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Abstract

We study the crushing strength of brittle materials whose internal structure

(e.g., mineral particles or grains) presents a layered arrangement reminiscent

of sedimentary and metamorphic rocks. Taking a discrete-element approach,

we probe the failure strength of circular-shaped samples intended to repro-

duce specific mineral configurations. To do so, assemblies of cells, products

of a modified Voronoi tessellation, are joined in mechanically-stable layer-

ings using a bonding law. The cells’ shape distribution allows us to set a

level of inherent anisotropy to the material. Using a diametral point loading,

and systematically changing the loading orientation with respect to the cells’

configuration, we characterize the failure strength of increasingly anisotropic

structures. This approach lets us reproduce experimental observations re-

garding the shape of the failure strength curve, the Weibull modulus, failure
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patterns of rocks, and quantify the consumption of the fragmentation en-

ergy, and the induced anisotropies linked to the cell’s geometry and force

transmission in the samples. Based on a fine description of geometrical and

mechanical properties at the onset of failure, we develop a micromechanical

breakdown of the crushing strength variability using an analytical decompo-

sition of the stress tensor and the geometrical and force anisotropies. We

can conclude that the origins of failure strength in anisotropic layered media

rely on compensations of geometrical and mechanical anisotropies, as well as

an increasing average radial force between minerals indistinctive of tensile or

compressive components.
Key words: fabric, anisotropy, failure strength, Weibull statistics,

fragmentation energy, discrete element method

1. Introduction

The mechanical behavior of many solids can be tracked down to the

level of molecules, defects, and dislocations that may cause stress concentra-

tions and yielding of the material. However, the microstructural level can be

equally or more important for characterizing their failure strength. Imagine,5

for instance, arrangements produced by the genesis, layering, and stratifica-

tion of a solid such as sedimentation, rock metamorphism, or even crystal

growth. In these cases, the mechanical properties are not determined at the

molecular level but instead at the microstructural level [1].

We focus on the failure strength of brittle materials, which may include10

rocks, soil grains, ceramics, and even ice. In the case of rock masses and

rock aggregates, for example, it is well known that the mechanical behav-
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ior depends on mineralogy and grain characteristics (e.g., size and shape

distribution of minerals), matrix level of cementation, joint characteristics,

and fissuring [2]. Many of these geometrical attributes are also called fabric15

or microstructure for geological materials. If any of those fabric properties

present a preferred orientation or organization in space, then the material

can be considered inherently anisotropic. Many studies have focused on the

quantification of the level of inherent fabric anisotropy in rocks or on the

impact of the loading orientation on the ultimate strength of such layered20

materials [3–11].

In experiments, cylindrical cores are often used to characterize the fail-

ure strength of inherently anisotropic rocks under diametrical point loading

(commonly called Brazilian test). In those tests, the orientation θ of the

applied force is gradually varied with respect to the orientation of the inter-25

nal layering (see Fig. 1). For such a circular geometry, axial symmetry is

found along the layering orientation; then, the failure strength can be fully

characterized by varying θ in the range [0◦, 90◦]. Note as well that the rock

cores and test configurations are chosen, so the inherently anisotropic con-

figuration is homogeneous as possible along the length of the cylinders (i.e.,30

the mineral configuration can be considered transversely isotropic).

For rocks not presenting an inherent anisotropy, the failure strength is

independent of the loading orientation θ. However, for highly layered rocks

such as slate, schist or shale, the failure strength largely varies with θ in

a ‘U ’ shape with minimal strength for an orientation around θ ≃ 25◦, and35

increasing strength as θ → 0◦ or 90◦ [5, 8, 11–15]. As shown early by Hoek

in 1964, the ‘U ’ shape is consistent with Griffith’s theory of brittle fracture
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Figure 1: Scheme of a diametrical loading in which the loading orientation varies relative

to the orientation of the internal structure.

of materials, in which the maximum stress at the tip of the crack triggers

the propagation of a fissure once a critical amount of energy is added to the

system. The rock microstructure is then capable of signing the failure modes40

and patterns. This in turn significantly affects the stress-strain relations at a

macroscopic level (i.e., stiffness, hardening/softening, and strength) [16, 17].

It is important to clearly distinguish between inherent and induced anisotropies.

While the first is defined here as a property of the fabric, the latter refers to

anisotropies arising from that primary structure, such as the joint distribu-45

tion in space. Although the anisotropies mentioned up this point are only

related to geometrical properties, they can also arise from the loading config-

uration (i.e., stress-induced anisotropies). Indeed, a detailed description of

both inherent and induced anisotropies are key elements for understanding

the behavior of brittle materials, as we will show in this paper.50

Improving our understanding of anisotropic geological materials will help

us better address problems involving rock and grain fragmentation, such as

railway ballast design [18, 19], rockfill dam design [20–22], rock tunneling

processes [23, 24], mining waste dumps construction [25], surface subsidence

4



Journal Pre-proof
[26], slip stability analysis of fault gouges [27], filling rock mass discontinu-55

ities [28], the geological formation of glacial till [29], confined comminution

[30, 31], weathering and environmental degradation effects [32], the failure

localization in progressively deteriorated disordered structures [33], etc.

