and Forecasting (WRF), a standard
and widely used atmospheric model. We have parameterized our models and
we are executing them on a rectangular region covering a large fraction of
mainland Greece, including Central Greece and most of Peloponnese (marked
by blue markers on Figure 1). Our model is two-nested since a finer-resolution
model is embedded in a coarser-resolution parent model. The former is the
aforementioned region in Greece, whereas the parent domain is the entire
continent. Nesting allows running at finer resolution over the area of interest
without requiring uniform resolution over a large domain. The main features of
our implementation include a new Digital Elevation Model meant to account
for better topography, while exploiting the two-way nesting capability. Certain
physics schemes are introduced to model the lowest part of the atmosphere,
coupled with a different Planetary Boundary layer scheme. Further details are
part of the proprietary parts of the model.

Every WRF grid point captures meteorological patterns, such as temper-
ature, which varies with altitude, or wind, which may be affected by the
landscape. We obtain predictions at all points of an orthogonal grid whose
resolution is 1 km. The wind farms are given and consist of a varying, yet
known, number of wind turbines with given coordinates (longitude and lati-
tude). Taking advantage of this knowledge, we downscale our original WRF
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Fig. 3 Park with 3 extremal (red), and another 9 (green) turbines. The rectangle, defined
by 4 corners (blue), includes 35 WRF points (orange). The axes show longitude and latitude.

grid, adapting it to the relevant area of the park, thus creating a targeted grid
for the area of interest. WRF predicts 22 meteorological variables (Table 4):
wind speed components in X-, Y-, and Z-axis, temperature and pressure, all
available at 4 heights, and snow related features (snow water equivalent, daily
total snow and ice).

Predictions are computed in a 1-hr frequency, based on station observa-
tions taken at 10-min intervals. Observation values below sensor thresholds
are discarded; for instance, the wind speed threshold is at 0.1 m/s. Our model
is currently being enhanced to output other parameters, such as meteorolog-
ical variables at larger heights, so as to capture complex wind behaviour. In
addition, we are planning to increase resolution by redefining the grid with a
new edge length of 500 m as well as frequency down to 10-min intervals.

Let us present the construction of a rectangular grid per park, to include its
turbines and an appropriate number of WRF points (Algorithm 1, Appendix):
One procedure (findParkBorders) specifies a minimum axis-aligned rectan-
gle, namely parkBox, enclosing all park turbines. We define an outer rectangle,
called WRFbox, to include parkBox, and parameterized by STEP , the mar-
gin in longitude and latitude around parkBox. The larger STEP is, the more
comprehensive is the model but also the higher is the complexity; more impor-
tantly, if WRFbox is too large, it may include irrelevant geographical elements
like the outer slope of a nearby hill. Another procedure (collectWrfGrid-
Points) collects the WRF points forming WRFbox. In the park shown in
Figure 3 there are 3 extremal out of 12 turbines, and 35 WRF grid points in
WRFbox. Each of its edges is defined by moving away from the corresponding
edge of parkBox by STEP = 0.04 degrees. For the other parks, we experi-
mentally set STEP = 0.04 or STEP = 0.035 hence including 2 or 3 rows and
columns of WRF grid points beyond parkBox.

2.2 Data Modeling and Preprocessing

Training uses actual wind speed as target, while the LSTM also uses them as
input. The provider is Terna: speed data were retrieved from a Supervisory
Control and Data Acquisition (SCADA) system of wind turbines, used for
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Table 1 Wind farms of Terna Energy, used for training and testing our models.

