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Abstract
The paper proves existence of stationary mild solutions for normal discrete velocity Boltzmann
equations in the plane with no pair of colinear interacting velocities and given ingoing boundary
values. An important restriction of all velocities pointing into the same half-space in a previous
paper is removed in this paper. A key property is L1 compactness of integrated collision frequency
for a sequence of approximations. This is proven using the Kolmogorov-Riesz theorem, which here
replaces the L1 compactness of velocity averages in the continuous velocity case, not available when
the velocities are discrete.
.

1 Introduction.

The Boltzmann equation is the fundamental mathematical model in the kinetic theory of gases.
Replacing its continuum of velocities with a discrete set of velocities is a simplification, preserving
the essential features of free flow and quadratic collision term. Besides this fundamental aspect,
the discrete equations can approximate the Boltzmann equation with any given accuracy [10], [14],
[18], and are thereby useful for approximations and numerics. In the quantum realm they can also
be more directly connected to microscopic quasi/particle models. A discrete velocity model of a
kinetic gas is a system of partial differential equations having the form,

∂fi
∂t

(t, z) + vi · ∇zfi(t, z) = Qi(f, f)(t, z), t > 0, z ∈ Ω, 1 ≤ i ≤ p,

where fi(t, z), 1 ≤ i ≤ p, are phase space densities at time t, position z and velocities vi. The
spatial domain is Ω. The given discrete velocities are vi, 1 ≤ i ≤ p. For f = (fi)1≤i≤p, the collision
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operator Q = (Qi)1≤i≤p with gain part Q+, loss part Q−, and collision frequency ν, is given by

Qi(f, f) =

p∑
j,l,m=1

Γlmij (flfm − fifj)

= Q+
i (f, f)−Q−i (f, f),

Q+
i (f, f) =

p∑
j,l,m=1

Γlmij flfm, Q−i (f, f) = fiνi(f), νi(f) =

p∑
j,l,m=1

Γlmij fj , i = 1, ..., p.

The collision coefficients satisfy

Γlmij = Γlmji = Γijlm ≥ 0. (1.1)

If a collision coefficient Γlmij is non-zero, then the conservation laws for momentum and energy,

vi + vj = vl + vm, |vi|2 + |vj |2 = |vl|2 + |vm|2, (1.2)

are satisfied. We call interacting velocities any couple of velocities (vi, vj) such that for some
(l,m) ∈ {1, · · ·, p}2, Γlmij > 0. The discrete velocity model (DVM) is called normal (see [11]) if any
solution of the equations

Ψ(vi) + Ψ(vj) = Ψ(vl) + Ψ(vm),

where the indices (i, j; l,m) take all possible values satisfying Γlmij > 0, is given by

Ψ(v) = a+ b · v + c|v|2,

for some constants a, c ∈ R and b ∈ Rd. We consider

the generic case of normal coplanar velocity sets with

no pair of colinear interacting velocities (vi, vj). (1.3)

The case is generic. Indeed, consider a normal velocity set such that for some interacting velocities
(vi, vj), vi and vj are colinear. Then there exists an arbitrary small vector v0 such that the velocity
set (vi + v0)1≤i≤p is normal and with no colinear interacting velocities. The paper considers sta-
tionary solutions to normal coplanar discrete velocity models satisfying (1.3), in a strictly convex
bounded open subset Ω ⊂ R2, with C2 boundary ∂Ω and given boundary inflow. Denote by n(Z)
the inward normal to Z ∈ ∂Ω. Denote the vi-ingoing (resp. vi-outgoing) part of the boundary by

∂Ω+
i = {Z ∈ ∂Ω; vi · n(Z) > 0}, (resp. ∂Ω−i = {Z ∈ ∂Ω; vi · n(Z) < 0}).

Let

s+
i (z) = inf{s > 0 ; z − svi ∈ ∂Ω+

i }, s−i (z) = inf{s > 0 ; z + svi ∈ ∂Ω−i }, z ∈ Ω.

Write

z+
i (z) = z − s+

i (z)vi (resp. z−i (z) = z + s−i (z)vi) (1.4)

for the ingoing (resp. outgoing) point on ∂Ω of the characteristics through z in direction vi.
The stationary boundary value problem

vi · ∇fi(z) = Qi(f, f)(z), z ∈ Ω, (1.5)

fi(z) = fbi(z), z ∈ ∂Ω+
i , 1 ≤ i ≤ p, (1.6)
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is considered in L1 in one of the following equivalent forms ([13]);
the exponential multiplier form,

fi(z) = fbi(z
+
i (z))e−

∫ s+
i

(z)

0 νi(f)(z+
i (z)+svi)ds

+

∫ s+i (z)

0
Q+
i (f, f)(z+

i (z) + svi)e
−

∫ s+
i

(z)
s νi(f)(z+

i (z)+rvi)drds, a.a. z ∈ Ω, 1 ≤ i ≤ p,

(1.7)

the mild form,

fi(z) = fbi(z
+
i (z)) +

∫ s+i (z)

0
Qi(f, f)(z+

i (z) + svi)ds, a.a. z ∈ Ω, 1 ≤ i ≤ p, (1.8)

the renormalized form,

vi · ∇ ln(1 + fi)(z) =
Qi(f, f)

1 + fi
(z), z ∈ Ω, fi(z) = fbi(z), z ∈ ∂Ω+

i , 1 ≤ i ≤ p, (1.9)

in the sense of distributions. Denote by L1
+(Ω) the set of non-negative integrable functions on Ω.