In this paper, we use bi-dimensional discrete-element modeling to study

the failure strength of circular samples that have an inherent anisotropic60

configuration under varied loading orientation. In Sec. 2, we introduce our

numerical strategy based on the contact dynamics and the bonded-cell meth-

ods, and the sample construction and testing procedures. In Sec. 3, we

characterize the failure strength of two-inherent anisotropic structures show-

ing a good agreement with experimental observations. We then analyze the65

failure strength variability in terms of Weibull’s statistics and failure mode

evolution. Section 4 focuses on a fine description of the microstructure in

terms of fabric connectivity, force transmission, and inherent and induced

anisotropies. In Sec. 5, we develop a theoretical analysis that allows us to

discover the microstructural origins of the crushing strength in terms of the70

level of inherent anisotropy and loading orientation. This analytical approach

based on the granular stress tensor and its harmonic decomposition linking

microstructure and the macromechanical response. Finally, we conclude with

a summary and perspectives.

2. Numerical modeling75

Inherently anisotropic materials are challenging to characterize given the

complex and multiscale properties that minerals, grains, bonds, and fissures

can present in space. Numerical approaches have proven successful at an-
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alyzing these materials because they are able to reproduce complex failure

mechanisms under controlled geometries. Some of these approaches use,80

for example, finite-elements [34, 35], discrete-element methods with bonded

bodies [36–41], splitting or replacing mechanisms [42–45], or coupled discrete-

finite element strategies [46–50].

Among these approaches, the discrete-element method (DEM) has be-

come increasingly popular for dealing with fragmentation due to its versatil-85

ity in reproducing grain fissuring, crushing, and many experimental observa-

tions [51? –53]. However, some modeling strategies employ circular particles

to represent grains and blocks [54–56], which does not capture the complex

variability of fragments’ shapes and sizes. Other studies use a ‘replacement’

method in which bigger grains are substituted by a set of smaller bodies once90

a criterion is reached [43, 57, 58], at the expense of missing mass conservation

or creating local over-stresses at the replacement instant. Finally, energy con-

sumption is not traceable when using circular bodies, or ad-hoc parameters

are necessary to estimate the fragmentation energy. While these approaches

have enabled the exploration of certain mechanisms of rock and grain failure,95

no clear mapping between the variability of strength, failure modes, and the

microstructure has been found for inherently anisotropic materials. A correct

simulation of these materials requires a model in which bodies can break into

irregular and size disperse fragments while simultaneously controlling the in-

herent anisotropy level. As we show in the next section, these conditions can100

be met in 2D simulations using irregular convex polygons.
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2.1. Construction of inherently anisotropic samples

We build circular samples composed of smaller bodies called cells using

a Voronoi decomposition of a unitary circle. This procedure generates an

assembly of Ncl adjacent cells that we ‘glue’ using a cohesive bonding law.105

This approach, known as the bonded-cell method (BCM), has been used in

numerous studies of the mechanical behavior of crushable granular materials,

both in 2D [59] and 3D [60–62].

A random Voronoi tessellation normally creates a disordered distribution

of cell shapes and sizes. In order to control the cell’s geometry (and, in effect,110

the inherent anisotropy), we alter the initial tessellation in two steps. First,

we iteratively rebuild the Voronoi tessellation using the centroids of previous

tessellation seedings to produce similar cells. This approach is also called

centroid tessellation [63]. Then, the cells are elongated along a given direc-

tion and an anisometry level is estimated using the average aspect ratio of the115

cells η = h/L, with h and L being the average short and long dimensions, re-

spectively. This anisometry represents the inherent anisotropy configuration

of the minerals in our model. We produced a set of samples with η = [1, 6]

in steps of 1 (see Fig. 3). Additionally, perturbations to the initial setting of

the tessellation enabled us to have slightly different cell arrangements. For120

statistical representativeness, we built five different configurations for each

value of η.

In order to give mechanical strength to the assembly of cells, we define a

normal and tangential cohesion at the bonds (i.e., cell-cell interactions), Cn

and Ct, respectively. Cn prevents the interactions between cells from sep-125

arating due to tensile stresses, while Ct provides resistance against sliding.
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We also preset a debonding distance δc needed to effectively break a cohe-

sive bond. By choosing a typical value of surface energy density for silicate

minerals γ = 50 J/m2 [64], we can then determine the separation threshold

as δc = 2γ/Cn, following fracture mechanics theory. Note that our model130

allows us to independently define the tensile and shear bonding strength,

but for simplicity we set Cn = Ct. A detailed analysis of the combined effect

of varying Cn and Ct can be found in Ref. [60].

The critical rupture energy that a bond needs to break is thus Ec = 2γlc,

with lc the length of the interaction. Once Ec is reached, the cohesive bond135

is removed, simulating a fissuring event. These fissures are considered dry

frictional surfaces, with µ being the coefficient of friction that we set to 0.4

(see Fig. 2 for a schematic representation of the bonding law).

In addition, numerical studies have explored the effect of the number of

cells on the failure strength of brittle materials, showing that an increased140

number of cells lowers the failure strength [59, 62]. However, it was recently

shown that the scalability of failure strength is not simply linked to the

number of cells, but more importantly to the length of bonding interactions

[61, 65]. Thus, to make the tests comparable, samples must present the same

potential surface energy among the different values of η despite presenting a145

different number of cells. So, in our tests, the samples have the same total

length of bonds.

2.2. Contact dynamics

The contact dynamics (CD) method is a discrete-element approach in

which rigid bodies interact via non-smooth laws [66, 67], i.e., impacts are150

transmitted on an implicit time-stepping scheme. At the end of each time-
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Figure 2: Interaction law for cohesive bonds between cells for the normal (left) and the

tangential components (right) relative to the local framework coordinates.

Figure 3: Samples presenting increasing average cell aspect ratio η. We varied η from

(a) 1 up to (f) 6 in steps of 1.
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step, particles’ velocities and contact forces can therefore be simultaneously

computed without requiring force-overlapping laws (i.e., no regularization of

the contact law is needed). This allows the CD method to be unconditionally

stable and capable of employing larger time-steps than in alternative smooth155

approaches. For details on implementation of the contact dynamics method,

see Refs. [68, 69].