Park Name Code Training Data Period Tower heights (m)

Saint Georgios SG 9/10/2016 - 1/9/2019 80, 84
Krekeza K 31/12/2015 - 1/9/2019 80
Louzes L 31/12/2015 - 1/9/2019 67
Rachoula II RA-2 31/12/2015 - 1/9/2019 80
Rachoula III RA-3 28/2/2018 - 1/9/2019 80

remote supervision and control of the turbines. The wind speed recordings are
10-min averages of 1-Hz sampled values, provided for each wind turbine of
each farm; farms are listed in Table 1 and contain from 3 or 4, up to 12 or 23
turbines. The second class of data consists of meteorological predictions. The
number of WRF variables is 22, so this type of input consists of a [grid height
x grid width x 22] table, where the first two specify the size of WRFbox. All
variables are input to DSTNN, since no feature importance/selection algorithm
has been employed yet.

Let us examine data preprocessing. Since wind speed timeseries hide strong
temporal patterns, we pack 6 consecutive WRF grids, thus creating timeseries
of grids. Our training target is the value of the 6th hour. Therefore, WRF data
have the shape of [6 x grid height x grid width x 22] and targets are vectors
of the form [1 x #turbines]. Actual wind is provided in 10-min resolution and
gets aligned with the respective 1 hr WRF resolution, since we produce hourly
predictions. Thus, we resample the data and compute each hour-measurement
either as the mean of the 3 previous and the 3 following timestamps, or the
mean of the 6 previous ones.

The dataset suffers from missing values (4-8% on average). In some cases,
the missing values cover consecutive days or even weeks, so their handling is
hard. Two approaches have been adopted. The simplest one was to exclude
all records that contain missing values for some of the turbines. This reduces
the size of the training data. The second approach is to interpolate missing
values. Linear interpolation is implemented by means of curve-fitting, using
linear polynomials to construct new data points within the range of a discrete
pointset. The method gives good results for small gaps and, at the same time,
preserves the sequential data behavior. However it fills large (e.g. month-long)
gaps inaccurately. Both approaches give promising results, but more sophis-
ticated gap filling may have to be employed in the future. For scaling, both
actual wind and WRF values are normalized per variable, within [0, 1], ac-
cording to the Min-Max formula: given x, m ≤ x ≤ M , its scaled value is
(x−m)/(M −m).
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Fig. 4 Unfolding of an LSTM (from wikimedia.org).

2.3 Neural networks

In this section, we describe our novel Deep Spatio-Temporal neural network
(DSTNN) for long-term wind speed forecasting, based on WRF data. Our sec-
ond contribution concerns a short-term model using timeseries of wind speed
data and no meteorological predictions, based on an RNN.

The DSTNN architecture (Figure 2) consists of two parts: a CNN and
an RNN sub-network for capturing, respectively, both spatial and temporal
patterns. In addition, there are more standard layers, namely fully connected
(dense) layers. Since the input is initially given as timeseries, we aim at ar-
chitectures that extract temporal information taking advantage of the under-
lying time-related wind patterns: RNNs have been designed for such tasks,
e.g. in natural language processing, with significant success. Their architec-
ture handles, classifies, or forecasts properties of sequences; in addition, they
are capable to produce sequences with certain desired properties.

Among numerous existing RNNs, the LSTM [9] model is used since it ad-
dresses the vanishing gradient problems of traditional RNNs, when sequences
get long. LSTMs not only keep adjacent temporal information, but also control
long-term information by means of a controlling gate. A common LSTM unit is
composed of a cell, and an input, an output and a forget-gate (Figure 4). The
cell remembers values over arbitrary time intervals and the 3 gates regulate
information flow in and out of the cell. Initially, the forget-gate extracts the
information to be preserved from the prior state. Then, the input gate deter-
mines how much “current” information should be used as input in generating
the current state. The output gate filters the information deemed significant.
This is repeated in every time step of sequential processing, allowing LSTM
memory to remember or forget cell states.