For a distribution function f = (fi)1≤i≤p, define its entropy (resp. entropy dissipation) by

p∑
i=1

∫
Ω
fi ln fi(z)dz,

(
resp.

p∑
i,j,l,m=1

Γlmij

∫
Ω

(flfm − fifj) ln
flfm
fifj

(z)dz
)
.

The main result of the paper is

Theorem 1.1
Consider a coplanar normal discrete velocity model and a non-negative ingoing boundary value fb
with mass and entropy inflows bounded,∫

∂Ω+
i

vi · n(z)fbi(1 + ln fbi)(z)dσ(z) < +∞, 1 ≤ i ≤ p.

For the boundary value problem (1.5)-(1.6) satisfying (1.3), there exists a stationary mild solution
in
(
L1

+(Ω)
)p

with finite mass and entropy-dissipation.

Given i ∈ {1, · · ·, p}, if Γlmij = 0 for all j, l and m, then fi equals its ingoing boundary value, and
the rest of the system can be solved separately. Such i’s are not present in the following discussion.
Most mathematical results for stationary discrete velocity models of the Boltzmann equation have
been obtained in one space dimension. An overview is given in [15]. Half-space problems [5] and
weak shock waves [6] for discrete velocity models have also been studied. A discussion of normal
discrete velocity models, i.e. conserving nothing but mass, momentum and energy, can be found
in [8]. In two dimensions, special classes of solutions to the Broadwell model are given in [7],
[9] and [16]. The Broadwell model, not included in the present results, is a four-velocity model,
with v1 + v2 = v3 + v4 = 0 and v1, v3 orthogonal. [9] contains a detailed study of the stationary
Broadwell equation in a rectangle with comparison to a Carleman-like system, and a discussion of
(in)compressibility aspects. A main result in [12] is the existence of continuous solutions to the two-
dimensional stationary Broadwell model with continuous boundary data for a rectangle. The paper
[1] solves that problem in an L1-setting. The proof uses in an essential way the constancy of the
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sums f1 +f2 and f3 +f4 along characteristics, which no longer holds in the present paper. For every
normal model, there is a priori control of entropy dissipation, mass and entropy flows through the
boundary. From there, main difficulties are to prove that for a sequence of approximations, weak
L1 compactness holds and the limit of the collision operator equals the collision operator of the
limit. In [2], weak L1 compactness of a sequence of approximations was obtained with assumption
(1.3) together with the assumption that all velocities vi point out into the same half-plane. In
this paper we keep assumption (1.3), remove the second assumption and provide a new proof of
weak L1 compactness of approximations using (1.3). Assumption (1.3) is also crucial for proving L1

compactness of the integrated collision frequencies, that is important for the convergence procedure.
Our paper also differs from [2] in the limit procedure. The frame of the limit procedure in [2] is
the splitting into ’good’ and ’bad’ characteristics following the approach in our earlier stationary
continuous velocity papers [3]-[4]. Here we have instead recourse to sub- and super-solutions used
in the classical evolutionary frame for renormalized solutions to the Boltzmann equation [13].

For the continuous velocity evolutionary Boltzmann equation [13], the compactness properties of
the collision frequency use in an essential way the averaging lemma, which is not available for the
discrete velocity Boltzmann model. In the present paper, the compactness properties are proven
by the Kolmogorov-Riesz theorem. Also the argument used in the stationary paper [4] in the
continuous velocity case for obtaining control of entropy, hence weak L1 compactness of a sequence
of approximations from the control of entropy dissipation, does not work in a discrete velocity case
because the number of velocities is finite.

The proof starts in Section 2 from bounded approximations. In Section 3, L1 compactness properties
of the approximations are proven. Section 4 is devoted to the proof of Theorem 1.1.

2 Approximations.

Denote by N∗ = N\{0} and by a∧b the minimum of two real numbers a and b. Let µα be a smooth
mollifier in R2 with support in the ball centered at the origin of radius α. Outside the boundary
the function to be convolved with µα, is continued in the normal direction by its boundary value.
Let µ̃k be a smooth mollifier on ∂Ω in a ball of radius 1

k . Denote by

fkbi =
(
fbi(·) ∧

k

2

)
∗ µ̃k, 1 ≤ i ≤ p, k ∈ N∗.

The lemma introduces a primary approximated boundary value problem with damping and convo-
lutions.

Lemma 2.1
For any α > 0 and k ∈ N∗, there is a solution Fα,k ∈ (L1

+(Ω))p to

αFα,ki + vi · ∇Fα,ki =

p∑
j,l,m=1

Γlmij

( Fα,kl

1 +
Fα,kl
k

Fα,km ∗ µα
1 + Fα,km ∗µα

k

−
Fα,ki

1 +
Fα,ki
k

Fα,kj ∗ µα

1 +
Fα,kj ∗µα

k

)
, (2.1)

Fα,ki (z) = fkbi(z), z ∈ ∂Ω+
i , 1 ≤ i ≤ p. (2.2)

Proof of Lemma 2.1.
For a proof of Lemma 2.1 we refer to the second section in [2].
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Let k ∈ N∗ be given. Each component of Fα,k is bounded by a multiple of k2. Therefore (Fα,k)α∈]0,1[

is weakly compact in (L1(Ω))p. For a subsequence, the convergence is strong in (L1(Ω))p as stated
in the following lemma.