In two-dimensional simulations, three main interactions can occur be-

tween convex bodies: vertex-vertex, vertex-edge, edge-edge (see Fig. 4).

Vertex-vertex interactions are rare and unstable, so they are discarded from160

the computation and analysis. For edge-edge interactions, it is necessary

to consider two contact points to correctly resolve the contact mechanics;

however, only the resultant force is important, rendering the loci of the two

contact points irrelevant. For the interaction detection and classification, we

use the shadow-overlap method [70], which creates a separating plane between165

two touching bodies via an iterative procedure. Updated body positions, ve-

locities, and interaction forces are governed by the equations of motion and

the cohesive bonding law we previously defined.

Finally, it is worth mentioning that our simulations were performed using

the CD method on the free and open-source platform LMGC90 [71, 72].170

2.3. Test procedures

Samples are initially set matching the loading orientation with the cells’

preferred direction, so θ = 0◦. Then, we apply a gradually increasing vertical

force F using rigid platens up to the failure. To avoid dynamic perturbations

during loading, we make sure that, over a time-step, a load increment is very175

small before Cnd, with d being the diameter of the samples. We systemati-
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Figure 4: Different interaction types between convex polygons: (left) vertex-vertex, (cen-

ter) vertex-edge, and (right) edge-edge.

cally vary θ in the range [0◦, 90◦] in steps of 5◦, i.e., 18 different orientations

(see Fig. 1). Finally, we test five different configurations of η for each one

of the angles for statistical representativeness. Videos of the tests can be

found at the following link https://youtu.be/N66c_4crwlM. We present180

the averaged results of the total 540 simulations we performed.

3. Macroscopic observations

3.1. Failure strength

Our samples are able to reproduce a brittle material behavior by sup-

porting a load that gradually increases up to a critical value that triggers185

the collapse of the assembly (see Fig. 5(a)). The critical force at failure Fc

allows us to characterize strength using the vertical stress at failure, defined

as

σyy =
Fc

d
. (1)

Figure 5(b) summarizes the average values for σyy found in our tests as a

function of θ and the inherent anisotropy η. Under the same loading rates,190

11



Journal Pre-proof
the internal cohesion is a natural scaling parameter for these systems. So,

we plot σyy normalized by Cn.

Note that for the case η = 1, in which the cells do not present any

characteristic orientation, the strength is independent of the angle θ. For

the anisotropic configurations where η > 1, the strength remains relatively195

similar for loading orientations below θ ≃ 70◦, but always underneath the

values found for the case η = 1. Beyond θ ≃ 75◦, there is an important gain

in strength, which seems accentuated as η increases. Finally, a maximum

failure strength is found for loading orientation perpendicular to the layering

of the cells (i.e., θ = 90◦).200

As previously mentioned, experimental observations have systematically

highlighted the ‘U ’ shape displayed in Fig. 5(b), with a critical loading ori-

entation θc exhibiting the minimal strength. Simple stress considerations can

predict that critical orientation as cos 2θc = (1−κ)/2(1+κ), with κ = σ1/σ2

being the ratio between the major and minor principal stresses on the sample205

[1]. For the diametral point load, in which σ2 = 0, we can easily deduce that

θc = 30◦. Nonetheless, in our tests θc varies with η from ≃ 30◦ for η = 2,

to ≃ 15◦ for higher values of η (see inset of Fig. 5(b)). These observations

show that our numerical experiments are in good agreement with experimen-

tal testing and analysis, despite the fact that the ‘U ’ shape in our results is210

more subtle than what is reported in literature. We have to remark, nonethe-

less, that larger variations of the failure strength with angle θ can be found

once a confining pressure is applied to the sample [3]. In addition, some of

the tests on inherently anisotropic rocks are performed by loading the cir-

cular faces of the rock cores. It has been shown, however, that diametrical215
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(a) (b)

Figure 5: (a) Typical evolution of the reaction force F on the loading plate as a function

the simulation time normalized by the time at failure tc. (b) Strength σyy normalized by

the normal bonding cohesion Cn as a function of the relative loading orientation θ and

different levels of inherent anisotropy η. In the inset, we present the same data in lin-log

scale.

point load on cylindrical samples produces more subtle variations of failure

strength [9] The increasing disagreement in θc with respect to the theoreti-

cal estimation also suggests that the inherent anisotropy deeply modifies the

stress configuration within the samples.

For the case without inherent anisotropy, we can follow classical rock me-220

chanics testing and use the maximum tensile stress criterion to characterize

the strength of our samples [73, 74]. So the expression σc = 2Fc/πd allows

one to deduce the maximum tensile stress at the center of the circular sample.

Using that equation, we find that, on average, σc/Cn ≃ 1. This result allows

us to make two important observations: 1) our model correctly scales the225

internal material strength (Cn) to the macroscale, and 2) it can be correctly

assumed that for a non-anisotropic brittle structure, the tensile stresses are

13
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indeed triggering the failure. However, experimental testing characterizing

inherently anisotropic materials should be aware that the tensile stresses are

not necessarily at the origin of failure.230

3.2. Statistical variability of strength

To better understand the variability of failure strength, we analyze our

results in terms of ‘survival’ using the Weibull probability distribution. This

approach assumes that a sample’s probability of not presenting failure Ps

(i.e., the survival) depends on the applied stress σ as235

Ps = exp

{
−

(
σ

σ0

)m}
, (2)

with σ0 being a reference stress for which Ps = 1/e ≃ 37%. The exponent

m is known as the Weibull modulus and is associated with the sharpness

of the probability distribution. As m increases, so does the slope of the

distribution, meaning that the failure strength is focused on a given value.