Furthermore, every step of the series contains spatial information, because
the WRF forecasts are available for every geographical point on a grid. In this
way, each step of the series is represented by a grid that contains the respec-
tive park. Every grid is processed by a CNN, thus capturing neighborhood
and spatial patterns of the covered area. The output is a vector of size [1×
#turbines], where the latter denotes the number of turbines in the park.
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Specifically, DSTNN starts with a Time Distributed (TD) CNN in order
to overcome modelling uncertainty issues, such as wind speed extrapolations,
which are usually the main contributor of uncertainty in complex terrains [15].
Each step of the input series consists of a grid of WRF points, so the input has
shape [timesteps x grid height x grid width x 22]. The TD structure implies
that an individual CNN is applied to every temporal slice of the input.

Every grid-step is processed by two separate CNN layers: a 1d CNN per-
forming convolution in feature space, and a shallow 2d CNN extracting neigh-
borhood patterns from the WRF grid. The first applies dimensionality re-
duction to the input features. The second has 32 convolutional 3 x 3 ker-
nels followed by a 2 x 2 max pooling layer. The small pooling window and
small convolutional filters avoid information loss. Both convolutional kernels
are initialized from the Gaussian distribution, with 0 mean and standard de-
viation 0.08. After each CNN, we apply a ReLU (Rectifier Linear Unit), a
standard activation function.

A TD dense layer with 128 nodes follows, in order to reduce the di-
mension of the features, and the output is of the form [timeseries length x
num CNN extracted features]. This is input to an LSTM [9] with 256 nodes,
with recurrent dropout rate of 0.15 (dropping probability). A final dense layer
with 64 nodes performs the final regression. The implemented architecture has
the advantage of processing two differently formatted inputs consequently and
in a different manner, thus extracting hidden patterns from both of them.

The RMSprop optimizer is employed since it is known to show good per-
formance with RNNs [7]. The learning rate equals 0.001, which is a standard
value during optimization and was found, by hyperparameter search, to be ap-
propriate. The loss function is MSE, and the batch size is 64, chosen through
experimentation. Training was undertaken using an Early Stopping Criterion,
so it was terminated after 20 epochs of no improvement of the validation loss,
compared to the best loss that had already been achieved. Hyperparameter
selection employed grid search.

Stateless RNN has been used in most experiments; the hidden and the
cell states of the LSTM are re-initialized for every batch. This was preferred
over the statefull approach because our inputs are not provided in a perfect
chronological order, due to the large number of missing values. Concerning the
use of available historical data, 70% has been chosen for the training of the
model. Fractions of 15% each have been considered as validation and test sets.
The length of the timeseries is 6-12 steps, and the nodes of every layer are
on average 64-128. We have developed implementations on Tensorflow, which
is lower-level, and on Keras, which is more user friendly, using Tensorflow’s
back-end. The model deployed for daily operation is the latter.

Our second contribution is a short-term neural network developed for jux-
taposing with DSTNN, offering hour-ahead predictions. It employs solely ac-
tual wind-speed timeseries per turbine, both for training and forecasting, but
no meteorological data. This model was trained with timeseries of 6 hourly
steps namely 6 measurements in the previous 6 hours. The input has overall
shape of [timesteps x #turbines], and the output is a vector of shape [1 x
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Fig. 5 LSTM model including 3 layers: TD fully connected, LSTM, and fully connected.

Fig. 6 Forecasting (orange) of WRF (left) and DSTNN (right) against actual measurements
(blue) for Krekeza. The axes show date (x) and wind speed (y).

#turbines]. We predict the next hour, for every turbine of the park. This is
standard regression. Our model is based on LSTM, and is comprised of 3 parts
(Figure 5): (1) a TD fully connected layer of 64 nodes, applied to each tempo-
ral slice of the initial series, (2) an LSTM layer with 128 nodes and recurrent
dropout rate equal to 0.2, and (3) a final fully connected layer, whose number
of nodes equals the number of turbines of the park, and which performs the
final regression.