Lemma 2.2
There is a sequence (β(q))q∈N tending to zero when q → +∞ and a function F k ∈ L1, such that
(F β(q),k)q∈N strongly converges in (L1(Ω))p to F k when q → +∞.

Proof of Lemma 2.2.
For a proof of Lemma 2.2 we refer to Lemma 3.1 in [2].

Denote by

Q+k
i =

p∑
j,l,m=1

Γlmij
F kl

1 +
Fkl
k

F km

1 + Fkm
k

, νki =

p∑
j,l,m=1

Γlmij
F kj

(1 +
Fki
k )(1 +

Fkj
k )

,

Qki = Q+k
i − F

k
i ν

k
i , 1 ≤ i ≤ p, (2.3)

and by D̃k the entropy production term of the approximations,

D̃k =

p∑
i,j,l,m=1

Γlmij

( F kl

1 +
Fkl
k

F km

1 + Fkm
k

− F ki

1 +
Fki
k

F kj

1 +
Fkj
k

)
ln
F kl F

k
m(1 +

Fki
k )(1 +

Fkj
k )

(1 +
Fkl
k )(1 + Fkm

k )F ki F
k
j

. (2.4)

All along the paper, cb denotes constants that may vary from line to line but is independent of
parameters tending to +∞ or to zero.

Lemma 2.3
F k is a non-negative solution to

vi · ∇F ki = Q+k
i − F

k
i ν

k
i , (2.5)

F ki (z) = fkbi(z), z ∈ ∂Ω+
i , 1 ≤ i ≤ p. (2.6)

Solutions (F k)k∈N∗ to (2.5)-(2.6) have mass and entropy dissipation bounded from above uniformly
with respect to k. Moreover their outgoing flows at the boundary are controlled as follows,

p∑
i=1

∫
∂Ω−i ,F

k
i ≤k
| vi · n(Z) | F ki lnF ki (Z)dσ(Z) + ln

k

2

∫
∂Ω−i ,F

k
i >k
| vi · n(Z) | F ki dσ(Z) ≤ cb.

(2.7)

Proof of Lemma 2.3.
Passing to the limit when q → +∞ in (2.1)-(2.2) written for F β(q),k, implies that F k is a solution
in
(
L1

+(Ω)
)p

to (2.5)-(2.6). For a proof of the rest of Lemma 2.3, we refer to Lemma 3.2 in [2].

3 On compactness of sequences of approximations.

This section is devoted to prove L1 compactness properties of the approximations. In Proposition
3.1, weak L1 compactness of (F k)k∈N∗ is proven. Lemma 3.1 splits Ω into a set of i-characteristics
with arbitrary small measure and its complement, where both the approximations and their inte-
grated collision frequencies are bounded. In Lemma 3.2, the strong L1 compactness of integrated
collision frequency is proven.
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Proposition 3.1
The sequence (F k)k∈N∗ solution to (2.5)-(2.6) is weakly compact in L1.

Proof of Proposition 3.1.

By Lemma 2.3, (F k)k∈N∗ is uniformly bounded in (L1(Ω))p.

Given (2.7) and the following bound on F k,

F ki (z) ≤ F ki (z + s−i (z)vi) exp
(

Γ
∑
j∈Ji

∫ s−i (z)

−s+i (z)
Fj(z + rvi)dr

)
, z ∈ Ω, i ∈ {1, · · ·, p}, (3.1)

the weak L1 compactness of (F k)k∈N∗ will follow from the uniform boundedness in L∞(∂Ω+
i ) of

( ∫ s−i (Z)

0
Fj(Z + rvi)dr

)
j∈Ji,k∈N

, (3.2)

where Ji denotes {j ∈ {1, · · ·, p}; (vi, vj) are interacting velocities}. By (1.3), there exists η > 0
such that for all interacting velocities (vi, vj),

|sin(v̂i, vj)| > η. (3.3)

Let i ∈ {1, · · ·, p} and Z ∈ ∂Ω+
i . Multiply the equation satisfied by F kj by

v⊥i ·vj
|vi| and integrate it

on one of the half domains defined by the segment [Z,Z + s−i (Z)vi]. Summing over j ∈ {1, · · ·, p}
implies that

p∑
j=1

sin2(v̂i, vj)

∫ s−i (Z)

0
F kj (Z + svi)ds ≤ cb, Z ∈ ∂Ω+

i . (3.4)

Together with (3.3), this leads to the control of (3.2).

Recall the exponential multiplier form for the approximations (F k)k∈N∗ ,

F ki (z) = fkbi(z
+
i (z))e

−
∫ 0

−s+
i

(z)
νki (z+svi)ds

+

∫ 0

−s+i (z)
Q+k
i (z + svi)e

−
∫ 0
s ν

k
i (Fk)(z+rvi)drds, a.a. z ∈ Ω, 1 ≤ i ≤ p, (3.5)

with νki and Q+k
i defined in (2.3). An i-characteristics is a segment of points [Z−s+

i (Z)vi, Z], where
Z ∈ ∂Ω−i . Denote by Γ = max

i,j,l,m
Γlmij .

Lemma 3.1
For i ∈ {1, ..., p}, k ∈ N∗ and ε > 0, there is a subset Ωk,ε

i of i-characteristics of Ω with measure

smaller than cbε, such that for any z ∈ Ω \ Ωk,ε
i ,

F ki (z) ≤ 1

ε2
exp

(pΓ
ε2
)
,

∫ s−i (z)

−s+i (z)
νki (z + svi)ds ≤

pΓ

ε2
. (3.6)
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Proof of Lemma 3.1.
By the strict convexity of Ω, there are for every i ∈ {1, · · ·p} two points of ∂Ω, denoted by Z̃i and
Z̄i such that

vi · n(Z̃i) = vi · n(Z̄i) = 0.