Conversely, as m decreases, the stress range within which the particle may240

break broadens.

Figure 6 presents the survival probability distribution Ps as a function of

the applied stress and the different values of η, combining all results by θ. As

expected, the stress range σ within which we can expect failure considerably

increases with η. The dashed lines correspond to the fitting of Eq. (2) by245

finding m and σ0 with a least-squares minimization. The inset on the same

figure presents the values found for the Weibull modulus m as a function of η.

Typical values for parameter m for silicate materials are found in the range

[1.5, 4] [19, 75]. We observe that for microstructures with η = 1, m reaches a

value of ≃ 2.5 and then smoothly decreases as values of inherent anisotropy250

14
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grow. It is remarkable that our experiments satisfactorily reproduce the

Weibull modulus for brittle silicate materials despite the strong variation

of the cell’s configuration, the simplicity of our model, and the fact that

we are not able to store elastic energy/deformation in the bulk of the cells.

Typical values for parameter m for silicate-rich materials have been found, for255

instance, in the range m ∈ [1.16, 1.93] for silica sand [76], m ∈ [1.23, 3.04] [77]

for different silica sands from Japan, m ∈ [3.34, 3.44] [78] for limestone sand,

and m ∈ [1.26, 2.52] for calcareous and quartzite shale aggregate rocks [21],

agreeing with our results. Although our modeling strategy was developed

targeting the brittle behavior of soil grains and rocks, higher values of m can260

be obtained for different materials by adjusting parameters γ, Cn, and Ct.

If we combine all values of failure strength - not distinguishing between η

and θ - we find that m ≃ 1.5, which falls within a typical range of values for

rocks or grains that are not necessarily anisotropic. This observation suggests

that laboratory tests in which no special attention is given to the degree265

of inherent anisotropy or loading orientation can gather a wide variety of

material characteristics. Such a simplified approach could thus be misleading

and limit the predictability of the material failure strength.

3.3. Macroscopic failure modes and energy consumption

Figure 7 presents the fissuring paths for some of the samples with η = 2270

and varying loading orientation θ. When θ = 0◦, the failure is roughly

vertical, matching the loading orientation. The failure mechanism is similar

when θ = 90◦, although the zones in contact with the platens show more

damage. In these two cases, we can infer that tensile stresses are the source of

fissuring because many interactions are debonded orthogonally to the loading275
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Figure 6: Probability of survival Ps as a function of the applied stress σ for each value of

η and all values of θ combined. The dashed lines correspond to the fit of Eq. (2) to the

data. In the inset, we present the corresponding value of the Weibull modulus for each fit

of the Weibull distribution.

θ = 0◦ θ = 30◦ θ = 60◦ θ = 90◦

Figure 7: Evolution of the failure mechanism as the loading orientation increases from

θ = 0◦ up to θ = 90◦ for the sample with inherent anisotropy η = 2.

direction. However, when θ = 30◦ and 60◦, the failure mode is different.

The fissuring is diagonal to the loading, which suggests that shearing is the

preferred fissuring mode. These observations are in agreement with physical

experiments [9, 10, 50] and help to justify the substantial drop in failure

strength σyy/Cn for inherently anisotropic structures.280

Note that this observation about the macroscopic failure modes is de-

scriptive. A quantitative assessment of the energy consumption shows that

all the samples consume roughly the same amounts of fragmentation energy
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independently of θ and η using the same Bonded-Cell Method [65]. This is

a very counterintuitive phenomenon that has been scarcely studied or vali-285

dated in physical experiments. A recent work [] using notched rock cores has

established a dependency between the fragmentation energy and the bedding

angle θ, although different test conditions and variability of results call for

further experimental validations. While our numerical model is indeed sim-

ple and does not consider the elastic deformation the cells can undergo, the290

BCM modeling let us deduce that the total length of cohesive bonds is the

central parameter controlling the energy consumption. Thus, the variability

in failure strength is strongly linked to microstructural elements rather than

to mechanisms splitting failures between tensile and shearing modes.

4. Microstructural analysis295

As previously mentioned, rock microstructure is often related to min-

eral or grain size and shape distribution, joint spacing/density, fissuring,

and etc. All of these geometrical characteristics clearly affect the failure

strength. However, the microstructure cannot only be reduced to its geo-

metrical aspects. Accounting for the connectivity between cells and the force300

transmission are key elements behind the macroscopic mechanical behavior.

In order to do this, we first need to define a framework of analysis. We

have two possibilities when dealing with adjacent cells. First, the interaction

frame in which the bond forces are defined as f = fnn + ftt, with n being

the normal unit vector perpendicular to the contact line, and t being the305

tangential unit vector.

We can also define the inter-center vectors between cells, also called

17
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Figure 8: Schematic representation of the local frames created between two irregular cells

i and j. Unitary vectors n and t are linked to the bond, while n′ and t′ are defined upon

the branch vector. Note that angles Θ and Θ′ are the orientation of n and n′, respectively,

measured counterclockwise from the horizontal.

branch vectors, as ℓ = ℓnn + ℓtt, with ℓn and ℓt being the normal and tan-

gential components. These branches let us define a second frame in which

the unit vector n′ is defined along ℓ, and t′ is the tangential unit vector310

(see Fig. 8) [79]. In this frame, the forces between the cells are written

as f = f ′
nn

′ + f ′
tt

′, with f ′
n and f ′

t - the radial and ortho-radial forces,

respectively - acting between the centers of the cells. Finally, the branch

in this frame is simply written as ℓ = ℓn′, with ℓ being the length of the

branch vector. For convenience, we used the branch frame for the following315

microstructural analysis.