3 Case study and Discussion

We examine results on 5 wind parks in Greece representing very different
terrains, since they include an island (Saint Georgios), mountainous locations
(Louzes, but also Krekeza), vicinity to a coastal environment (Krekeza), as
well as inland hilly locations (Rachoula). They lie at different elevations, from
sea level (SG) to almost 700 m altitude (Rachoula). Louzes is spread over two
neighbouring slopes, making the park’s topography quite complex, which is
probably the main reason why it has eluded accurate modeling until now. The
coordinates of the WRF grids per park are in Table 5 (Appendix).

Figure 6 shows graphical results of DSTNN’s forecasting against the WRF’s
for Krekeza, one of the hardest farm to model. The improvement of DSTNN
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Fig. 7 Actual speed (x-axis) against WRF (left) and DSTNN predictions (middle), and
WRF (x-axis) against DSTNN predictions (right). In the first two, distance of a point from
the (red) diagonal is inversely proportional to accuracy. At right, it is inversely proportional
to similarity of the two predictions.

over WRF predictions is obvious. As it is usually observed in statistical anal-
ysis of forecasting, e.g. [12], classic models such as WRF may fail to capture
extreme values of meteorological variables. These are precisely the cases that
DSTNN manages to capture more accurately, hence offering a clear advantage
over WRF. Figure 10 (Appendix) offers the same comparison for the remaining
parks, leading to the same conclusion.

Figure 7 shows clearly that DSTNN avoids outputting very low (< 2.9 m/s)
and very high (> 17.7 m/s) speed values, thus improving accuracy. This is
also validated by Table 3, where DSTNN improves MAE for the lower and
upper speed range buckets in Krekeza, especially for 0-5 m/s and 15-20 m/s.
Specifically for the upper speed buckets, WRF appears to mostly overpredict
wind speed, increasing MAE significantly. DSTNN seems to apply upper and
lower thresholds to the WRF predictions, while also improving predictions for
intermediate speeds. This behavior of DSTNN is also seen in Figure 7 (right),
where higher and lower speed predictions by WRF are limited by DSTNN,
while predictions for intermediate speed values are tend to be almost equal.

Table 2 Performance of WRF, LSTM with actual data, DSTNN and improvement of
DSTNN over WRF; all testing periods end on 31/3/2020

Period WRF (long-term) LSTM (short-term) DSTNN (long-term) reduce
Park start MAE WAPE MSE MAE WAPE MSE MAE WAPE MSE MAE%

SG 24/10/19 1.99 25.1 7.1 1.05 13.5 1.95 1.77 22.4 5.4 11.1
K 13/11/19 2.20 25.0 8.4 0.95 11.05 1.60 1.77 20.5 5.6 20.0
L 16/11/19 2.54 34.0 11.2 0.99 14.2 1.64 2.10 27.7 7.0 17.3
RA2 16/12/19 2.10 28.0 8.0 0.92 13.4 1.65 1.60 21.2 4.5 23.8
RA3 16/12/19 2.03 28.3 7.56 0.80 12.3 1.40 1.53 21.3 4.1 25.0

mean - 2.17 28.1 8.5 0.94 12.89 1.65 1.75 22.6 5.3 19.4

Results in Table 2 quantify the performance of our models daily for a
testing period of more than 5 months, although for the smallest parks (RA-2,
RA-3) this period reduces to 3.5 months. They are winter months and March,
which are the windiest months in the northern hemisphere hence the most
interesting for wind energy production; for the 3 parks with longer testing
periods, the latter include at least the second half of November whereas, for
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Table 3 Statistics per wind speed range

park 0-5 m/s 5-10 m/s 10-15 m/s 15-20 m/s >20 m/s Total

#timestamps SG 1203 1430 837 306 40 3816
WRF MAE 1.56 1.79 1.65 1.83 2.94
DSTNN MAE 1.47 1.57 1.79 1.64 3.87

#timestamps K 897 1298 752 341 48 3336
WRF MAE 1.63 1.87 2.03 2.9 3.4
DSTNN MAE 1.23 1.56 2.14 1.87 3.04