Let l̃i (resp. l̄i) be the largest boundary arc included in ∂Ω−i with one end point Z̃i (resp. Z̄i) such
that

−ε ≤ vi · n(Z) ≤ 0, Z ∈ l̃i ∪ l̄i. (3.7)

Let Ji be the subset of {1, · · ·, p} such that

for some (l,m) ∈ {1, · · ·, p}2, Γlmij > 0, j ∈ Ji. (3.8)

It follows from the exponential form of F ki that

F ki (z) ≤ F ki (z + s−i (z)vi) exp
(

Γ
∑
j∈Ji

∫ s−i (z)

−s+i (z)
Fj(z + rvi)dr

)
, z ∈ Ω. (3.9)

The boundedness of the mass flow of (F ki )k∈N∗ across ∂Ω−i is∫
∂Ω−i

| vi · n(Z) | F ki (Z)dσ(Z) ≤ cb, k ∈ N∗. (3.10)

It follows from (3.7)-(3.10) that the measure of the set

{Z ∈ ∂Ω−i ∩ l̃
c
i ∩ l̄ ci ; F ki (Z) >

1

ε2
}

is smaller than cbε. The boundedness of the mass of (F kj )k∈N∗ can be written∫
Ω
F kj (z)dz =

∫
∂Ω−i

| vi · n(Z) |
(∫ 0

−s+i (Z)
F kj (Z + rvi)dr

)
dσ(Z) ≤ cb, j ∈ Ji.

Hence the measure of the set

{Z ∈ ∂Ω−i ∩ l̃
c
i ∩ l̄ ci ;

∫ 0

−s+i (Z)
F kj (Z + rvi)dr >

1

ε2
}, j ∈ Ji,

is smaller than cbε. Consequently, the measure of the set of Z ∈ ∂Ω−i ∩ l̃ ci ∩ l̄ ci outside of which

F ki (Z) ≤ 1

ε2
and

∫ 0

−s+i (Z)
F kj (Z + rvi)dr ≤

1

ε2
, j ∈ Ji,

is bounded by cbε. Together with (3.9), this implies that the measure of the complement of the set
of Z ∈ ∂Ω−i , such that

F ki (z) ≤ 1

ε2
exp

(pΓ
ε2
)

and

∫ s−i (z)

−s+i (z)
νki (z + rvi)dr ≤

pΓ

ε2
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for z = Z + svi, s ∈ [−s+
i (Z), 0], is bounded by cbε. With it cbε is a bound for the measure of the

complement, denoted by Ωk,ε
i , of the set of i-characteristics in Ω such that for all points z on the

i-characteristics, (3.6) holds.

Given i ∈ {1, ..., p} and ε > 0, let χk,εi denote the characteristic function of the complement of

Ωk,ε
i . The following lemma proves the compactness in L1(Ω) of the k-sequence of integrated colli-

sion frequencies.

Lemma 3.2
The sequences

( ∫ 0
−s+i (z) ν

k
i (z + svi)ds

)
k∈N∗

, 1 ≤ i ≤ p, are strongly compact in L1(Ω).

Proof of Lemma 3.2.
Take Γlmij > 0. By (1.3), vi and vj span R2. Denote by (a, b) the corresponding coordinate system,
(a−, a+) defined by

a− = min{a ∈ R; (a, b) ∈ Ω for some b}, a+ = max{a ∈ R; (a, b) ∈ Ω for some b},

and by D the Jacobian of the change of variables z → (a, b). The uniform bound for the mass of
(F k)k∈N∗ proven in Lemma 2.3, implies that(∫

Ω

∫ 0

−s+i (z)
νki (z + svi)dsdz

)
k∈N∗

is bounded in L1 uniformly with respect to k. Indeed, for some (b−(a), b+(a)), a ∈ [a−, a+],∫
Ω

∫ 0

−s+i (z)
F kj (z + svi)dsdz = D

∫ a+

a−

∫ b+(a)

b−(a)

∫ a

−s+i (bvj)
F kj (bvj + svi)dsdbda

≤ D
∫ a+

a−

∫ b+(a)

b−(a)

∫ s−i (bvj)

−s+i (bvj)
F kj (bvj + svi)dsdbda

≤ c
∫

Ω
F kj (z)dz, j ∈ Ji.

By the Kolmogorov-Riesz theorem ([17], [19]), the compactness of
( ∫ 0
−s+i (z) ν

k
i (z + svi)ds

)
k∈N∗

will

follow from its translational equi-continuity in L1(Ω). Equicontinuity in the direction vi, and in
the direction vj with the mild form (1.8) for F kj , come natural. Here the assumption (1.3) becomes
crucial. The sequence(∫ 0

−s+i (z)
F kj (z + svi)ds

)
k∈N∗

, j ∈ Ji, (3.11)

is translationally equi-continuous in the vi-direction. Indeed, s+
i (z + hvi) = s+

i (z) + h so that,
denoting by I(0, h) the interval with endpoints 0 and h and using the uniform bound on the mass
of (F kj )k∈N∗ ,∫

Ω
|
∫ 0

−s+i (z+hvi)
F kj (z + hvi + svi)ds−

∫ 0

−s+i (z)
F kj (z + svi)ds | dz

=

∫
Ω

∫
s∈I(0,h)