As an illustration, Fig. 9 (top) presents the branch network and the force

network (bottom) with lines whose thickness is proportional to the intensity

of the force at the interactions. A visual inspection shows how the geometry

of the cells dramatically modifies both networks. As η increases, the branch320

network becomes more irregular and the force chains more diffuse within the

volume.
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Figure 9: (Top) Networks created by bonded adjacent cells for η = 1, 3 and 6 displayed

with lines between the center of mass of the corresponding cells. (Bottom) Force networks

between bonded cells. The thickness of the lines is proportional to the force intensity.

Traction forces are displayed in blue and compression forces in red. These screenshots are

taken for cases in which the loading orientation is θ = 0.
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4.1. Geometrical description

4.1.1. Connectivity

We can characterize the connectivity between cells by using the coordi-325

nation number Z. This parameter shows the average number of neighboring

interactions per cell as Z = 2Nc/Ncl, with Nc being the number of bonds

between cells and Ncl the number of cells. There is, however, a subtle differ-

ence in coordination number between the intact state (i.e., at the beginning

of the loading) and the coordination number we are able to compute instants330

before failure. Both values differ, as fissuring removes cohesive bonds pre-

viously capable of bearing force. We characterize the onset of failure as the

state bearing σyy, so let us consider the cohesive bonds at the onset of failure

N∗
c as the effective number of interactions, so Z∗ = 2N∗

c /Ncl.

Figure 10 presents the averaged coordination number at the onset of335

failure as a function of η and θ. We observe that the connectivity decreases

as θ and η increase. In other words, Z∗ varies conversely to σyy showing

that inherently anisotropic materials can bear larger stresses despite the fact

that cells are less connected. The evolution of Z∗ provides a counterintuitive

picture of the effect of θ and η on the microstructural properties at failure.340

However, as previously shown in Fig. 8, the branch and force networks also

carry a strong anisotropic character that calls for a higher-order analysis

accounting for their distribution in space.
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Figure 10: Evolution of the coordination number at the onset of failure Z∗ as a function

of the loading orientation θ and the inherent anisotropy η.

4.1.2. Branch orientations

We can define the density probability distribution Pc of branch vector345

orientations as

Pc(Θ
′) =

N∗
c (Θ

′)

N∗
c

(3)

with N∗
c (Θ

′) being the number of branches pointing at angle Θ′ at the

onset of failure. The inset of Fig. 11(b) presents the angular distributions

Pc(Θ
′) with symbols for three different values of inherent anisotropy and

loading orientations θ = 0◦ and θ = 90◦. We can see that when η = 1350

the distribution remains almost circular, highlighting the fact that the bond

network is nearly isotropic and independent of the assembly’s rotation. Con-

versely, the distributions for η > 1 present preferential orientations matching

the preferred orientation of the cells.

These angular distributions can also be described using truncated Fourier355

series, as

Pc(Θ
′) =

1

2π
{1 + a′c cos 2 (Θ

′ − Θ′
c)} , (4)
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with Θ′
c being the preferential orientation of the distribution and a′c its

anisotropy level, i.e., the branch vector orientation anisotropy. Note that a′c =

0 means a circular distribution Pc, in which bonds are equally presented in all

orientations Θ′. Conversely, as a′c increases, more bonds present a preferential360

orientation in space. Although we could fit Eq. (4) to our measures to find

a′c and Θ′
c, we prefer to use the fabric tensor defined as [80]

Fij =

∫ π

0

Pc(Θ
′)n′

i(Θ
′)n′

j(Θ
′)dΘ′, (5)

with n′ = {cosΘ′, sinΘ′}. Equation (5) lets us define the anisotropy

of branch orientations as a′c = 2(F1 − F2), with F1 > F2 being the eigen-

values of F . The major principal direction of the fabric tensor is Θ′
c =365

1/2 arctan{2Fxy/(Fxx−Fyy)}, with Fxx and Fyy being the components in the

diagonal of F , and Fxy the component off the diagonal. Figure 11 presents

the corresponding values of preferential branch orientation and anisotropy as

a function of η and θ.

We can observe that a′c is close to zero for η = 1, exposing the isotropic370

character of the branch network and its independence before θ. For η > 1,

a′c can reach larger values as high as ≃ 1.1 for η = 6. There is also a slight

drop in a′c occurring for values of θ > 70◦. This phenomenon, combined with

the drop of Z∗ we observed before, suggests that contacts are mostly lost in

the minor orientation of the fabric tensor as η increases.375

In Fig. 11(b), we present the evolution of Θ′
c as a function of the loading

orientation θ. For η = 1, Θ′
c is irrelevant given that a′c ≃ 0, so it is omitted

from the plot. But as soon as η > 1, Θ′
c decreases as π/2− θ which matches

the cells’ orientation.
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(a) (b)

Figure 11: Bond orientation anisotropy a′
c (a) and the preferential orientation Θ′

c (b) for

different inherent anisotropy levels η and loading orientations θ. In the inset: probability

of branch orientations Pc(Θ
′) shown with symbols for three values of inherent anisotropy

η and loading orientation θ = 0◦ and θ = 90◦. The dashed lines are the fitting curves

using Eq. (4).

Along with Pc, we can also characterize the angular branch length dis-380

tribution ⟨ℓ⟩(Θ′). This distribution can be computed as a function of Θ′ as

⟨ℓ⟩(Θ′) =
1

N∗
c (Θ

′)

∑

c∈δΘ′

ℓc, (6)

with ℓc being the length of the branches pointing at small intervals of

angular orientation δΘ′. The inset in Fig. 12(b) presents these angular

distributions for loading orientations θ = 0◦ and θ = 90◦, and three values385

of η. These angular distributions for branch lengths closely follow the trends

previously seen for Pc(Θ
′).