#timestamps L 978 1372 622 131 13 3116
WRF MAE 1.9 2.2 2.9 3.2 4.1
DSTNN MAE 2.1 1.5 2.2 3.6 5.4

#timestamps RA-2 801 1149 493 102 23 2568
WRF MAE 1.7 2.0 2.2 2.6 3.5
DSTNN MAE 1.2 1.4 1.8 2.6 4.5

#timestamps RA-3 788 1252 451 73 4 2568
WRF MAE 1.64 2.0 2.1 2.6 1.0
DSTNN MAE 1.42 1.25 1.7 2.6 6.3

#timestamps Total 4667 6501 3155 953 128

SG, the testing periods starts on October 24th. WRF error is calculated as
the difference of actual wind value measured at each turbine and the wind
prediction at the nearest WRF grid point, using Euclidean distance. We report
on MAE, WAPE, and MSE, calculated for each turbine of every park.

For a comprehensive comparison with the state-of-the-art, which typically
exploits actual measurements, we also experiment with our LSTM-based next-
hour model. It achieves average MAE of 0.94 m/s, ranging from 0.8 to 1.05 m/s,
using the same 5 parks, same historical data and same testing periods as for
DSTNN (Table 2). Clearly, previous-day measurements can drastically en-
hance the accuracy of DSTNN. Of course, improved accuracy is achieved on a
much easier task than for WRF and DSTNN.

DSTNN improves upon WRF on all parks, under all metrics; see the ta-
ble’s last column. The improvement is smaller on the ”easiest” park (island
SG), where WRF performs best, and on the ”hardest” one (L), where the ter-
rain’s complexity makes both models perform worst. DSTNN and LSTM are
competitive to the state-of-the-art; this is especially true for DSTNN against
long-term models that do not rely on actual wind measurements.

A more detailed analysis (Figure 8) explores the evolution of MAE, roughly
on a monthly basis. The intervals are given in Table 6 (second column, Ap-
pendix) and they are 3 to 5, depending on the park. All first periods are
somewhat longer than one month. By comparing the average MAE of our
DSTNN against WRF for different periods (months), it is verified that the
former improves WRF’s forecasting on all time periods, and the improvement
does not seem to depend on the month. Another important observation is that
MAE seems to be maximum in January, whereas in SG it is maximized in De-
cember and March; however, given statistics of a single year only, it is hard
to draw general conclusions. A comparative performance using MAE, WAPE,
and MSE on the same intervals is in Table 6 (Appendix).
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Fig. 8 Periodical evolution of MAE for the WRF model (blue) against DSTNN (orange)
for each park.

Figure 9 illustrates the MAE of DSTNN against WRF for a partition of all
wind speed values over a set of 5 non-overlapping, wind ranges, namely: 0-5,
5-10, 10-15, 15-20, >20 m/s. These statistics are significant for the wind energy
market, mostly interested in speeds ranging from 5 to 20, or even 25 m/s. The
total number of hourly timestamps ranges from 2568 (RA-2, RA-3) to 3816
(SG), as reported in Table 3. Here, the DSTNN improves the WRF predictions
in almost all cases. The exceptions are cases where wind speed is higher than
20 m/s for all parks besides K. This is explained by the very small number of
instances with such wind speeds, namely up to 40. Also outlier exceptions for
low (L), mid-range (K, SG) and high (L, RA-2, RA-3) wind speeds.

Table 3 offers further statistics, such as number of timestamps per wind
speed range, over all parks. Expectedly, MAE for both WRF and DSTNN
roughly grows with wind speed, since larger values exhibit larger absolute
error. An important observation is that MAE for WRF as well as DSTNN
is maximized for speed > 20 m/s, which is expected. Hence it is lower than
average for values ≤ 20 m/s which are very relevant to wind energy prediction.

3.1 Discussion

We juxtapose our results to results in the most relevant papers discussed in
Section 1.1, although test data is different in every case.