F kj (z + svi)dsdz

≤ c | h | .
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Let us prove the translational equi-continuity of (3.11) in the vj-direction. By the weak L1 com-
pactness of (F kj )k∈N∗ , it is sufficient to prove the translational equi-continuity in the vj-direction of( ∫ 0

s+i (z) χ
k,ε
j F kj (z + svi)ds

)
k∈N∗ . Expressing F kj (z + hvj + svi) (resp. F kj (z + svi)) as integral along

its vj-characteristics, it holds that

|
∫ 0

−s+i (z+hvj)
χk,εj F kj (z + hvj + svi)ds−

∫ 0

−s+i (z)
χk,εj F kj (z + svi)ds |≤| Akij(z, h) | + | Bk

ij(z, h) |,

where

Akij(z, h) =

∫ 0

−s+i (z+hvj)
χk,εj fkbj

(
z+
j (z + hvj + svi)

)
ds−

∫ 0

−s+i (z)
χk,εj fkbj

(
z+
j (z + svi)

)
ds,

and

Bk
ij(z, h) =

∫ 0

−s+i (z+hvj)

∫ 0

−s+j (z+hvj+svi)
χk,εj Qkj (z + hvj + svi + rvj)drds

−
∫ 0

−s+i (z)

∫ 0

−s+j (z+svi)
χk,εj Qkj (z + svi + rvj)drds,

with Qki defined in (2.3). Denote by (z+
j (z+

i (z)), z+
j (z+

i (z+ hvj)) the boundary arc with end points

z+
j (z+

i (z)) and z+
j (z+

i (z + hvj)) and of length tending to zero with h. Performing the change of

variables s → Z = z+
j (z + hvj + svi) (resp. s → Z = z+

j (z + svi)) in the first (resp. second) term

of Akij(z, h), and using that the sequence (fkbi)k∈N∗ is bounded by fbi, it holds that

lim
h→0

∫
Ω
| Akij(z, h) | dz = 0, (3.12)

uniformly with respect to k. Moreover, for some ωh(z) ⊂ Ω of measure or order | h | uniformly with
respect to z ∈ Ω,

Bk
ij(z, h) =

∫
ωh(z)

χk,εj Qkj (Z)dZ. (3.13)

The sequence (χk,εj Qkj )k∈N∗ is weakly compact in L1. Indeed,

χk,εj Qkj ≤
1

ln Λ
D̃k + ΓΛ

(∑
i∈Jj

F ki

)
(χk,εj F kj )

≤ 1

ln Λ
D̃k +

ΓΛ

ε2
exp

(pΓ
ε2
)(∑

i∈Jj

F ki

)
, Λ > 1, (3.14)

with (D̃k)k∈N∗ uniformly bounded in L1 and (F ki )k∈N∗ weakly compact in L1. Hence,

lim
h→0

∫
Ω
| Bk

ij(z, h) | dz = 0, uniformly with respect to k. (3.15)
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4 The passage to the limit in the approximations.

Let f be the weak L1 limit of a subsequence of the solutions (F k)k∈N∗ to (2.5)-(2.6), still denoted
by (F k)k∈N∗ . For proving that f is a mild solution of (1.5)-(1.6), it is sufficient to prove that for any
η > 0 and i ∈ {1, · · ·, p}, there is a set Xη

i of i-characteristics with complementary set of measure
smaller than cη, such that∫

Ω
ϕχηi fi(z)dz =

∫
Ω
ϕχηi fbi(z

+
i (z))dz

+

∫
Ω

∫ 0

−s+i (z)

(
ϕχηiQi(f, f) + χηi fi vi · ∇ϕ

)
(z + svi)dsdz, ϕ ∈ C1(Ω̄), (4.1)

where χηi denotes the characteristic function of Xη
i . Define the set Xη

i as follows. For every ε > 0,
pass to the limit when k → +∞ in

χk,εi F ki (z) ≤ χk,εi F ki (z−i (z)) exp
(∫ s−i (z)

−s+i (z)
νki (z + svi)ds

)
, a.a. z ∈ Ω, k ∈ N∗, (4.2)

and use the weak L1 compactness of (χk,εi F ki )k∈N∗ , the weak L1 compactness and the uniform bound-

edness in L∞ of (χk,εi F ki (z−i (z)))k∈N∗ , and the strong L1 compactness of (
∫ s−i (z)

−s+i (z)
νki (z+svi)ds)k∈N∗ .

It implies that

F εi (z) ≤ F εi (z−i (z)) exp
(∫ s−i (z)

−s+i (z)
νi(f)(z + svi)ds

)
, a.a. z ∈ Ω, ε ∈]0, 1[,

where F εi is the limit of a subsequence of (χk,εi F ki )k∈N∗ and νi(f) =
∑p

j,l,m=1 Γlmij fj . By the mono-

tonicity in ε of (F ε)ε∈]0,1[ (resp.
(
F ε(z−i (z))

)
ε∈]0,1[

) and the uniform boundedness of their masses,

it holds that

fi(z) ≤ fi(z−i (z)) exp
(∫ s−i (z)

−s+i (z)
νi(f)(z + svi)ds

)
, a.a. z ∈ Ω.

From here the proof follows the lines of the proof of Lemma 3.1, so that given η > 0, there is a set
Xη
i of i-characteristics, with complementary set of measure smaller than cη, such that

fi(z) ≤
1

η
e
pΓ
η and

∫ s−i (z)

−s+i (z)
νi(f)(z + svi)ds ≤

pΓ

η
, a.a. z ∈ Xη. (4.3)

Denote by C1
+(Ω̄) the subspace of non-negative functions of C1(Ω̄).