As with branch orientations, the angular evolution of branch lengths can

be described using the expression

⟨ℓ⟩(Θ′) = ⟨ℓ⟩ {1 + a′ℓ cos 2 (Θ
′ − Θ′

ℓ)} , (7)
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with Θ′
ℓ being the preferential orientation, and a′ℓ the level of anisotropy. In390

the insets of Fig. 12(b), we show that the branch length distributions become

more anisotropic as η increases, and that the longest branches predominately

point in the same direction as the cells are pointing.

To find the branch length anisotropy, it is convenient to build the branch

tensor, which is defined in an integral form as [80]395

Hℓ
ij =

∫ π

0

⟨ℓ⟩(Θ′)n′
i(Θ

′)n′
j(Θ

′)dΘ′. (8)

Note that this integral is computed in the range [0, π] given the periodic

evolution of the angular distributions in that interval. We can then compute

the branch length anisotropy as a′ℓ = 2(Hℓ
1 − Hℓ

2)/(H
ℓ
1 + Hℓ

2), with Hℓ
1 and

Hℓ
2 being the eigenvalues of the tensor, so Hℓ

1 > Hℓ
2. The same construction

allows us to compute Θ′
ℓ as the major principal orientation of Hℓ using the400

same approach as with the fabric tensor. In the inset of Fig. 12(b), we

present Eq. (7) with dashed lines using the values extracted from the tensors

above, and nicely fitting the angular distributions. We deliberately omitted

the evolution of ⟨ℓ⟩(Θ′) for η = 1 since the corresponding values for a′ℓ are

negligible.405

Figures 12(a) and 12(b) gather the results for the branch anisotropies

a′ℓ and preferred orientations Θ′
ℓ as a function of the loading orientation θ

and the levels of inherent anisotropy η. They show that the branch length

anisotropy increases with η from a′ℓ ≃ 0 for η = 1, up to a′ℓ ≃ 0.7 for η = 6.

In all of the cases, these anisotropies present only minor variations with the410

loading orientation θ. We can then say that the variation of the preferred

orientation for branch lengths evolves roughly as π/2−θ, similarly to Pc(Θ
′).

The large variations of geometrical anisotropies that we observed are
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(a) (b)

Figure 12: Evolution of the normal branch length anisotropy (a) and its preferential

angular orientation (b) as a function of the loading orientation and values of inherent

anisotropy η. In the inset: angular distribution branch lengths for some values of inherent

anisotropy η for loading orientations 0◦ and 90◦. We also present Eq. (7), fitting the

angular branch length distributions with dashed lines.

induced by the inherent anisotropy of the cells - and, furthermore, η is likely

also inducing force transmission heterogeneities within the samples. In order415

to investigate this, we focus next on the interaction forces between cells.

4.1.3. Force orientations

Similarly to the analysis undertaken for branches, we can analyze the

interaction forces between cells by using the angular distribution of radial

and ortho-radial forces f ′
n and f ′

t , respectively. These angular distributions420

can be computed as

⟨f ′
n⟩(Θ′) =

1

Nc(Θ′)

∑

c∈δΘ′

f ′
n, and (9)

⟨f ′
t⟩(Θ′) =

1

Nc(Θ′)

∑

c∈δΘ′

f ′
t . (10)

In the insets of Fig. 13(b), we present the angular distribution ⟨f ′
n⟩(Θ′)

for loading orientation θ = 45◦ which shows the misalignment of the largest
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forces with respect to the vertical (i.e., the loading orientation). In the insets

of Fig. 13(d), we present the distributions of ortho-radial forces for θ = 0◦425

and θ = 90◦, highlighting how widely these distributions vary as the assembly

rotates. Regardless, these angular distributions remain periodic and smooth

enough to fit Fourier series for their characterization. We can thus describe

the angular variation of forces as

⟨f ′
n⟩(Θ′) = ⟨f ′

n⟩
{
1 + a′fn cos 2

(
Θ′ − Θ′

fn

)}
, and (11)

⟨f ′
t⟩(Θ′) = ⟨f ′

n⟩
{
−a′ft sin 2

(
Θ′ − Θ′

ft

)}
, (12)

with a′fn and a′ft being the level of anisotropy for each distribution, and430

Θ′
fn

and Θ′
ft

the respective preferential orientations. For convenience, we

build force tensors that allow us to easily compute the anisotropies and main

orientation of each distribution as

H
f ′
n

ij =

∫ π

0

⟨f ′
n⟩(Θ′)n′

i(Θ
′)nj(Θ

′)dΘ′, and (13)

H
f ′
t

ij =

∫ π

0

⟨f ′
t⟩(Θ′)ni(Θ

′)tj(Θ
′)dΘ′. (14)

This lets us compute the levels of force anisotropy as a′fn = 2
(
H

f ′
n

1 − H
f ′
n

2

)
/(

H
f ′
n

1 +H
f ′
n

2

)
for the radial forces and a′ft = 2

(
H

f ′
t

1 − H
f ′
t

2

)
/
(
H

f ′
n

1 +H
f ′
n

2

)
435

for the ortho-radial forces, where Hα
1 and Hα

2 are the eigenvalues of each one

of the tensors. Note that Hα
1 > Hα

2 , and α stands for either the radial or

ortho-radial components of the forces. It is worth mentioning that tr
(
Hf ′

n
)
=

⟨f ′
n⟩, i.e., the average radial force, and tr

(
Hf ′

t

)
= 0 by equilibrium of force

moments over the cells.440

Figures 13(a) and 13(b) display the radial force anisotropies and their

preferential orientations for the different levels of inherent anisotropy η and
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(a) (b)