First, it is very encouraging that DSTNN has comparable accuracy to long-
term prediction methods using previous-day meteorological measurements:
For 24-hr [6,14] and 48-hr predictions [17], MLP-based neural networks re-
port an MSE of 5.27 to 7.05 m2/s2, an RMSE between 0.997 and 1.803 m/s,
and a MAE between 1.45 and 2.2 m/s, respectively. These are comparable to
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Fig. 9 MAE for 5 wind ranges of WRF (blue) against DSTNN (orange) per park.

DSTNN’s mean MSE of 5.3 m2/s2, RMSE of 2.3 m/s and MAE of 1.75 m/s.
We conclude that the predictive power of DSTNN is superior since accuracy
is comparable but without any actual measurement during forecasting. This
motivates us to explore deeper neural networks and advanced data modeling.

Only a limited number of models rely exclusively on WRF. For 72-hr pre-
dictions, a MAE of 1.66 m/s [13] is not significantly better than DSTNN and
has been tested during 3 days only. A relevant approach uses WRF forecasts
post-processed by a neural network [18] achieving, respectively, an MSE of 6.5
and of 2.9 m2/s2. Their long testing period of 11 months partly explains the
quality of their results. Our WRF and DSTNN yield a mean MSE of 8.5 and
5.3 m2/s2 respectively, but our experiments concern winter months where ab-
solute error peaks. We may conclude that our main weakness lies in WRF,
whereas DSTNN seems quite accurate. We currently concentrate on a finer
resolution and smaller time-step of WRF.

Ensemble learning is based on combining multiple AI models, in view of
exploiting the best one in different time periods. We tested an ensemble of
DSTNN with the simple LSTM model [19] discussed at Previous Work for day-
ahead forecasting on the aforementioned parks. They process independently
WRF predictions, while the second network also uses actual wind. A final
fully connected layer combines the two outputs. The ensemble improved each
individual model for wind speeds in the range of 10 to 15 m/s, by 5%. In other
ranges, the improvement is smaller. In the immediate future we shall report
on advances with ensemble models.

Lastly, our LSTM model for short-term prediction using 6 hourly measure-
ments is more accurate than an RNN forecasting 6 hours given 12 [7]. This is
another promising avenue.
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4 Conclusion

A Deep Spatio-Temporal neural network for wind speed forecasting relying
exclusively on the WRF model was presented. Results on 5 wind parks in
Greece demonstrate a significant improvement of day-ahead WRF on average
by 19.43%, while being competitive to the state-of-the-art models, having an
accuracy with an average MAE of 1.75 m/s. Forecasting by just previous-day
data with an LSTM achieves an average MAE of 0.94 m/s.

A challenging task is to transfer pre-trained neural networks to parks that
lack a sufficient amount of historic data, a common real life situation in produc-
tion settings. By retraining using any available data, the results seem promis-
ing, and the models appear to generalize on the patterns of the wind. Data
science methods may be used to improve data cleaning, outlier handling and
gap filling. Current work to adapt our models to energy prediction achieve nor-
malized MAPE of 14% on a single farm, for a 6-month testing period. Lastly,
our grid-based approach can be transferred to photovoltaic energy prediction.
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A WRF information, and Statistical results

This section provides the meteorological variables predicted by WRF, the coordinates of the
WRF rectangle per park, and pseudocode for computing these rectangles. Further statistical
results of our predictions are given, as well.

Table 4 Meteorological variables predicted by WRF

Variable Name Description Units

U60, U80, U100, U120 X component of wind at 60, 80, 100, 120 m m/s
V60, V80, V100, V120 Y component of wind at 60, 80, 100, 120 m m/s
W60,W80,W100,W120 Z component of wind at 60, 80, 100, 120 m m/s
T60, T80, T100, T120 Temperature at 60, 80, 100, 120 m K
PR60, PR80, PR100, PR120 Pressure at 60, 80, 100, 120 m hPa
Snow Snow water equivalent kg·m−2