Lemma 4.1
f is a subsolution of (1.5)-(1.6), i.e.∫

Ω
ϕχηi fi(z)dz ≤

∫
Ω
ϕfbi(z

+
i (z))dz +

∫
Ω

∫ 0

−s+i (z)
χηi fi vi · ∇ϕ(z + svi)dsdz

+

∫
Ω

∫ 0

−s+i (z)
ϕQi(f, f)(z + svi)dsdz, 1 ≤ i ≤ p, ϕ ∈ C1

+(Ω̄). (4.4)
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Proof of Lemma 4.1.
Let i ∈ {1, · · ·, p} and ϕ ∈ C1

+(Ω̄) be given. Write the mild form of ϕχηi χ
k,ε
i F ki and integrate it on

Ω. It results∫
Ω
ϕχηi χ

k,ε
i F ki (z)dz =

∫
Ω
ϕχηi χ

k,ε
i fkbi(z

+
i (z))dz +

∫
Ω

∫ 0

−s+i (z)
χηi χ

k,ε
i F ki vi · ∇ϕ(z + svi)dsdz

+

∫
Ω

∫ 0

−s+i (z)
ϕχηi χ

k,ε
i

(
Q+k
i − F

k
i ν

k
i

)
(z + svi)dsdz. (4.5)

By the weak L1 compactness of (F ki )k∈N∗ and the linearity with respect to χk,εi F ki of the first line
of (4.5), its passage to the limit when k → +∞ is straightforward. Let us pass to the limit when
k → +∞ in any term of the loss term of (4.5), denoted by Γlmij L

k, where

Lk :=

∫
Ω
χηi χ

k,ε
i (z)

∫ 0

−s+i (z)
ϕ

F ki

1 +
Fki
k

F kj

1 +
Fkj
k

(z + svi)dsdz, j ∈ Ji, (4.6)

and Ji is defined in (3.8). By integration by parts, Lk equals∫
Ω

∫ 0

−s+i (z)
χηi χ

k,ε
i

(
ϕ(Q+k

i − F
k
i ν

k
i ) + (vi · ∇ϕ)F ki

)
(z + svi)

(∫ 0

s
χk,εi

F kj

(1 +
Fki
k )(1 +

Fkj
k )

(z + rvi)dr
)
dsdz

+

∫
Ω
χηi χ

k,ε
i ϕ

fkbi

1 +
fkbi
k

(z+
i (z))

∫ 0

−s+i (z)

F kj

1 +
Fkj
k

(z + svi)dsdz. (4.7)

Denote by (a, b) the coordinate system in the (vi, vj) basis, (a−, a+) ∈ R2 and (b−(a), b+(a)) ∈ R2

for every a ∈]a−, a+[, such that

Ω = {avi + bvj ; a ∈]a−, a+[, b ∈]b−(a), b+(a)[}. (4.8)

The first term in Lk can be written as
∫ a+

a− l
k(a)da with lk defined as

lk(a) =

∫ b+(a)

b−(a)

∫ a

−si(bvj)
χηi χ

k,ε
i

(
ϕ(Q+k

i − F
k
i ν

k
i ) + (vi · ∇ϕ)F ki

)
(svi + bvj)

( ∫ a

s
χk,εi

F kj

(1 +
Fki
k )(1 +

Fkj
k )

(rvi + bvj)dr
)
dsdb. (4.9)

For each rational number a, the sequence of functions

(b, s) ∈ [b−(a), b+(a)]× [−s+
i (bvj), a]→ χηi χ

k,ε
i

(
ϕ(Q+k

i − F
k
i ν

k
i ) + (vi · ∇ϕ)F ki

)
(svi + bvj)

is weakly compact in L1, whereas

(b, s)→
∫ a

s
χk,εi

F kj

(1 +
Fki
k )(1 +

Fkj
k )

(rvi + bvj)dr

is by Lemma 3.2 strongly compact in L1, and by Lemma 3.1 uniformly bounded in L∞. The
convergence follows for any rational number a. With a diagonal process, there is a subsequence of
(lk), still denoted by (lk), converging for any rational a. Moreover,

lim
h→0

(
lk(a+ h)− lk(a)

)
= 0, (4.10)
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uniformly with respect to k and a, by the weak L1 compactness of(
χηi χ

k,ε
i (ϕ(Q+k

i − F
k
i ν

k
i ) + (vi · ∇ϕ)F ki

)
k∈N∗ and (F kj )k∈N∗ .

Thus (lk) is a uniform converging sequence on [a−, a+]. The second term in Lk can be treated

analogously, (χk,εi fkbi)k∈N∗ being uniformly bounded in L∞. The convergence follows.

In order to determine the limit of Lk when k → +∞, remark that

χηi χ
k,ε
i (ϕ(Q+k

i − F
k
i ν

k
i ) + (vi · ∇ϕ)F ki = vi · ∇(χηi χ

k,ε
i ϕF ki ),

which weakly converges in L1 to vi · ∇(χηi ϕF
ε
i ) when k → +∞. Hence

lim
k→+∞

Lk =

∫
Ω

∫ 0

−s+i (z)
vi · ∇(χηi ϕF

ε
i )(z + svi)

(∫ 0

s
fj(z + rvi)dr

)
dsdz

+

∫
Ω
χηi ϕfbi(z

+
i (z))

(∫ 0

−s+i (z)
fj(z + svi)ds

)
dz.