(c) (d)

Figure 13: Evolution of normal (top) and tangential (bottom) force anisotropies (left) and

the preferential orientation of their respective angular distribution (right) for different

values of inherent anisotropy η and loading orientation θ.
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loading orientation θ. In the case of η = 1, we can observe that a′fn ≃ 1.8

independently of the loading orientation. Then, a′fn progressively increases

with η in the range θ ≃ [0◦, 30◦]. After the loading orientation θ ≃ 30, the445

radial force anisotropy presents a decreasing trend relatively similar among

the different values of η > 1. The preferred orientations of these forces show

larger variations with θ; a behavior that seems amplified with η. Also, note

that for Θ′
fn

a minimum value systematically appears around ≃ 20◦.

For ortho-radial forces, Figs. 13(c) and 13(d) present the evolution of450

the level of anisotropy and preferential orientations as a function of η and θ.

In this case, we observe a continuous increase of a′ft as a function of η from

loading orientations θ = 0◦ to θ ≃ 45◦. Beyond that loading orientation, the

ortho-radial force anisotropy reaches a plateau and barely varies with θ. For

the orientations Θ′
ft

, we can see a variation that becomes more important as455

the level of inherent anisotropy increases. Although we might have expected a

joint evolution of the preferential radial and ortho-radial forces’ orientations,

these figures show that a non-evident trade-off of force anisotropies occurs

for highly anisotropic materials. This fact is, of course, emphasized by the

point loading configuration which signs the force transmission at bonds.460

5. Scaling up the strength from the microstructure

5.1. Microstructural contributions to the stress tensor

The previous microstructural parameters - concerning bonds, branches,

and forces - must act together to produce the macroscopic failure strength

we initially measured. This mapping between the micro and macro scales465

is especially challenging because of the varying shapes and sizes of the cells
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and the fact that the different microstructural tensors are strongly misaligned

and evolving with θ.

In order to reconcile the micro and macro scales, let us consider the

granular stress tensor as [81, 82]470

σij =
1

V

∑

∀c
f c
i ℓ

c
j, (15)

where V is the volume of the sample, and the sum includes the dyadic product

of the force f and branch ℓ vectors for all interactions c. Supposing that the

distribution of forces and branches is uncorrelated (which is verified in our

simulations), we can rewrite the stress tensor in terms of angular distributions

on the frame {n′, t′} as [80]475

σij = nc

∫ π

0

{⟨f ′
n⟩(Θ′)n′

i(Θ
′) − ⟨f ′

t⟩(Θ′)t′i(Θ
′)} ⟨ℓ⟩(Θ′)n′

j(Θ
′)Pc(Θ

′)dΘ′, (16)

with nc being the bond number density defined as Nc/V = Z/(2⟨Vcl⟩), where

⟨Vcl⟩ is the average volume per cell. Note that we can also write ⟨Vcl⟩ =

(π/4)⟨dcl⟩2, with ⟨dcl⟩ being the equivalent average diameter of the cells.

When we replace Eqs. (4), (7), and (11) in the previous expression, focus

only on the vertical component of the tensor (i.e., σyy), and integrate over480

the interval [0, π], we find a microstructural definition of the vertical stress

at the onset of failure as

σth
yy =

Z⟨f ′
n⟩⟨ℓ⟩

π⟨dcl⟩2
{
1 − 1

2

∑
a′k cos 2 (Θ

′
k) +

1

2

∑
a′la

′
m cos 2 (Θ′

m − Θ′
l) + O

}
.

(17)

The term in brackets shows the contributions of the different anisotropies

to the strength. In that term, the first sum runs in the set a′k ∈ {a′c, a′ℓ, a′fn , a′ft},

and in the respective values for Θ′
k. The second sum is a product of anisotropies485
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in which the combinations of indices l and m belong, respectively, to the set

{a′fna′ℓ, a′fna′c, a′ℓa′c}, with the respective angles for Θ′
m and Θ′

l. The higher-

order term O involves triple products of anisotropies and is purposely ne-

glected for the sake of simplicity. Also note that we added the superscript

‘th’ to emphasize that this value of strength results from the theoretical490

decomposition of the stress tensor. For simplicity, the term related to the

anisotropies is henceforth written as A.

Equation (17) illuminates the fact that non-trivial microstructural com-

pensations occur between 1) the different anisotropy levels, 2) the preferred

orientations of angular distributions, and 3) geometrical and mechanical fea-495

tures. In addition, the choice of the branch frame {n′, t′} instead of the

bond frame {n, t} is deliberate because it allowed us to reduce the number

of anisotropies and the number of terms involved in A [79].

In Fig. 14, we summarize the evolution of the different parameters in-

volved in A for single and double anisotropies. On the one hand, we see500

that the geometrical anisotropies related to the branch orientation a′c and

branch lengths a′ℓ smoothly decrease as a function of the loading orientation

θ. On the other, the anisotropies related to the force transmission a′fn and

a′ft have a highly non-linear evolution with θ. For angles between θ = 0◦

and θ = 30◦, the radial force anisotropy increases but then finds a relatively505

steady value for larger loading orientations. For angles greater than θ ≃ 45◦,

the ortho-radial anisotropy increases strongly as a function of θ. For the

terms involving the product of anisotropies, the trends are all quite similar

and not negligible in contribution.

At the bottom of Fig. 14, we see how all of these anisotropies add up.510
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Given the strong variation of all the anisotropies and preferential orientations,

it is notable that the term A ends up fluctuating around the case η = 1.