SnowNC Daily total snow and ice mm

Table 5 Corner coordinates (longitude, latitude) of WRF rectangle per park

Park name NW SW NE SE

SG (23.83, 37.53) (23.83, 37.42) (24.00, 37.53) (24.00, 37.42)
K (23.51, 38.21) (23.51, 38.11) (23.60, 38.21) (23.66, 38.11)
L (21.71, 38.49) (21.71, 38.38) (21.87, 38.49) (21.87, 38.38)
RA-2 (23.42, 38.28) (23.42, 38.19) (23.56, 38.28) (23.56, 38.19)
RA-3 (23.44, 38.28) (23.44, 38.18) (23.56, 38.20) (23.56, 38.18)

Algorithm 1 Adaptive cropping of original WRF grid
1: Input: parkCoords[i], i = 1..m . m turbines’ coordinates
2: Input: WRFp[i], i = 1..n . n WRF-points’ coordinates
3:
4: procedure findParkBorders (parkCoords) . min enclosing rectangle
5: N ← max parkCoords[i].y; S ← min parkCoords[i].y
6: E ← max parkCoords[i].x; W ← min parkCoords[i].x
7: park ← [N,S,E,W ]

return park . use turbines with max/min longtitude/latitude
8: end procedure
9:

10: procedure collectWrfGridPoints (park,WRFp, STEP )
11: . WRF points at (longitude/latitude) distance STEP
12: WRFbox← ∅
13: for every i = 1..n do
14: if WRFp[i].y > parkBox.S − STEP & WRFp[i].y < parkBox.N +

STEP & WRFp[i].x > parkBox.W − STEP & WRFp[i].x < parkBox.E + STEP
then

15: WRFbox.add(WRFp[i])
16: end if
17: end for

return WRFbox
18: end procedure
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Fig. 10 Forecasting (orange) of WRF (left) and DSTNN (right) against actual values (blue).
DSTNN improves WRF in all parks: Krekeza (top-left), Louzes (top-right), Rachoula-2
(middle-left), Rachoula-3 (middle-right) and Saint Georgios (bottom).

Table 6 Statistics per month-long intervals

WRF DSTNN
Park Period MAE WAPE MSE MAE WAPE MSE

SG 24/10/19-30/11/19 1.87 29.50 6.0 1.61 25.10 4.5
1/12/19-31/12/19 2.1 24.50 7.9 1.86 22.10 6
1/1/20-31/1/20 1.94 20.20 7.0 1.73 17.60 5
1/2/20-29/2/20 1.96 25.00 7.15 1.82 23.00 6
1/3/20-31/3/20 2.1 27.50 8.0 1.87 24.20 6

K 13/11/19-31/12/19 1.97 26.00 7.4 1.63 21.20 4.9
1/1/20-31/1/20 2.6 24.60 11.1 1.94 19.00 6.5
1/2/20-29/2/20 2.3 25.50 8.7 1.89 21.20 5.8
1/3/20-31/3/20 1.93 23.50 6.6 1.72 21.00 5.6

L 16/11/19-31/12/19 2.6 33.60 11.3 2.1 27.00 7.5
1/1/20-31/1/20 2.7 38.00 14.5 2.3 33.00 8
1/2/20-29/2/20 2.5 33.00 10.1 2.03 27.00 6.7
1/3/20-31/3/20 2.4 33.00 9.8 1.92 27.00 5.8

RA-2 16/12/19-31/01/20 2.1 26.00 8.2 1.54 19.30 4.5
1/2/20-29/2/20 2.1 29.40 7.7 1.6 23.10 4.7
1/3/20-31/3/20 2 29.00 7.8 1.57 23.00 4.5

RA-3 16/12/19-30/01/20 1.96 30.00 7.3 1.6 24.00 4.5
1/2/20-29/2/20 2.13 30.10 7.8 1.6 22.80 4.1
1/3/20-31/3/20 2.02 26.10 7.6 1.47 19.10 3.8