By a backwards integration by parts,

lim
k→+∞

Lk =

∫
Ω

∫ 0

−s+i (z)
ϕχηi F

ε
i fj(z + svi)dsdz. (4.11)

In order to prove (4.4), let us prove that each

Γlmij

∫
Ω

∫ 0

−s+i (z)
ϕχηi χ

k,ε
i

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz, j ∈ Ji, (4.12)

term from Q+k
i in (4.5) converges when k → +∞ to a limit smaller than

Γlmij

∫
Ω

∫ 0

−s+i (z)
ϕχηi F

ε′
l fm(z + svi)dsdz + α(ε′), ε′ ∈]0, 1[, with lim

ε′→0
α(ε′) = 0. (4.13)
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Take Γlmij = 1, j ∈ Ji, for simplicity. (µ 1
n

)n∈N∗ being the sequence of mollifiers defined at the

beginning of Section 2 for α = 1
n , split (4.12) into∫

Ω

∫ 0

−s+i (z)
ϕ(χηi ∗ µ 1

n
)χk,ε

′

l χk,εi
F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz

+

∫
Ω

∫ 0

−s+i (z)
ϕ(χηi ∗ µ 1

n
)(1− χk,ε

′

l )χk,εi
F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz∫
Ω

∫ 0

−s+i (z)
ϕ
(
χηi − (χηi ∗ µ 1

n
)
)
χk,εi

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz

≤
∫

Ω

∫ 0

−s+i (z)
ϕ(χηi ∗ µ 1

n
)χk,ε

′

l

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz

+
c

ln Λ
+
cΛ

ε2
e
pΓ

ε2

∑
j∈Ji

(∫
Ωk,ε

′
l

F kj (z)dz +

∫
Ω
ϕ | χηi − (χηi ∗ µ 1

n
) | F kj (z)dz

)

≤
∫

Ω

∫ 0

−s+i (z)
ϕ(χηi ∗ µ 1

n
)χk,ε

′

l

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz

+
c

ln Λ
+
cΛ

ε2
e
pΓ

ε2

(
Λ′ε′ +

1

ln Λ′
+

1

ln k
2

+ Λ̃ ‖ χηi − (χηi ∗ µ 1
n

) ‖L1 +
1

ln Λ̃

)
, by (??),

Λ > 1, Λ′ > 1, Λ̃ > 1, ε′ > 0. (4.14)

Denote by D the Jacobian of the change of variables z → (a, b). For some smooth function A, and
any integrable function g,∫

Ω

∫ 0

−s+i (z)
g(z + svi)dsdz = D

∫ b+

b−

∫ a+(b)

a−(b)

∫ a

−s+i (bvj)
g(svi + bvj)dsdadb

= D

∫ b+

b−

∫ a+(b)

−s+i (bvj)
(a+(b)−max{a−(b), s})g(svi + bvj)dsdb

=

∫
Ω
A(α, γ)g(αvl + γvm)dαdγ.

Hence,

lim
k→+∞

∫ ∫ 0

−s+i (z)
ϕ(χηi ∗ µ 1

n
)χk,ε

′

l

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz

=

∫
Ω

∫ 0

−s+i (z)
ϕ(χηi ∗ µ 1

n
)F ε

′
l fm(z + svi)dsdz, ε′ ∈]0, 1[. (4.15)
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For Λ̃ large enough, pass to the limit when k → +∞ and n→ +∞ in (4.14). Up to subsequences,

the weak L1 limits F εi and F ε
′
i of (χk,εi F ki )k∈N∗ and (χk,ε

′

i F ki )k∈N∗ when k → +∞ satisfy∫
Ω
ϕχηi F

ε
i (z)dz ≤

∫
Ω
ϕχηi f

k
bi(z

+
i (z))dz +

∫
Ω

∫ 0

−s+i (z)
χηi F

ε
i vi · ∇ϕ(z + svi)dsdz

+

∫
Ω

∫ 0

−s+i (z)
ϕχηi

(
Q+
i (F ε

′
, f)− F εi νi(f)

)
(z + svi)dsdz (4.16)

+
c

ln Λ
+
cΛ

ε2
e
pΓ

ε2
(
Λ′ε′ +

1

ln Λ′
)
, (ε, ε′) ∈]0, 1[2, Λ > 1, Λ′ > 1.

Choose Λ large enough, ε small enough, Λ′ large enough, ε′ small enough, in this order. The passage
to the limit when ε → 0 and ε′ → 0 in (4.16) results from the monotone convergence theorem, the
family (F ε)ε∈]0,1[ being non decreasing, with mass uniformly bounded, together with the mass of

(χηiQ
+
i (F ε

′
, f))ε′∈]0,1[ and (χηi F

ε′
i νi(f))ε′∈]0,1[. Consequently, (4.4) holds.

Lemma 4.2 f is a solution to (1.5)-(1.6).