This is clearly a mechanism involving direct compensations between geo-

metrical microstructural characteristics and the force transmission at bonds.

This phenomenon - in which the term A lies close to one - shows that the515

strong variation of the macroscopic failure strength must lie on the parame-

ters Z⟨f ′
n⟩⟨ℓ⟩ of the microstructural decomposition of stresses. Note that a

version of Eq. (17) that neglects the term A has been used many times before

for conglomerates or granular assemblies in which particles are of similar size

and shape [83–85]. Nonetheless, as we just observed, A cannot be neglected520

for ellongated bodies.

In Fig. 15(a), we see the evolution of the average branch length at the

onset of failure as a function of the inherent anisotropy and the loading ori-

entation, which shows a gradual drop as the loading becomes perpendicular

to the layering. Such a variation is accentuated as η grows. In Fig. 15(b),525

we present the evolution of the average radial force ⟨f ′
n⟩, which is normal-

ized by the internal cohesion and the average cell equivalent diameter. This

curve varies widely and, indeed, carries most of the shape of the macroscopic

failure strength.

These observations allow us to conclude that the microstructural mecha-530

nisms producing the increase of failure strength with θ are related to the rise

of radial forces, the drop of average branch length and coordination number

Z, and the complex compensations occurring within the term A.

Finally, in Fig. 16, we plot σth
yy nicely reproducing the macroscopic verti-

cal failure stress measured in Sec. 3. It is remarkable how the approach of535
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Figure 14: Evolution of the terms in Eq. (17) related to single anisotropies (first row) and

double anisotropies (second row). We also present the sum of these different parameters

in the term A (bottom).
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(a) (b)

Figure 15: (a) Evolution of the average branch length as a function of η and θ. (b)

Evolution of the radial average force as a function of η and θ. In the inset: the same data

in lin-log scale.

decomposition of the granular stress tensor in terms of angular distributions,

in spite of the large variability of anisotropies and preferred orientations for

each distribution, is capable of providing these set of satisfactorily good pre-

dictions for the failure strength. The small differences between the measure

and the decomposition are linked to the higher-order terms that were ne-540

glected in Eq. (17). Thus, based on a fine description of the phenomena

at bonds and mineral organization in space, our micromechanical descrip-

tion proves capable of describing and scaling up the macroscopic behavior

we observe in laboratory.

6. Summary545

We developed a series of numerical tests to study the failure strength

of brittle materials reminiscent of schists, slates, shales, etc, whose compo-

nents have a preferential orientation, i.e., an inherent anisotropy. Using a

bi-dimensional discrete-element method, we built samples in which we could
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Figure 16: Failure strength measure through the wall forces just as in Fig. 5(b) (solid

lines), and the same strength found using the microstructural decomposition of the stress

tensor using Eq. (1) (dashed lines).

control the degree of inherent anisotropy by using a modified Voronoi tes-550

sellation. This approach allowed us to generate a set of subdivisions (the

tessellation) of adjacent irregular polygons that we called cells. The common

edges between cells interacted via cohesive bonds, enabling us to control both

the failure strength and the cumulated surface energy necessary to produce

fissuring. We then measured the macroscopic failure strength by applying555

a diametrical point load onto circular samples up to breakage. The failure

strength turned out to be strongly affected by the layering orientation with

respect to the loading direction θ. As observed in many experimental tests,

the failure strength in our numerical tests evolved in a parabolic ‘U ’ shape,

with a minimum value around a loading orientation of θ ≃ 25◦.560

We also analyzed the variability of the failure strength using the Weibull

survival probability, concluding that mixing several anisotropic configura-

tions and loading orientations may lead to misleading conclusions upon the

average failure strength and data scatter. This means that experimental test-
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ing must consider the microstructure of samples to avoid a misinterpretation565

of the strength of anisotropic brittle materials.

Finally, we performed a thorough characterization of geometrical prop-

erties of the cells’ assemblies and force transmission mechanisms by means

of the fabric, branch, and force tensors, as well as an approximation of their

angular distributions using Fourier series. Exploiting the definition of the570

granular stress tensor in terms of angular contributions, we were able to find

the microstructural elements that explain the variability of strength at the

macroscopic scale. This was not a straightforward task. The strong geo-

metrical and force anisotropies we found - as well as the misalignment of

the different tensors - prompted us to undertake a full description of the575

contributions of anisotropies involving high-order terms seldom seen when

analyzing rocks or granular media. Instead of simplifying particles’ shape

and size variability, we modelled the complexity of these materials in or-

der to identify the microstructural elements responsible for the macroscopic

phenomena. We found that geometrical and mechanical anisotropies present580

complex compensations, which means they are not the main source of the

failure strength variations. Rather, it is the cell coordination, the average

branch length, and the average radial forces that present the larger fluctu-

ations - making them the key microstructural elements at the origin of the

macroscopic failure strength.585

Real materials are tremendously complex. Through this work, we sought

to explore this complexity with the most detailed parameters we could gather

linked to the granular stress tensor. Note that the circular shape we used for

the samples was simply a choice of configuration that allowed us to compare
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our results to those obtained in rock testing. Our approach, however, is gen-590

eral and can be extended to any sample shape, assemblies of many crushable

bodies, and diverse bonding behavior other than pure cohesive. Another very

interesting perspective deals with the mechanics of porous rocks or grains for

which our numerical model can be modified to not only reproduce adjacent

cell configurations, but structures with holes in it. Many questions remain595

unresolved concerning the compaction or shear properties (rheology) of as-

semblies composed of several crushable inherently anisotropic bodies, which

would benefit from future research.
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