Proof of Lemma 4.2.
For proving Lemma 4.2, it remains to prove that∫

Ω
ϕχηi fi(z)dz ≥

∫
Ω
ϕχηi fbi(z

+
i (z))dz +

∫
Ω

∫ 0

−s+i (z)
χηi fi vi · ∇ϕ(z + svi)dsdz

+

∫
Ω

∫ 0

−s+i (z)
ϕχηiQi(f, f)(z + svi)dsdz, 1 ≤ i ≤ p, ϕ ∈ C1

+(Ω̄). (4.17)

For β > 0, start from the equation for ϕχηi F
k
i written in renormalized form,

β−1ϕχηi ln(1 + βF ki )(z)− β−1ϕχηi ln(1 + βfkbi)(z
+
i (z))

+

∫ 0

−s+i (z)
β−1χηi ln(1 + βF ki )vi · ∇ϕ(z + svi)ds =

∫ 0

−s+i (z)

ϕχηi (Q
+k
i − F ki νki )

1 + βF ki
(z + svi)ds.

(4.18)

It holds

β−1 ln(1 + βx) < x, β ∈]0, 1[ and lim
β→0

β−1 ln(1 + βx) = x, x > 0.

Hence in weak L1 the sequence (β−1 ln
(
1 +βF ki

)
)k∈N∗ converges modulo subsequence to a function

F β ≤ f when k → +∞. The mass of the limit increases to the mass of f , when β → 0. This gives
in the final limit β → 0 for the l.h.s. of (4.18),

ϕχηi fi(z)− ϕχ
η
i fbi(z

+
i (z))−

∫ 0

−s+i (z)
χηi fi vi · ∇ϕ(z + svi)ds. (4.19)

Using analogous arguments as for the limit of the loss term in Lemma 4.1, it holds that

lim
k→+∞

Γlmij

∫
Ω

∫ 0

−s+i (z)

ϕχηi F
k
i F

k
j

1 + βF ki
(z + svi)dsdz

= Γlmij

∫
Ω

∫ 0

−s+i (z)
ϕχηi

(
weakL1lim

k→+∞

F ki
1 + βF ki

)
fj(z + svi)dsdz, j ∈ Ji.
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But

weakL1lim
k→+∞

F ki
1 + βF ki

≤ weakL1lim
k→+∞

F ki ,

and ∫
Ω

weakL1lim
k→+∞

F ki
1 + βF ki

(z)dz increases to

∫
Ω

weakL1lim
k→+∞

F ki (z)dz

when β → 0. Hence

lim
β→0

lim
k→+∞

Γlmij

∫
Ω

∫ 0

−s+i (z)

ϕχηi F
k
i F

k
j

1 + βF ki
(z + svi)dsdz = Γlmij

∫
Ω

∫ 0

−s+i (z)
ϕχηi fifj(z + svi)dsdz.

(4.20)

For the gain term and any (l,m) ∈ {1, · · ·, p}2 such that Γlmij > 0 for some j ∈ {1, · · ·, p},∫
Ω

∫ 0

−s+i (z)

ϕχηi
1 + βF ki

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz

≥
∫

Ω

∫ 0

−s+i (z)

ϕχηi χ
k,ε
l

1 + βF ki

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz

=

∫
Ω

∫ 0

−s+i (z)
ϕχηi χ

k,ε
l

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz

−
∫

Ω

∫ 0

−s+i (z)
ϕχηi χ

k,ε
l

βF ki
1 + βF ki

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz

≥
∫

Ω

∫ 0

−s+i (z)
ϕχηi χ

k,ε
l

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz

− cΛ
∑
j∈Ji

∫
Ω

∫ 0

−s+i (z)
ϕχηi χ

k,ε
l

β(F ki )2F kj

1 + βF ki
(z + svi)dsdz −

c

ln Λ
Λ > 1, ε ∈]0, 1[. (4.21)

It holds

lim
k→+∞

∫
Ω

∫ 0

−s+i (z)
ϕχηi χ

k,ε
l

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz =

∫
Ω

∫ 0

−s+i (z)
ϕχηi F

ε
l f

k
m(z + svi)dsdz.

(4.22)

Choose Λ large enough and split the domain of integration of every j ∈ Ji term in (4.21) into

{F ki ≤ Λ′} ∪ {F ki > Λ′ and F ki F
k
j > Λ̃

F kl

1 +
Fkl
k

F km

1 + Fkm
k

}

∪ {F ki > Λ′ and F ki F
k
j ≤ Λ̃

F kl

1 +
Fkl
k

F km

1 + Fkm
k

}, Λ′ > 1, Λ̃ > 1.
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It holds that∫
Ω

∫ 0

−s+i (z)
ϕχηi χ

k,ε
l

β(F ki )2F kj

1 + βF ki
(z + svi)dsdz ≤ c

(
β(Λ′)2 +

1

ln Λ̃
+

Λ̃

ε2
e
pΓ

ε2

∫
Fki >Λ′

F km(z)dz
)
,

β ∈]0, 1[, Λ′ > 0, Λ̃ > 1. (4.23)

The last term in (4.23) tends to zero when Λ̃ → +∞, Λ′ → +∞, β → 0 in this order, uniformly
with respect to k. Consequently,

lim
β→0

lim
k→+∞

∫
Ω

∫ 0

−s+i (z)

ϕχηi
1 + βF ki

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz ≥
∫

Ω

∫ 0

−s+i (z)
ϕχηi F

ε
l fm(z + svi)dsdz.

This holds for every ε > 0. Hence

lim
β→0

lim
k→+∞

∫
Ω

∫ 0

−s+i (z)

ϕχηi
1 + βF ki

F kl

1 +
Fkl
k

F km

1 + Fkm
k

(z + svi)dsdz ≥
∫

Ω

∫ 0

−s+i (z)
ϕχηi flfm(z + svi)dsdz.

(4.24)

And so, (4.17) holds. Together with (4.4), this proves (4.1).
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